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Abstract
We discuss a group communication protocol which sup-

ports applications in change of QoS supported by networks
and required by applications. An autonomic group protocol
is realized by cooperation of multiple autonomous agents.
Each agent autonomously takes a class of each protocol
function. Classes taken by an agent are required to be con-
sistent with but might be different from the others. We make
clear what combination of classes can be autonomously
taken by agents. We also present how to change retrans-
mission ways.

1. Introduction
Peer-to-Peer (P2P) systems [1] are getting widely avail-

able like autonomic computing [3]. Multiple peer processes
first establish a group and then messages are exchanged
among the processes. Group communication protocol [2, 4,
5, 6, 7, 8, 9] supports basic communication mechanism like
the causally ordered and atomic delivery of messages. A
group protocol is implemented in protocol modules which
is composed of protocol functions; multicast/broadcast, re-
ceipt confirmation, detection and retransmission of mes-
sages lost, ordering of messages received, and member-
ship management. There are various ways to realize each
of these functions.

The complexity and efficiency of implementation of a
group protocol depends on what type and quality of service
(QoS) are supported by the underlying network. Since mes-
sages may be lost and unexpectedly delayed due to conges-
tions and faults in the network, QoS parameters are dynam-
ically changed. The higher level of communication func-
tion is supported, the larger computation and communica-
tion overheads are implied. Hence, the system has to take
classes of functions necessary and sufficient to support ser-
vice required by application.

The paper [8] discusses a communication architecture
which satisfies application requirements in change of net-
work service. However, a group protocol cannot be dynam-

ically changed each time QoS supported by the underlying
network is changed. In ISIS [2], protocol modules which
support service required can be constructed. However, a
protocol module of each process cannot be changed and ev-
ery process has to take the same module. It is not easy to
change protocol functions in all the processes since a large
number of processes are cooperating.

In this paper, we discuss an autonomic group proto-
col which can support QoS required by applications even if
QoS supported by the underlying network is changed. Each
protocol module is realized in an autonomous agent. An
agent autonomously changes classes, i.e. implementations
of each protocol function depending on network QoS mon-
itored. Here, an agent might take different classes of pro-
tocol functions from other agents but consistent with the
other agents. We make clear what combination of classes
can be autonomously taken by agents. We also present how
to change retransmission ways.

In section 2, we show a system model. In section 3,
we discuss classes of protocol functions. In section 4, we
present an agent-based group protocol. In section 5, we dis-
cuss how to change retransmission functions.

2. System Model

2.1. Autonomic group agent

A group of multiple application processes A1, ..., An

(n ≥ 2) are cooperating by taking usage of group com-
munication service. The group communication service is
supported by cooperation of multiple autonomous group
(AG) agents p1, ..., pn [Figure 1]. Here, a term “agent”
means an AG agent in this paper. The underlying network
supports a pair of agents with basic communication ser-
vice which is characterized by QoS parameters; delay time
[msec], message loss ratio [%], and bandwidth [bps].

A group protocol is realized in a collection of proto-
col functions; coordination, transmission, confirmation, re-
transmission, ordering of message, detection of message
lost, and membership management. There are multiple ways
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to implement each protocol function. A class shows a way
to implement a protocol function. The classes for each func-
tion are stored in a protocol class base (CB) of each agent.
Each agent pi autonomously takes one class for each pro-
tocol function from CB, which can support an application
with necessary and sufficient QoS by taking usage of ba-
sic communication service with given QoS supported by
the underlying network. Each agent pi stores QoS infor-
mation of the underlying network in a QoS base (QB) of
pi. If enough QoS cannot be supported or too much QoS
is supported for the application, the agent pi reconstructs a
combination of protocol function classes by autonomously
selecting a class for each protocol function in CB. Each
agent negotiates with other agents to make a consensus on
which class to take for each protocol function if some pair
of agents are inconsistent.

A

Application layer

System layer

Network layer

Application group

Autonomic group

Network

1 A i A n

p 1 p i p n

Figure 1. System model.

