
Evaluation issues in Autonomic Computing

Julie A. McCann, Markus Huebscher
Department Of Computing, Imperial College London

{jamm, mch1} @doc.ic.ac.uk

Abstract
Autonomic Computing is a concept that brings
together many fields of computing with the
purpose of creating computing systems that are
reflective and self-adaptive. In this paper we
draw upon our experience of this field to dis-
cuss how we can attempt to evaluate auto-
nomic systems. By looking at the diverse sys-
tems that describe themselves as autonomic,
we provide an introduction to the concepts of
Autonomic Computing and describe some
achievements that have already been made. We
then discuss this work in terms of what is nec-
essary to evaluate and compare such systems.
We conclude with a definitive set of metrics,
which we believe are useful to evaluate
autonomicity.

1. Introduction

Autonomic computing is generally consid-
ered to be a term first used by IBM in 2001 to
describe computing systems that are said to be
self-managing [1]. However the concept of
self-management and adaptation in computing
systems has been around for some time. The
event of the combination of object-oriented
programming paralleled with component-based
software engineering essentially paved the way
toward autonomic computing [49]. That is, it
can be argued that without the concepts of
dynamic re-binding of components a system
cannot effectively reconfigure itself to adapt to
improve its service.

When reviewing the current state-of-the art
in autonomic systems, the concept of self-
management usually groups into having four
basic properties: self-configuration, self-
optimization, self-healing and self-protection.
Here is a brief description of these properties
(for more information, see [1] and [2]):
• Self-configuration: an autonomic comput-

ing system configures itself according to
high-level goals, i.e. by specifying what is
desired, not necessarily how to accomplish
it. This can mean being able to install itself
based on the needs of a given platform and
the user.

• Self-optimization: an autonomic comput-
ing system optimises its use of resources.
It may decide to initiate a change to the
system proactively (as opposed to reactive
behaviour) in an attempt to improve per-
formance.

• Self-healing: an autonomic computing
system detects and diagnoses problems.
What kinds of problems are detected can
be interpreted broadly: they can be as low-
level as a bit-error in a memory chip
(hardware failure) or as high-level as an
erroneous entry in a directory service
(software problem) [3]. If possible, it
should attempt to fix the problem, for ex-
ample by switching to a redundant compo-
nent or by downloading and installing soft-
ware updates. However, it is important that
as a result of the healing process the
system is not further harmed, for example
by the introduction of new bugs or the loss
of vital system settings. Fault-tolerance is
an important aspect of self-healing. Typi-
cally, an autonomic system is said to be
reactive to failures or early signs of a pos-
sible failure.

• Self-protection: an autonomic system pro-
tects itself from malicious attacks but also
from end users who inadvertently make
software changes, e.g. by deleting an im-
portant file. The system autonomously
tunes itself to achieve security, privacy
and data protection. Thus, security is an
important aspect of self-protection, not just
in software, but also in hardware (e.g.
TCPA [23]). A system may also be able to
anticipate security breaches and prevent
them from occurring in the first place.

Self-management requires that a system
monitor its components (internal knowledge)
and its environment (external knowledge), so
that it can adapt to changes that may occur,
which may be known changes or unexpected
changes where a certain amount of artificial
intelligence may be required.

However, there is no agreed definition of
what an Autonomic system is, their evaluation
and moreover comparison, is difficult. Fur-
thermore the very emergent nature of such
systems adds further complexity to the evalua-
tion of such systems. This paper is an attempt

to look at Autonomic computing and try to
highlight areas, which can be used to compare
performance and derive some form of metrics.

The structure of this paper is as follows.
Initially, in section 2 we survey the area of
Autonomic computing to attempt to build a
map of the subject. To this end we provide an
introduction to the concepts of Autonomic

Computing and describe some research that is
taking place in various fields of computing and
some achievements that have already been
made, section 3. After that in section 4, we
concentrate on research in the field of software
engineering and describe projects that focus on
adding autonomic behaviour to software sys-
tems. Finally, in sections 5 and 6 we combine
this work together with a discussion on per-
formance evaluation and benchmarking, taking
into account our experiences of measuring
autonomic systems and provide some initial
ideas on how such systems can be compared.

2. Autonomic computing today
The ideas behind autonomic computing are not
new. In fact, it is possible to find some aspects
of autonomic computing already in today’s
software products [2]. For instance, Windows
XP optimises its user interface (UI) by creating
a list of most often used programs in the start
menu. Thus, it is self-configuring in that it
adapts the UI to the behaviour of the user,
although in a fairly basic way, by monitoring
what programs are called most often. It can
also download and install new critical updates
without user intervention, sometimes without
restarting the system. Therefore, it also exhib-
its basic self-healing properties. DHCP and
DNS services allow devices to self-configure
to access a TCP/IP network (albeit in a limited

way, as many settings such as web proxy
server addresses or VPN security settings must
still be entered manually). PCs on a LAN can
discover other devices, such as printers, and
install their drivers automatically (under the
right conditions). Further many consider data-
base query optimisers an early form of auto-
nomic computing [4].

However our definition of what we mean
by autonomic computing is that of a self-
adaptive system as opposed to an adaptive
system. Therefore, here standard query opti-
misers would not be considered as providing
autonomicity. However if while a query was
running and the DBMS was monitoring the
query’s execution and deciding on a different
query plan, then we would consider that auto-
nomic. Nevertheless, we realise that the
boundary from adaptive to self-adaptive sys-
tems is fuzzy.

3. Why Autonomic computing
In trying to understand how to evaluate an
autonomic system one much understand the
reason we would want such a system. This
allows us to compare whether or not the objec-
tive has been met.

