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Abstract—Rather than managing their heterogeneity and dy-
namic behavior through centralized intervention, overlay nodes
can be programmed to self-organize and self-manage the network.
To achieve the highest performance within a service overlay, they
are further expected to self-optimize the network, by cooperatively
providing and allocating resources in an optimal manner. However,
since nodes are inherently selfish about resources they contribute
or consume, self-optimization could not be achieved if they are
not given the correct incentives. In this paper, we investigate the
effectiveness of a market-based incentive mechanism in directing
nodes’ behavior and enabling self-optimizations.

We have designed an intelligent market model for a service
overlay network, based on which individual nodes, being service
producers and consumers, determine their own resource contribu-
tions, consumptions, or service prices based on their own utility
maximization goals. We also propose optimal decision making
solutions for nodes to achieve their self-interests; in particular, ser-
vice providers are provided with a control-based pricing solution
based on system identification techniques.

With the multicast streaming application as an example,
we show through simulations that, even when selfish nodes all
seek their maximal utilities, the resulting network still achieves
close-to-optimal performance in both steady and dynamic states.
The results also indicate that, by encouraging nodes to behave
selfishly and intelligently in a designed market, self-optimization
in other autonomic systems may be facilitated in the presence of
node selfishness.

I. INTRODUCTION

PARTICIPANTS in overlay networks reside in geograph-
ically dispersed locations, access the Internet via hetero-

geneous access technologies, and belong to different adminis-
trative domains with different policies. They may join or leave
the network at any time, leaving the composition of an overlay
network highly dynamic. Due to these characters, it is nearly
impossible to manage an overlay network with centrally coor-
dinated intervention, especially, as the network becomes large.
Therefore, overlay networks are a natural form of autonomic
systems. It has been a well-known design philosophy to dis-
tribute to individual nodes the functionalities of organizing, con-
trolling, and managing an overlay network.

At the topological level, there exist overlay structures (e.g.,
Chord [1] and Pastry [2], etc.), that provide the basic function-
alities for nodes to self-organize into an overlay network, and to
self-heal at times of arbitrary node participation and departures.
At the service management level, it has been further studied how

Manuscript received October 9, 2004; revised April 30, 2005.
The authors are with the Department of Electrical and Computer Engi-

neering, University of Toronto, Toronto, ON M5S 3G4, Canada (e-mail:
wwang@eecg.toronto.edu; bli@eecg.toronto.edu).

Digital Object Identifier 10.1109/JSAC.2005.857210

nodes should self-optimize toward certain global optimal objec-
tives. As an example, the overlay multicast protocol Narada [3]
aims to minimize end-to-end delays, while avoiding high link
stress, with nodes choosing parent nodes1 on their own.

However, in overlay networks consisting of independent and
heterogeneous nodes, achieving self-optimization is nontrivial,
due to the critical but often overlooked observation: Nodes
are inherently selfish. The selfishness is caused by the fact
that overlay nodes belong to different administrative domains
and users, who enjoy the complete freedom to choose the best
courses of action that maximize their utilities. They may not
follow any externally dictated global optimization algorithms,
if their self-interests are not satisfied.

In this context, the critical question is the following: how
should we influence the inherent behavior of selfish nodes using
certain incentives, so that the collective outcome of individual
nodes behaving toward their own self-interests still leads to the
desirable system optimality?

Game theoretic models [4]–[6] have been employed as in-
centive mechanisms to model selfish nodes, and the steady-
state properties of these mechanisms have been widely studied
in previous literature. Distributed pricing models [7], [8] have
also been proposed to regulate the behavior of service providers
and consumers, under the goal of social welfare maximization.
However, a common drawback of previous work is that, they
are mostly theoretical in nature, and are usually subject to strict
assumptions that do not hold in realistic overlay networks.

In contrast, this paper seeks to propose a resource allocation
framework for realistic overlay networks composed of selfish
nodes. Similar to previous studies on resource allocation in
communication networks [9], [10], we take the viewpoint that
overlay nodes should be allowed to behave selfishly, and that
the optimality of a network should be evaluated from the point
of view of the entire system. We aim to achieve two objectives.
First, we seek to propose an incentive mechanism that promotes
resource contribution and prevents resource overuse, not only
at the steady state, but also at times of network dynamics where
the supply and demand relationship changes. Second, we seek
to design an appropriate software agent that best delegates the
selfish user under the proposed incentive mechanism. With
these two building blocks, the network performance param-
eters resulted from individual decisions may approach those
determined by global optimization methods.

Our proposed incentive mechanism builds upon an intelligent
market model, which encourages both service providers and

1Henceforth, in this paper, a parent of an overlay node is referred to as an
upstream node, whereas a child is referred to as a downstream node.
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Fig. 1. (A) Overlay nodes (nodes 0 � 9, represented by hollow circles) interconnected by core nodes (represented by solid circles). (B) The match between
upstream and downstream nodes, node 0 is the source. (C) The corresponding multicast topology and a possible bandwidth allocation.

consumers to pursue their highest possible utilities with intel-
ligence. In this paper, we choose an overlay media streaming
application as a running example, where upstream nodes
that forward media streams are treated as service providers,
and downstream nodes as consumers. Each service provider
maintains a dynamic price for the service it delivers, which is
periodically adjusted for its highest level of utility. Each service
consumer, out of multiple service provider candidates, selects
the ones that best balance its attainable quality-of-service (QoS)
parameters and economic costs.