2.2. Views

A group G is composed of multiple agents p1, ..., pn (n
> 1). In a group G including larger number of agents, it is
not easy for each agent to maintain membership informa-
tion of the group. Each agent pi has a view V (pi) which
is a subset of agents to which the agent pi can deliver mes-
sages directly or indirectly via agents. Thus, a view is a sub-
group of the group G. For every pair of agents pi and pj , pi

in V (pj) if pj in V (pi). A pair of different views V1 and V2

may include a common gateway agent pk. A collection of
gateway agents is also a view V3.

An agent pi which takes a message m from an appli-
cation process Ai and sends the message m is an original
sender agent of the message m. If an agent pj delivers a
message m to an application process, the agent pj is an orig-
inal destination agent of the message m. If an agent pk for-
wards a message m to another agent in a same view V , pk

is a routing agent. A local sender and destination of a mes-
sage m are agents which send and receive m in a view, re-
spectively.

3. Functions of Group Protocol

In this paper, we consider protocol functions, coor-
dination, transmission, confirmation, and retransmission
functions, which are the most significant to design and im-
plement a group protocol. There are centralized and

distributed classes to coordinate the cooperation of
agents. In the centralized control, there is one central-
ized controller in a view. In the distributed control, each
agent makes a decision on correct receipt, delivery or-
der of messages received by itself.

There are centralized, direct, and indirect classes to
multicast a message in a view. In the centralized transmis-
sion, an agent first sends a message to a controller agent.
Then, the controller agent forwards the message to all the
destination agents in a view. In the direct transmission,
each agent directly sends a message to each destination
agent in a view V . In the indirect transmission, a message
is first sent to some agent in a view V . The agent forwards
the message to another agent and finally delivers the mes-
sage to the destination agents in the view V .

There are centralized, direct, indirect, and
distributed classes to confirm receipt of a message
in a view V . In the centralized confirmation, every agent
sends a receipt confirmation message to a controller agent
in a view V . After receiving confirmation messages from
all the destination agents, the controller agent sends a re-
ceipt confirmation to the local sender agent. In the direct
confirmation, each destination agent pi in the view V
sends a receipt confirmation of a message m to the lo-
cal sender agent pi which first sends the message m in
the view V . In the indirect confirmation, a receipt con-
firmation of a message m is sent back to a local sender
agent pi in a view V by each agent pj which has re-
ceived the message m from the local sender agent pi. In
the distributed confirmation, each agent which has re-
ceived a message m sends a receipt confirmation of the
message m to all the other agents in the same view [7].

There are sender and destination retransmission
classes [Figure 2]. In the sender retransmission, the lo-
cal sender agent pj which has first sent a message m in a
view V retransmits m to pi which fails to receive m. In
the destination retransmission, one or more than one des-
tination agent in a view V which have safely received
the message m forwards m to pi which fails to re-
ceive m. In the distributed confirmation, each agent can
know if every other destination agent safely receives a mes-
sage m. If a destination agent pj receives no confirmation
from an agent pi, pj detects pi to lose m.

(1) Sender retransmission.

fail to receive retransmission

(2) Destination  retransmission.
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Figure 2. Retransmission.
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4. Autonomic Group Protocol
4.1. Local protocol instance

Let F be a set of the significant protocol functions
{C(coordination), T (transmission), CF (confirmation),
R(retransmission)}. Let Cl(F ) be a set of classes to im-
plement a protocol function F in F. Table 1 shows pos-
sible classes for the protocol functions, C, T , CF , and
R. We rewrite F to be a set {F1, F2, F3, F4} of proto-
col functions where each element Fi shows a protocol
function, i.e. 〈F1, F2, F3, F4〉 = 〈C, T , CF , R〉. A tu-
ple 〈c1, c2, c3, c4〉 ∈ Cl(F1)×Cl(F2)×Cl(F3)×Cl(F4) is
referred to as protocol instance. Each agent takes a proto-
col instance C = 〈c1, c2, c3, c4〉, i.e. a class ci is taken for
each protocol function Fi (i = 1, 2, 3, 4). Here, some pro-
tocol instances out of possible 48 ones cannot work in an
agent.
[De nition] A protocol instance 〈c1, c2, c3, c4〉 is
consistent iff an agent taking the protocol instance can
work with other agents which take the same protocol in-
stance to support group communication service.