Through extensive comparison studies with a well-known ap-
proximately optimal overlay multicast protocol, Narada [3], we
have shown that our market-based incentive mechanism im-
proves the average throughput in the multicast tree topology,
and efficiently adapts the topology and bandwidth allocation to
network dynamics, while only incurring minor communication
and computation costs. We also believe that, with minor exten-
sions, the proposed market mechanism may serve as a general
framework for achieving self-optimization for other autonomic
systems that consist of selfish and intelligent components.

The remainder of the paper is organized as follows. Section II
describes the overlay streaming application, and defines our
market model. Section III informs the models on node self-
ishness and formulates the local optimization problems to be
solved by individual nodes. In particular, a novel decision
making solution for upstream nodes based on optimal control
and system identification is proposed in Section IV. Section V
discusses distributed protocols that facilitate the self-optimiza-
tion process, and Section VI presents our simulation-based
evaluations. Related work on autonomic overlay networks is
discussed in Section VII, and Section VIII concludes the paper.

II. INTELLIGENT MARKET MODEL

Throughout this paper, we use an overlay media streaming ap-
plication as an example. As illustrated in Fig. 1, overlay media
streaming is an application that multicasts streaming media in
an overlay network, from a source node to a set of receiver
nodes, that together form the multicast group. Rather than re-
lying on Internet protocol (IP) multicast, overlay nodes serve as
application-layer switches and forward received data to down-
stream nodes via unicast connections. Overlay multicast topolo-
gies may take the form of a single tree [3], multiple trees [11],

or a mesh [12]. In some of the designs, receivers in a multicast
group may receive media content at different rates compared
with their upstream nodes. This can be realized by the use of
multiple description coding. In this application, the design ob-
jective is to achieve optimal topology formation, which includes
the construction of the overlay topology, and the subsequent
bandwidth allocation on overlay links. A topology is considered
desirable, if it leads to high average end-to-end throughput, low
average end-to-end delay, and low average packet loss rate for
all overlay links.

In previous work, distributed protocols are proposed to
construct overlay multicast topologies [3], [11], [13], in which
nodes are only considered as agents to execute the prescribed
protocols. Given the topology, bandwidth shares allocated for
multicast traffic are determined by the source rate and the
available bandwidth along all relevant physical links.

In comparison, node selfishness is acknowledged in this
paper, where we evaluate the optimality of network perfor-
mance with the total satisfaction perceived by all the nodes.
Individual nodes are given complete freedom to determine their
connections with other nodes, based on their own utility eval-
uations. The original problem of optimal topology formulation
and resource allocation is, therefore, turned into a collection
of localized decision problems, within which nodes determine
how to make the best use of their bandwidth resources to
improve their utilities.

In the media streaming application, an overlay node may be
seen as providing the media delivery service to its downstream
nodes, if it is serving active media streams. When such a service
is treated as a product traded within the multicast group, we
propose the following intelligent market model. In the context
of multicast bandwidth allocation, it associates each multicast
group with a market.

Within a multicast topology, an upstream node and its imme-
diate downstream node are identified as the seller and the buyer,
respectively. For example, in the simple multicast example of
Fig. 1, on the overlay link from node 1 to node 2, node 1 acts as
the seller, and node 2 as a buyer. A node is a seller and a buyer
if it both sends and receives in the multicast group.

The media delivery service is quantified based on the amount
of bandwidth the upstream node contributes to the downstream
node, or the end-to-end throughput the upstream node delivers.
Products traded between different pairs of sellers and buyers are
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further differentiated by other QoS metrics, such as end-to-end
delay and end-to-end packet loss rate. Apparently, these metrics
are specific to the pair of seller and buyer: they change with
the underlying physical path it goes along, and are subject to
relevant network dynamics.

Naturally, we require the service to be priced by the
end-to-end throughput it provides; the economic revenue or
payment regarding an overlay link is determined as the product
of throughput and price. We further assume that multiple prices
coexist on the market—each seller determines its charge for
per-unit of throughput it delivers, and prices are dynamically
adjusted by the sellers.

On joining the multicast group, a potential buyer identifies its
seller candidates, and evaluates each of them by their prices and
deliverable QoS (e.g., maximum throughput). Once the buyer
has selected a candidate as a seller, a corresponding link will be
added to the multicast topology. The share of bandwidth to be
allocated to the overlay link, henceforth, referred to as reserved
bandwidth, is negotiated by the two nodes.

The reserved bandwidth differs from the actual end-to-end
throughput on an overlay link, in the sense that the former is
agreed upon by the two nodes before the transfer begins, and the
latter is supposed to approximate the former, although its value
is affected by flow control and congestion control performed in
the network under realistic traffic situations. Payments are to be
calculated based on the reserved bandwidth.

Since the network may undergo unpredictable dynamics at
any time, we allow buyers in a multicast topology to periodi-
cally reexamine their sellers and seller candidates, and to either
switch to other alternative sellers, or readjust its reserved band-
width to the optimal value if its current upstream node remains
to be the best seller. Therefore, bandwidth allocation in the mul-
ticast topology is adaptively updated as overlay links are estab-
lished, disconnected, and adjusted with respect to bandwidth.

Finally, it is worth noting that our intelligent market model
does not require any actual monetary flows between overlay
nodes, but may take the form of “virtual currency” that circu-
lates within the network.

III. MODELING NODE SELFISHNESS

With economic factors as external incentives, there are a
number of ways of modeling the decisions of selfish overlay
nodes, each corresponding to a different formulation of op-
timization problems. For example, one may suggest that we
maximize the downstream node’s empirical benefit given its
economic budget, or to maximize the upstream node’s eco-
nomic profit, while delivering services at a fixed quality level.
In this paper, we combine the empirical and economic concerns,
and assume that nodes always make decisions that best balance
the two aspects.

Mathematically, any selfish decision of a node is driven by
its utility function, which summarizes its inherent preference
over its experiences in the network. We further model the selfish
nodes as utility maximizers, making all their decisions toward
maximizing their utilities.

Since the concrete forms of utility functions are essentially
unknown a priori, we aim to “design” the formulation of such

utility functions, such that they represent the best interests and
selfishness of the overlay nodes. By designing the utility func-
tions, we may examine the effects of the proposed market model
and incentive mechanism by emulating the most likely behavior
of selfish nodes.

A. Utility Functions

We consider the discrete time domain where time is divided
into slots, and introduce the following notations. For each time
slot , a node keeps a price for each unit of bandwidth
it reserves for its immediate downstream nodes, which form the
set . At the same time, it receives streams from a set
of upstream nodes. The stream from node to node has a re-
served bandwidth of , an end-to-end delay and a loss
rate as perceived by node . denotes the local avail-
able network bandwidth of node , and is the economic
budget maintained by node itself. In addition, we denote the
local bandwidth capacity of node as , the maximal tolerable
delay as , and the maximal tolerable loss rate as .

We assume that the utility function of node , either as a down-
stream or an upstream node, takes a quasi-linear form: the utility
equals the sum of an empirical and an economic component. The
former accounts for the node’s empirical benefit (or loss) for re-
ceiving (or providing) certain services, which may be charac-
terized by various quality metrics of the services received, e.g.,

, , or . The latter equals the revenues (or costs)
due to the delivery (or consumption) of services. We choose the
quasi-linear form of utility functions, since any equilibrium so-
lutions to utility maximization problems are independent of the
initial economic funds of market participants, if the economic
funds constitute an additive term in each market participant’s
utility function [14].

The economic component can be simply expressed as the
product of the corresponding price and bandwidth value. How-
ever, the formulation of the empirical component needs to satisfy
a few mathematical properties: In order to present a reasonable
preference relation, it has to be monotonic and quasi-concave
with respect to each variable it takes; and it usually needs to be
twice differentiable for an optimal point to exist analytically
[14].

As a possible formulation, we propose the utility functions,
and , for node , in the form of (1.1) and (1.2), as

it acts as downstream and upstream nodes, respectively. In both
expressions, the last term represents the economic component,
and the remaining terms represent the empirical component. By
(1.1), we assume that an end user may simultaneously evaluate
throughput, delay, and loss rate when receiving streams, though
any of them can be omitted by setting the corresponding coef-
ficient to zero. By considering different subsets of the upstream
node set , the equations can cover any topological cases for
multicast, e.g., single tree, multiple trees, or mesh. In (1.2), we
assume that the network bandwidth is the main resource con-
straint that each upstream node considers in our example of a
streaming application, as shown in (1) at the bottom of the next
page.

Coefficients ( , 2, 3, 4) are positive weights that
indicate the relative importance of the three metrics—and the
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relative importance of the empirical and economic compo-
nents—for the end user. All the parameters , , ,

, and , , 2, 3, 4 are inherently node-specific and
application-specific, and may be configurable by a node for
each multicast group it joins. However, a correct setting of
parameters should guarantee that, a node would be willing to
take an action, i.e., receiving a stream from a upstream node
at certain QoS levels and charges, or sending a stream to a
downstream node at certain throughput and earnings, only
when the corresponding utility is above zero.

B. Decision Problems

Under the prescribed market model, the decision problem of
a downstream node is straightforward: It periodically updates
its best choices of upstream nodes for receiving the streams, or
equivalently, the best combinations of , , , and

, in the changing environment. As an upstream node, how-
ever, it is presented with two decision-making problems. First,
upon being requested by any potential downstream node, the up-
stream node should decide the best throughput that maximizes
its own utility. Second, it needs to periodically update the op-
timal price that induces the highest future utility for itself.

More specifically, to choose the best upstream node, a down-
stream node evaluates each upstream candidate by first com-
puting the optimal throughput from (2). In this equa-
tion, denotes the expected utility improvement if node

were to receive a flow from node , assuming that the prices
and transmissions from all its other upstream nodes remain un-
changed. If node is one of the current upstream nodes of node
, both and are measurable from past transmissions;

otherwise, since would be missing, the third term
needs to be removed from the expression. If there is no solution
to (2), node will be excluded from consideration for the th
time slot. Once is determined for each eligible node ,
node then chooses the one, if it exists, with the highest non-
negative , as shown in (2) and (3) at the bottom of the
page.