A protocol profile is a consistent protocol instance.
In Table 2, seven possible protocol profiles are summa-
rized. A protocol profile signature “c1c2c3c4” denotes a
protocol profile 〈c1, c2, c3, c4〉. For example, DDDirS
shows a protocol profile 〈D, D, Dir, S〉 which is composed
of distributed control (D), direct transmission (D), direct
confirmation (Dir), and sender retransmission (S) classes.
Let PF (1), PF (2), PF (3), PF (4), PF (5), PF (6), and
PF (7) show the protocol profiles CCCenS, DDDirS,
DDDisS, DDDisD, DIIndS, DIDisS, and DIDisD,
respectively, which are shown in Table 2. Let P be a set
{PF (i) | i = 1, ..., 7} of all the protocol profiles. In PF (i),
i is referred to as the protocol profile number.

Table 1. Protocol classes Cl(F ).
Function Protocol classesF Cl ( F )
C

CF
T

R

{C(centralized), D(distributed)}

{Cen(centralized), Dir(direct), Ind(indirect), Dis(distributed)}
{C(centralized), D(direct), I(indirect)}

{S(sender), D(destination)}

Table 2. Protocol pro les.
Control Transmission Confirmation SignatureRetransmission

Centralized

Distributed

Centralized Centralized Sender
Sender
Sender
Destination
Sender
Sender
Destination

Direct
Distributed

Indirect
Distributed

Direct

Indirect

CCCenS
DDDirS
DDDisS
DDDisD
DIIndS
DIDisS
DIDisD

4.2. Global protocol instance

Let Ci be a consistent protocol instance 〈ci1, ..., ci4〉 ∈
P, i.e. protocol profile taken by an agent pi (i = 1, ..., n).
A global protocol instance C for a view V = {p1, ..., pn}

is a tuple 〈C1, ..., Cn〉 where each element Ci is a proto-
col profile which an agent pi takes. Each Ci is referred to as
local protocol instance of an agent pi. In traditional proto-
cols, every agent has to take a same local protocol profile.
A global protocol instance C = 〈C1, ..., Cn〉 is complete if
C1 = · · · = Cn. A global protocol instance C = 〈C1, ..., Cn〉
is incomplete if Ci �= Cj for some pair of agents pi and
pj . A global protocol instance C is globally consistent if
a collection of agents where each agent pi takes a protocol
profile Ci (i = 1, ..., n) can cooperate. A global protocol
profile is a consistent global protocol instance. In this pa-
per, we discuss a group protocol where a view V of agents
p1, ..., pn can take an incomplete but consistent global pro-
tocol instance C = 〈 C1, ..., Cn 〉. First, following types of
protocol instances are globally inconsistent:
[Property] A global protocol instance C = 〈 C1, ..., Cn 〉 of
a view V is not consistent if V is composed of more than
three agents and the global protocol instance C satisfies one
of the following conditions:

1. At least one agent in V takes the protocol profile
CCCenS and the global protocol instance C is not
complete.

2. At least one agent takes an indirect transmission class
in V and at least one other agent takes a direct confir-
mation class in V .

α1 α2 α3 α4

α23 α24 α34

α5

α45α35

α6

α46α36

α7

α47α37α56 α57 α67

α234 α345 α346 α347 α356 α357 α367 α456 α457 α467 α567

α3456 α3457 α3467 α3567 α4567

α34567

Figure 3. Hasse diagram.

We introduce a notation αI where I ∈ 2{1,...,7} as fol-
lows:

1. αi indicates a global protocol profile where all the
agents take the same local protocol profile PF (i) (i
= 1, ..., 7).