Condition (2.1) implies the utility constraint. Intuitively, node
would not choose to be served by node if, by doing so, node
’s utility decreases. Condition (2.1) is the budget constraint: the

sum of the anticipated payment should not exceed the current
economic budget of node , and is dynamically
updated as node pays charges or earns revenues. Condition
(2.3) represents the physical constraint, where and

(1.1)

(1.2)

(1)

(2.1)

(2.2)

(2.3)

(2)

(3)
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are determined by the local available bandwidth of node
, and the utility-restricted outgoing throughput bounds of node
, as will be discussed in Section V.

On the side of the upstream node, node evaluates its future
behavior of delivering a stream at throughput by the
corresponding utility increment . This is expressed
in (3), where is node ’s local available bandwidth, and

corresponds to the data generation rate if is the original
source, or the input rate if is a branch node in the multicast
topology. Node would not be sending the stream at
if the resulting is negative. Clearly, for a pair of
nodes to establish a connection, some negotiation on is
necessary to reconcile the two selfish entities. A viable way of
conducting such negotiations is described in Section V.

From the economic perspective, the decision of node on
price aims to maximize its revenues to be made in time
slot

(4)

We devote the next section to an in-depth discussion toward
an intelligent solution for such a pricing problem.

To summarize, we have proposed a mechanism that incen-
tivizes selfish nodes with prices and in the context of markets,
and have modeled selfish nodes as utility maximizers. The
utility functions (1.1) and (1.2) are formulations reflecting
the preferences of selfish nodes over different empirical and
economic factors, and we believe that there exist many other
eligible forms. An alternative solution is to give end users
even more flexibility in determining their own utility func-
tions through online identification, as has been proposed by
Courcoubetis et al. [15]. As nodes adjust their behavior based
on the utility maximization goal, the overlay network is ex-
pected to be self-optimizing: multicast topology and bandwidth
allocation are automatically adapted to network dynamics,
which include node joining and departures, as well as varia-
tions in cross traffic. The performance metrics under concern,
e.g., total throughput, average delay, and average loss rate are
maintained at acceptable levels in all situations.

IV. OPTIMAL CONTROL–BASED PRICING DECISIONS

Since making decisions on downstream nodes based on (2) is
rather straightforward, in this section, we focus on the decision
problem from the point of view of an upstream node, and pro-
pose a solution to make pricing decisions. Given the operation of
the intelligent market model, an upstream node ’s utility is de-
pendent on its own price, the remaining bandwidth capacity, and
the following factors: 1) the set of nodes that compete with as
upstream nodes; 2) the performance measurements on overlay
links from these competitors to any potential downstream node

; 3) the utility function of node ; and 4) the prices of the
competitors. However, these factors are essentially unknown to
node , since the propagation of global information cannot be
assumed in autonomic systems, and is practically infeasible.

Fig. 2. Diagram of the optimal control system. Z represents a one-step
delay in the time scale. Past values p (t � 1) and b (t), as well
as an estimate ~! (t � 1) of the past noise input, are used to identify the
mathematical model of the outside world, and to decide the new price p (t) for
the optimization goal.

A. Optimal Control Formulation

Since service prices influence the topology formed and band-
width allocated, each node may be considered to be applying a
control input to a plant, which is the entire system consisting
of all the sellers and buyers. In system control terms, we denote

as the control input supplied at the beginning of time slot
, and as the total amount of bandwidth con-

sumed by ’s buyers as the system output obtained at the end of
the slot. With an appropriate system equation, we may mathe-
matically represent the dependence of output on control input,
as well as the noise input representing dynamic factors
that are usually stochastic and hard to model, including the net-
work topology, storage access patterns, background traffic, and
the effects of upstream competitions. An illustration of such a
dynamic system is shown in Fig. 2.

Since each node determines its price according to its utility
maximization goal, we may transform the original decision
problem (4) into an optimal control problem based on the
system view: node decides as an optimal control signal
to the system, so that the control objective, i.e., node ’s utility

in the th time slot, is maximized.

B. System Identification

To determine the optimal control signal, node needs to first
identify the system equation, in order to predict the system
output based on any input. However, for this particular system,
we do not have any specific insights into the underlying
mechanism except its nonlinearity: when the external world is
relatively stable, is small, and the remaining bandwidth of
node is sufficiently high, may increase even
when increases; while after or the level of remaining
bandwidth reaches some point, may decrease
significantly as increases.

We hence take the nonlinear black-box parameterization
method [16], which is an established way of emulating any
system model about which little a priori knowledge is known,
and we identify the involved system parameters by the least
squares estimation method.

With the nonlinear black-box method, the system output
is expressed as a weighted sum of basis functions, which are
mathematical expressions of past and present system input,
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past system output, related state variables, and noises. In
our problem, we express the system output ,
hereafter denoted as , as a function of , , and

. Taking the sigmoid basis
function

(5)

we may obtain , an estimate of from the following
system model

(6)
In this equation, and are positive constants determined

by the requirements imposed on the approximation accuracy of
and the upper bound of the derivative of . ,

are parameters of the system model that needs to be
identified from historical data , , and . The con-
stant is dependent on the ranges of , , and ,
and determines the modeling capacity of the expression.
and are two vectors that consist of
and , respectively.
Moreover, the variable is stochastic in nature and unob-
servable by node , thus, it need to be estimated from the histor-
ical data of control input and output.

At the end of time slot , an iteration round is carried out in
two steps. First, since the values of , , and are
known, the value of may be estimated as the minimizing
point of prediction error of the system model identified thus far,
and we denote the estimated value as

(7)

To reduce the effect of randomness on system parameters,
we smooth the estimate with a weighted sum:

, and is a constant within (0,1).
This smoothed will be used in the second step of updating
system parameters . Since the system
model is stochastic and inherently time-varying, we may up-
date the parameters online by performing a round of recursive
least squares estimation at the end of each slot . In our simula-
tions, we have adopted a simplified algorithm called stochastic
approximation algorithm [17], whose updating rule can be ex-
pressed as

(8)

where , and
, with being a very small positive value.

As (6)–(8) have shown, the system identification procedure
is computationally cheap, since, at each time slot , a node only
needs to: 1) locally keep a few values: , , , and

; 2) solve a minimization problem (7) through any efficient
numerical method such as the one-dimensional golden section

search [18]; and 3) perform one step of iteration of (8). In prac-
tice, the length of a time slot may be chosen on the order of a
minute.

C. Adjustment of Prices

Given the mathematical model of the external world, the new
price of a node should satisfy

(9)
which is also efficiently solvable by the golden section search
method. For more stable behavior of the entire network, we may
update system parameters in every time slot, but adjust prices
once every few slots.

From the decision problem of the downstream nodes in (2),
one may notice that, the transmission price should re-
main in the range at least
for some node . Consider the partial derivative of a down-
stream node ’s utility function with respect to . If

, then

Therefore, the optimal throughput for node has to be
. As upstream nodes in a multicast group, their initial

prices may be configured based on their own parameters as any
values within , and then
adjusted according to (9). In addition, to cope with some un-
avoidable inaccuracy in the identified system model, especially
in the initial stage of iterations, we have applied a simple rule
to assist the adjustment of prices. We let each node memorize
its estimated revenue for time slot . By the time the
real revenue is available, if ,
the new price is directly set to be , otherwise,
the new price will be derived from (9) and be smoothed based
on its previous value .

V. DISTRIBUTED PROTOCOLS

The previous two sections have formulated the per-upstream
dynamic-price market model based on which a multicast
topology is gradually evolved and the bandwidth resource
is dynamically allocated. We have also identified the local
optimization problems to be solved by individual nodes that
induce network-wide optimality. This section further addresses
the necessary protocols that facilitate the self-organization,
self-healing, and self-optimization functionalities.

A. Upstream Probing and Valuation

In order to maintain the highest level of utility, any node is
allowed to periodically inspect each of its upstream candidates
in terms of prices and deliverable QoS levels, by probing and ob-
servation. In doing probing, the downstream node sends a price
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and bandwidth probing (PBP) packet to node , which then re-
sponds with its price and relevant bandwidth information
within a price and bandwidth reply (PBR) packet.

We follow the receiver-only packet pair method [19], [20],
which is widely adopted in Internet measurement studies. Four
identical PBR packets are sent back to back to node , so that
node not only receives the response from node , but also an
estimate on the available bandwidth from to : each pair
of consecutively sent packets gives an estimate, and the three
pairs give an average.

For node , probes regarding the same node may be car-
ried out once every few minutes. For a current upstream node
of , end-to-end delay and loss rate are observed between two
consecutive probes, and the latest values of and are
obtained by smoothing new observations based on their histor-
ical values.

1) Negotiations on Bandwidth Reservation: For any pair of
upstream and downstream nodes, given the service price of the
upstream node, both nodes would aim to enhance their own utili-
ties by making the optimal amount of bandwidth reserved for the
flow between them. Unless their optimal choices happen to co-
incide, some negotiation procedures are necessary for a stream
transfer to be successfully established between the two.

Considering the fact that downstream nodes have the privi-
lege of evaluating and selecting upstream nodes on the market,
we continue to assume that upstream nodes are more concerned
with attracting downstream nodes for the purpose of improving
self-utilities. Hence, they behave less aggressively in specifying
the transfer of streams before a downstream node is secured. We
propose a negotiation procedure that proceeds as follows.

As a starting point, a downstream node probes an upstream
candidate by sending the PBP packet. Upon receiving the
probe, node sends back two values in the PBR packet,
and , which form its acceptable range of bandwidth reser-
vations for any node that comes in at this moment. The accept-
able range can be derived from the decision problem (3) with

.
Once obtaining the PBR, node knows the price , the

available bandwidth on the overlay link from node to itself, as
well as the possible amount of bandwidth to be reserved at node
. The best amount of bandwidth reservation is then computed

from the utility maximization problem of (2), with the physical
constraints determined as

Knowing the optimal throughput and the corresponding
utility increment, it is then up to node to decide whether to
have node as its upstream node, or to adjust the bandwidth
reserved at node . If the application requires a single multicast
tree, node may choose the upstream node with the highest
utility increment as its upstream node, if only the utility in-
crement is adequately high (by a factor of at least 1.2 in our
simulation studies). Otherwise, node can maintain a number
of best upstream nodes as upstream nodes, which brings the
highest utility increments.

Fig. 3. An example for resolving concurrent requests. Packets are labeled
by their sources (the originating downstream nodes). As the probe from
downstream node A is being processed between t and t , probing packets
from upstream nodesB andD are queued, while DRs from downstream nodes
C and E are processed immediately. By time t , the probe from downstream
D may have been discarded.