2. Let I be a sequence of protocol profile numbers i1 · · ·
il (l ≤ 7), αI shows a global protocol instance where
each agent takes one of the local protocol profiles
PF (i1), ..., PF (il) and each protocol profile PF (ik)
is taken by at least one agent (k = 1, ..., l).

For example, α23 means a global protocol instance
where every agent takes PF (2) = DDDirS or PF (3) =
DDDisS.
[De nition ] A global protocol instance αI can be transited
to another global protocol instance αJ (αI → αJ ) iff
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1. if J = Ii, the agents can support group communica-
tion service even if an agent taking PF (k) where k ∈
I autonomously takes PF (i) (i �= k).

2. if I = Jj, the agents can support group communica-
tion service even if an agent taking PF (j) takes PF (k)
where k ∈ I .

3. For some global protocol instance αK , αI → αK and
αK → αJ .

Figure 3 shows a Hasse diagram where a node shows a
global protocol profile and a directed edge from αI to αJ in-
dicates a transition relation “αI → αJ ”. For example, α2 →
α24 since an agent can autonomously change a local proto-
col profile PF (2) = DDDirS to PF (4) = DDDisD.

5. Retransmission

5.1. Cost model

We discuss how an agent can autonomously change the
retransmission classes. Suppose there are three agents ps,
pt, and pu in a view V . An agent ps sends a message m to
a pair of agents pt and pu. Then, the agent pt receives m
while pu fails to receive m. Let dst be delay time between
agents ps and pt [msec], fst show probability that a mes-
sage is lost, and bst indicate bandwidth [bps].

First, let us consider the sender retransmission. Let |m|
show the size of a message m [bit]. It takes (2dsu+ |m| /
bsu) [msec] to detect message loss after ps sends a message
m. Then, ps retransmits m to pu. Here, the message m may
be lost again. The expected time STsu and number SNsu of
messages to deliver a message m to pu are given as STsu =
(2dsu + |m| / bsu) / (1 − fsu) and SNsu = 1 / (1 − fsu).

In the destination retransmission, some destination agent
pt forwards the message m to pu. The expected time DTsu

and number DNsu of messages to deliver a message m to
pu are given as DTsu = (dsu + |m| / bsu + dut) + (2dut +
|m| / but) / (1 − fut) if dst ≤ dsu + dut, (dst + |m| / bst)
+ (2dut + |m| / but) / (1 − fut) otherwise. DNsu = 1 + 1
/ (1 − fut). If STsu > DTsu, the destination agent pt can
forward the message m to the faulty agent pu because the
message m can be delivered earlier.

Each agent pt monitors delay time dut, bandwidth but,
and message loss probability fut for each agent pu which
are received in the QoS base (QB). For example, pt obtains
the QoS information by periodically sending QoS informa-
tion messages to all the agents in a view. The agent pt main-
tains QoS information in a variable Q of QB where Qut =
〈but, dut, fut〉 for u = 1, ..., n. If pt receives QoS informa-
tion from ps, Qsu = 〈bsu, dsu, fsu〉 for u = 1, ..., n.

5.2. Change of retransmission class

Suppose an agent ps sends a message m and every agent
pt take the sender retransmission class, Ct = 〈 · · ·, S〉. An
agent pu fails to receive m. According to the change of QoS

supported by the underlying network, the sender agent ps

makes a decision to change the retransmission class with
the destination one, say an agent pt forwards m to pu. How-
ever, pt still takes the sender retransmission. Here, no agent
forwards m to pu. In order to prevent these silent situations,
we take a following protocol:

1. A sender agent ps sends a message m to all the des-
tination agents. Every destination agent sends receipt
confirmation not only to the sender agent ps but also
to the other destination agents.

2. If an agent pt detects that a destination pu has not re-
ceived m, pt selects a retransmission class which pt

considers to be optimal based on the QoS information.

2.1 If pt is a destination agent and changes a retrans-
mission class, pt forwards m to pu and sends
Retx message to the sender ps.