2) Resolution of Concurrent Requests: Since the same
upstream node may be concurrently probed by multiple down-
stream nodes, by the time downstream decides to establish a
connection with , other downstream nodes may have already
established theirs, thus, the connection request from down-
stream , which contains the bandwidth reservation ,
may be turned down due to lack of bandwidth. To prevent such
conflicts between competing connections, we have devised the
following resolution scheme, as is illustrated by Fig. 3.

Suppose the upstream node receives the first probe from a
downstream node , which may be either a potential down-
stream node or an existing downstream node, at time . It im-
mediately responds and waits for a constant time period , un-
less returns a connection request (CR) packet or a bandwidth
adjustment (BA) packet at time . Here, both
the CR and BA packets contain the optimal bandwidth reserva-
tion computed by the downstream node, and are used to
establish a new connection and to update the bandwidth reser-
vation, respectively. Once the upstream node performs the cor-
responding operation, the processing of the first request is ac-
complished.

Meanwhile, probes that are received from other nodes during
or are queued at the upstream node, and will

be processed in a first-in–first-out (FIFO) fashion. On the other
hand, a downstream node waits for the upstream node’s reply to
its probes for a limited time . If the packets have remained
in the queue for longer than , or the queue becomes full, the
upstream node removes its most out-of-date request from the
queue. In practice, we may assume and to be on the order
of seconds.

Another type of request that an upstream needs to handle
is the disconnection request (DR). We assume that the request
from a downstream node for tearing down a connection directly
indicates that it has stopped paying the upstream node. Thus, an
upstream node always responds to such a request immediately,
and its processing of probing packets can be preempted by DRs.
For ease of reference, the distributed algorithms an overlay node
needs to run periodically are summarized in Table I.

VI. EVALUATIONS

The proposed market-based resource allocation mechanism
is designed for self-optimization of autonomic service overlay
networks, where participants are subject to self-interests and ca-
pable of determining their own behavior in the network. Our
modeling of node selfishness and the proposed decision making
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TABLE I
ALGORITHMS FOR AN OVERLAY NODE i

algorithms are meant to emulate the most intelligent and selfish
behavior from overlay nodes. In this section, we evaluate the
performance of the designed mechanisms via simulations, based
on the overlay multicast streaming application as an example.
For simplicity of implementation, we consider performance op-
timality in a network in terms of average end-to-end throughput
and average end-to-end delay from the source to each receiver
node, and do not consider packet loss.

A. Simulation Methodology

Our backbone connections were generated by the BRITE uni-
versal topology generator [21], with 512 routers and 1024 back-
bone edges, whose capacities are distributed between 10 and
1024 Mb/s, with a heavy-tailed distribution. Overlay nodes are
randomly connected to backbone routers through access links,
whose capacities are exponentially distributed with an average
of 10 Mb/s. All experiments are executed for 1000 time slots.

We emulate background traffic as random noise indepen-
dently deployed on each link, the magnitude of which is
uniformly distributed from 0 to a small value, e.g., 5% of the
link capacity. The shortest–widest routing algorithm is adopted
to generate QoS-aware routes, and the transmission delay along
a path is approximated as the number of physical links that the
overlay path consists of.

All our simulation experiments were performed with a simple
example: forming a single multicast tree. Every node maintains
up to ten upstream candidates on the network, with candidates
randomly assigned initially. The simulation program guarantees
that candidates are properly maintained by each node, so that
no loop is caused no matter which candidate a node connects
to. Nodes probe for their neighbors’ most up-to-date informa-
tion every ten time slots, and probes are sent asynchronously at
nodes’ own paces. Further, we take a simplifying assumption
that all the downstream nodes configure their utility functions
[(1.1) and (1.2)] in the same way

Recall that is the local network bandwidth capacity of
node . Finally, each node is issued with an initial fund of 500
at bootstrapping.

B. Mechanisms in Our Comparison

We compare the resource allocation outcomes of a few
self-optimization mechanisms that assume different behavior
of overlay nodes. The baseline mechanism is Narada [3], a
well-known multicast tree formation protocol. To ensure a fair
comparison, we simulate and compare two variations of the
Narada protocol.

• Augmented Narada, which is referred to as ANarada in
our simulation results. In the original Narada protocol,
every receiver in the tree receives data at the same rate,
and the tree is formed using a minimum spanning tree al-
gorithm that optimizes toward delay. We derive ANarada
using an all-shortest–widest paths algorithm instead of the
minimum spanning tree algorithm; optimizing first band-
width (i.e., width) and then delay (i.e., distance). More-
over, ANarada allows nodes to receive flows as fast as
possible at heterogeneous rates, as long as a node does
not receive at a higher rate than its upstream node in the
tree.

• Selfish augmented Narada, which is a special case to
ANarada, in the sense that upstream nodes (except the
source) may deviate from the transmission rates dictated
by the ANarada algorithm with probability , and only
transmit at half of their dictated throughput. It is referred
to as SANarada in the simulation results.

Aside from our proposed mechanism (referred to as Market
in the simulation results), we also consider its two variants
that form topology and allocate bandwidth based on individual
decisions.

• MarketNN, which is the same as Market except no band-
width negotiation is involved. It emulates the situation
that downstream nodes alone determine the optimal
throughput and upstream nodes always agree to reserve
such amounts. Thus, it represents the optimal deliverable
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Fig. 4. End-to-end throughput averaged over all existent receivers: a 32-node
network.