2.2 If pt is a sender of a message m and takes the
sender retransmission class, pt retransmits m to
pu. If pt takes a destination retransmission class,
pt waits for Retx message from a destination. If
pt does not receive Retx, pt retransmits m to pu.

[Theorem] At least one agent forwards a message m to an
agent which fails to receive the message m.

5.3. Evaluation

We evaluate the autonomic group protocol (AGP) in terms
of delivery time of a lost message. We make the following
three assumptions on this evaluation. 1) dst = dts for every
pair of ps and pt. 2) The protocol processing time of every
process is same. 3) No confirmation message is lost.

Let us consider a view V = {ps, pt, pu} where every
agent takes a profile DDDisS. Here, suppose that an agent
ps sends a message m to a pair of agents pt and pu in a
view V . Then, the agent pt receives m while another agent
pu fails to receive m. After the sender ps and destination pt

detect the destination agent pu fails to receive m, ps and pt

autonomously select the retransmission class based on the
QoS information. Here, we evaluate time to deliver a mes-
sage m to a faulty agent pu. In the view V , we assume that
bandwidth between every pair of agents is same (bst = bsu =
but = 10Mbps) and fst = fsu and fut = 0 %. Figure 4 shows
an agent graph for V where each node denotes an agent and
each edge shows a communication channel between agents.
A label of the edge indicates delay time.

First, we consider a case dsu ≥ dst + dut [Figure 4 A].
There are further cases: dst = dut [A.1], dst > dut [A.2],
and dst < dut [A.3]. Figure 5 shows the expected time DTsu

for three cases. In Figure 5, horizontal axis shows a message
loss probability of fsu and fut. For case of Figure 4 A.2,
DTsu < STsu. For case of Figure 4 A.1, DTsu < STsu if
fsu > 15% and fut > 15%. For case of Figure 4 A.3, DTsu

< STsu if fsu > 50% and fut > 50%.
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Figure 4. AG agent graph.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

10 20 30 40 50 60 70 80 90

STsu A.1, A.2, and A.3
DTsu A.1
DTsu A.2
DTsu A.3

E
xp

ec
te

d 
tim

e 
to

 d
el

iv
er

 a
 m

es
sa

ge
 [s

ec
]

Message loss ratio [%]

Figure 5. dsu ≥ dst + dut.

Next, there are further following cases for dsu ≤ dst +
dut [Figure 4]:

a. dst > dsu and dst > dut: dsu = dut[B.1],
dsu > dut[B.2], and dsu < dut[B.3].

b. dut > dsu and dut > dst: dsu = dst[C.1],
dsu > dst[C.2], and dsu < dst[C.3].

The expected time DTsu [Figure 4 B and 4 C] is shown
for these six cases in Figures 6 and 7. For Figure 4 B.1 and
B.3, DTsu > STsu. For Figure 4 B.2, DTsu < STsu if fsu

> 20% and fut > 20%. For Figure 4 C, DTsu > STsu.

0

0.5

1

1.5

2

2.5

3

10 20 30 40 50 60 70 80 90

STsu B.1
STsuB.2
STsu B.3

DTsu B.1
DTsu B.2
DTsu B.3

E
xp

ec
te

d 
tim

e 
to

 d
el

iv
er

 a
 m

es
sa

ge
 [s

ec
]

Message loss ratio [%]

Figure 6. dsu≤dst+dut, dst>dsu, and dst>dut.

6. Concluding Remarks
In this paper, we discussed an agent-based architecture

to support applications with autonomic group service in
change of network and application QoS. We made clear
what classes of functions to be realized in group communi-
cation protocols. Every agent autonomously changes a class
of each protocol function which may not be the same as but
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Figure 7. dsu ≤ dst + dut, dut > dsu, and dut > dst.

are consistent with the other agents. We discussed how to
support applications with the autonomic group service by
changing retransmission classes as an example. We showed
which retransmission class can be adopted for types of net-
work configuration in the evaluation.
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