QoS levels subject to the economic constraints of down-
stream nodes.

• Market0, which is the same as MarketNN except that all
prices are kept as zero. In this case, downstream nodes de-
termine the optimal throughput solely based on their em-
pirical utilities, and upstream nodes always satisfy their
requests. This situation actually approximates the optimal
deliverable QoS levels without economic constraints, with
optimality judged by the empirical utility functions of
downstream nodes.

C. Comparisons in the Steady State

In the steady state, we study the topology formation and band-
width allocation capabilities of the five different mechanisms
previously presented, by comparing the average end-to-end
throughput and the average end-to-end delay from the source
to each receiver. Overlay nodes sequentially join the multicast
group at randomly selected times during the first half of the
simulation time.

1) Average Throughput: Fig. 4 shows the average
throughput for all the existent receivers over time, where 32
nodes eventually join the multicast group. All three individual
decision based mechanisms, Market, MarketNN, and Market0,
outperform ANarada and SANarada, due to the following
reason. In the former three mechanisms, once nodes choose
their best upstream nodes, the corresponding bandwidth shares
are reserved, other nodes need to find other suitable upstream
nodes elsewhere in the network. However, with ANarada and
SANarada, nodes can more easily choose the same upstream
node. Whenever there is any change to its downstream nodes,
the upstream node reallocates its bandwidth resource based
on the maximum capacity on the underlying paths from itself
to each downstream node. Hence, their average throughput is
relatively lower.

Our Market mechanism achieves slightly lower throughput
than that of MarketNN and Market0, because upstream nodes
under MarketNN always supply bandwidth in full as demanded

Fig. 5. Average throughput under the SANarada mechanism.

Fig. 6. End-to-end throughput averaged over all existing receivers: a 64-node
network.

by downstream nodes, and further, downstream nodes under
Market0 demand even more bandwidth since they do not con-
sider the economic factor in their utility function. Its perfor-
mance appears more stable than MarketNN, because of band-
width negotiation.

In all the experiments, we chose the selfishness probability
of SANarada to be 0.5; for clarity, we have also compared the
performance difference between SANarada settings with dif-
ferent values. As Fig. 5 has shown, nodes with selfish prob-
ability lead to quite unacceptable performance in the
multicast tree.

With 64 overlay nodes joining the multicast group, Fig. 6
shows similar throughput comparison, and it is more evident
that the average throughput achieved by Market lies between
those of MarketNN and Market0 and that of ANarada.

2) Average Delay: Fig. 7 illustrates the average end-to-end
delays for the five mechanisms with 32 overlay nodes in the mul-
ticast group. All the mechanisms behave similarly in the small
network, except that SANarada shows much lower delay. The
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Fig. 7. End-to-end delay averaged over all existent receivers: a 32-node
network.

Fig. 8. End-to-end delay averaged over all overlay links: a 64-node network.

reason is that, with probability , upstream nodes contribute
only half of the transmission capacity to the network, down-
stream nodes tend to directly connect to the source node which
contributes to its full capacity.

Results from a larger multicast group containing 64 nodes
(Fig. 8) show that the three individual decision based mecha-
nisms actually lead to lower average delay than ANarada, be-
cause every node tends to choose upstream nodes closer to the
source to reduce its end-to-end delay. Recall that the ANarada
mechanism optimizes throughput then delay through cooper-
ative algorithms, the utility-based mechanisms have achieved
higher average throughput and lower delay through independent
and noncooperative adjustments.

Further, based on both Figs. 6 and 8, we may infer that, in
comparison to MarketNN and Market0, the Market mechanism
tends to form shorter multicast trees. When the local network
bandwidth is abundant, nodes closer to the root tend to have
lower prices to attract more downstream nodes.

Fig. 9. End-to-end throughput during node dynamics: a 128-node network.

D. Comparison in Dynamics

In the following experiments, 128 overlay nodes sequentially
join the multicast group during the first 500 time slots at ran-
domly selected times, then start leaving the group at randomly
selected times from the 750th time slot. We study the reactions
of these resource allocation mechanisms to such node dynamics.

As shown in Fig. 9, during the node joining phase, more band-
width resource is being provided to the overlay network. The
three mechanisms, Market, MarketNN, and Market0 evidently
outperform the rest two cases, due to the same reason we have
explained for the steady-state difference between them: under
the three mechanisms, nodes asynchronously choose their most
preferable upstream nodes, and reserve their bandwidth, while
in ANarada and SANarada, nodes might choose the same up-
stream node and share the common link among them.

The results also show a clear trend that, as nodes join in the
network, average throughput will be gradually reduced under
all five mechanisms, due to the decrease of the available band-
width. The trend is more obvious in the Market, MarketNN, and
Market0 mechanisms. This is because that, as every node tries to
connect upstream nodes closer to the source, bandwidth compe-
tition will progressively intensify in close proximity to the root
of the tree.

During the node departure phase (an enlarged figure is shown
in Fig. 10), all the mechanisms show a rising trend in their
average throughput, due to the increased availability of band-
width resource on the network. The Market, MarketNN, and
Market0 mechanisms still outperform the remaining two, even
with nodes individually deciding on their incoming and out-
going connections. With respect to the delay metric (shown in
Fig. 11), all the mechanisms show some decreasing trend, since
nodes tend to form shorter trees as other nodes are leaving. The
three individual decision based mechanisms still lead to lower
delays than ANarada.

E. Communication Overhead

We measure the extra communication overhead brought by
the Market mechanism by counting the number of requests sent
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Fig. 10. End-to-end throughput during node departures: a 128-node network.

Fig. 11. End-to-end delay during node arrivals and departures: a 128-node
network.

between nodes, regarding probing, probing reply, connection,
disconnection, and rate adjustment. Since every node only looks
at a limited number of upstream (candidate) nodes, the number
of messages caused by the mechanism increases linearly with
the network size (shown in Fig. 12), which is quite acceptable
even for a large network.

Finally, we have investigated the computational efficiency of
our system identification methods used in the pricing procedure.
In our simulation experiments, nodes recompute their prices
every 50 time slots, at their own paces. Fig. 13 depicts the iden-
tified model of with respect to and , for an arbi-
trary overlay node, in which is kept as a fixed small value.
As we can see, the iterations converge rapidly to the steady state
after only five iterations.

Fig. 12. Communication overhead.

VII. RELATED WORK

There already exists a significant body of research work re-
garding self-organization, self-healing and self-optimization in
overlay networks. Two categories exist: structured (e.g., in the
CAN [22], Pastry [2], and Chord [1]) and unstructured (e.g.,
Gnutella [23] and Freenet [24]). They have been commonly
adopted to define the basic self-organization and self-healing be-
havior of overlay nodes. Many distributed algorithms and pro-
tocols have been proposed for nodes to manage, maintain and
allocate shared resources, so as to self-optimize the network to-
ward global optimality.

Especially, quite a few proposals exist for forming multicast
topologies, and for allocating transmission bandwidth under
certain optimization objectives. For example, Narada [3] con-
structs the multicast tree by first building an efficient mesh, and
then constructs a minimum spanning tree out of the mesh to
minimize the end-to-end delay. SplitStream [11] establishes a
forest of multicast trees from a single source, for the purpose
of maximizing throughput; and Kostic et al. [12] has proposed
to construct an overlay mesh of concurrent data dissemination
connections, each sending a disjoint set of data, to significantly
improve throughput. None of the aforementioned work, how-
ever, considers node selfishness, which potentially exists and
actually hinders the expected self-optimization mechanisms.

To address node selfishness in overlay networks, some the-
oretical studies have employed game theory to model overlay
nodes as game players, with conflicting interests regarding
shared resources [4]–[6]. To manipulate their self-interests
and lead the system into a desirable equilibrium state, mech-
anism design [25]–[28] has been introduced into networking
problems. However, due to the inherent limitations of relevant
theories, existing literature normally has to unrealistically as-
sume that some global knowledge about the network and other
nodes is accessible by the overlay nodes. This may include
concrete forms of the utility functions of other nodes, and their
discussions have mostly focused on the steady-state properties
of node interactions.
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Fig. 13. The identified system model g(t + 1). (A) After one iteration. (B) After two iterations. (C) After five iterations. (D) After ten iterations.

A few other work has also proposed to regulate the behavior
of selfish nodes within distributed pricing. Qiu et al. [7] (in
the context of mobile ad hoc networks) and Cui et al. [8] (in
the context of overlay multicast) have discussed distributed
pricing models based on the classical social welfare maxi-
mization model, first proposed by Kelly et al. [10]. However,
the methodologies they have taken are more appropriate for
situations where nodes have direct control of the resources
to be allocated among selfish users, other than most of the
Internet-based service overlay applications, where end systems
do not even have any clear view of resources in the physical
network [29].

The original contributions of this paper, differing from
previous work, are twofold. First, we present a market-based
framework for encouraging selfish and intelligent behavior
from overlay nodes, and for decentralizing the resource al-
location problem into local decision problems. Second, we
propose mathematical models that emulate the selfishness of
overlay nodes, captured by the utility functions (1.1) and (1.2),

and a novel solution—based on optimal control and system
identification—to the local maximization problems. They have
collectively implemented self-optimization in service overlay
networks that consist of selfish and intelligent nodes.

VIII. CONCLUSION

In this paper, we have studied the self-optimization problem
for autonomic service overlay networks consisting of selfish
and intelligent nodes. We have proposed an intelligent market
model that manages resource provisioning and allocation, with
a goal of maximizing the sum of node utility. Reasonable utility
functions have been designed to account for the selfishness of
nodes in the context of a multicast streaming application, and
appropriate solutions have been proposed for the local optimiza-
tion problems. In particular, we have adopted a system control
point of view, and provided an optimal pricing solution based
on system identification techniques.
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Under the proposed market model, prices act as control forces
in a selfish overlay network: downstream nodes adjust their de-
mands according to changing prices and upstream nodes ad-
just their prices based on their utilities received on the market.
Through extensive simulation studies, we have shown that with
the proposed market-based incentive mechanism, even when all
nodes behave selfishly toward their own utility maximization
goals, the resulting multicast group can still provide QoS met-
rics comparable to or better than well-known approximations to
optimal outcomes. The intelligent market model, together with
the decision making algorithms, may serve as a general incen-
tive-based self-optimization scheme, for any autonomic systems
that are built on selfish nodes and provide more than one pro-
ducer choices for each consumer.
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