 The main reason for large blue-chip com-
panies, like IBM, being interested in auto-
nomic computing is the need to reduce the cost
and complexity of owning and operating an IT
infrastructure [4]. In particular, there is a need
to alleviate the complexity with which system
administrators of IT services are faced today.
The aim is to allow administrators to specify
high-level policies that define the goals of the
autonomic system, and let the system manage
itself to accomplish these goals. At present,
system administrators must tweak hundreds of

Company Title Salient feature
IBM eLiza servers and mainframes respond to unexpected changes and system components’

failure autonomously [3].
 LEO autonomic query optimiser for IBM’s DB2 database systems [38]. LEO monitors

queries as they execute and compares its estimates of the cost for each step in the
query execution plan with actual results. The detection of estimation errors can also
trigger reoptimisation of a query in mid-execution.

 Blue Gene/L
(BG/L),

IBM’s a supercomputer to be released in 2005, will implement self-healing and self-
management [3] using application programmers placing checkpoints in code.

 IceCube The server tracks its components’ health and maximum capacity. It can then autono-
mously distribute data among the available nodes. Failed nodes (bricks) are worked
around automatically, [17]

Sun Jini network allow Systems experiencing failure of a component could find components on the
network with the required functionality that are still functioning and then reallocate
resources to them autonomously

 Grid Engine
Enterprise Edi-
tion

Deadline policies can be used to make sure that projects nearing the deadline receive
a greater share of resources. Then share based policies consider the accumulated
resource usage of a user, so that if a user “over-uses” resources, then the grid will
lower the entitlement of that user to resources for a certain period of time [39].

HP Superdome adding self-healing properties to replace a processor if there are too many errors to
automatically fix
Figure 1. Sample Commercial Autonomic Effort

settings and often spend weeks before getting a
system to run optimally. Autonomic systems
are also faster at adapting to changes to the
environment, e.g. by distributing its resources
differently when a critical-project requires
more CPU processing power. Furthermore, as
information systems in enterprises grow larger,
it is becoming increasing difficult to identify a
failure in the system and repair the affected

component quickly, as large systems are het-
erogeneous and no single person knows the
entire system. Examples of such systems can
be found in Figure 1.

Autonomic behaviour is a topic that has
found its way in many other computing fields

in particular adhoc networking [52]. For ex-
ample, Liu and Martonosi [22] discuss the
problem of propagating software updates in a
wireless network of devices that are spread
over a large area and are not all reachable from
a base station. Sensors co-operate to propagate
software updates to the entire network of sen-
sors, but at the same time they must optimise
energy consumption, because of tight energy

constraints. Further due to the autonomous
nature of NASA’s DS1 (Deep Space 1) mis-
sion and the Mars Pathfinder [24],[18] some
self-adaptation is required. That is, as mission
control cannot rapidly send new commands to
a probe, it must quickly adapt to extraordinary

Group Domain Main characteristics Refs

Multi-agent systems
Kuo-Ming, James,
Norman

Framework for multi-
agent systems

Communication middleware based on
CORBA for monitoring and cooperation

[19]

Sterritt, Bustard Autonomic components Heartbeat or pulse monitor for monitoring [26]
Georgiadis, Magee,
Kramer

Architectural constraints
for self-organising
components

Self-organising components with a global
view expressed as architecture description

[25]

Kumar, Cohen Adaptive Agent Archi-
tecture

Broker agents used as to provide fault-
tolerance to overlying problem-solving
agents.

[27]

Bigus et al. ABLE agent toolkit Framework for building multi-agent systems.
Working on including autonomic agents.

[36]

Architecture design-based autonomic systems
Garlan, Schmerl Architecture model-

based adaptation for
autonomic systems

Probes, gauges for monitoring running sys-
tem, architecture manager implements adap-
tive behaviour, based on architecture-model
of system.

[7]
[8][9]
[10]

de Lemos, Fiadeiro Architecture for fault-
tolerance in adaptive
systems

Components considered as black-boxes. [15]

Dashofy, van der
Hoek, Taylor

Framework for architec-
ture-based adaptive
systems

xADL 2.0 architecture description language,
c2.fw development framework.

[11]
[12]

Valetto, Kaiser Adding autonomic be-
haviour to existing sys-
tems

Autonomic behaviour as a distributed multi-
agent infrastructure called Workflakes.

[28]
[29]

Hot swapping components
Rutherford et al. Reconfiguration in EJB

model
BARK tool as an extension to EJB to support
component replacement.

[33]

Whisnant,
Kalbarczyk, Iyer

Model for reconfigur-
able software

Adaptivity through replacement of bindings
between operations and invoked code blocks.

[34]

Appavoo et al. Hot-swapping at OS
level

High-performance hot-swapping of fine-
grained components in K42 OS.

[35]

Kon, Campbell et al. Reflective middleware DynamicTAO, a middleware for dynamically
reconfigurable software.

[40]

G. S. Blair et al. Reflective middleware OpenORB, reflective middleware for self-
healing systems.

[41]

Table 1: Summary of reviewed research in software architectures for autonomic computing.

Autonomic Element (agent)

Managed Component

Internal
Monitor

Repair plan
effector

External
Monitor

Adaptation planner System
Knowledge

Figure 2: An autonomic agent

situations, therefore it is important that a probe
be able to make decisions and carry them out
on its own.

4. Software architectures for auto-

nomic computing
The autonomic research activities in software
systems can broadly be categorised into four
areas: monitoring of components, interpreta-
tion of monitored data, creation of a repair plan
(i.e. an adaptation of the system), and execu-
tion of a repair plan. Based on this, we choose
to group the approaches to autonomic comput-
ing systems orthogonally into two categories:
intelligent multi-agent systems and architec-
ture design-based autonomic systems. How-
ever, the two approaches have common con-
cepts it is sometimes difficult to place a re-
search project in one particular category.

Table 1 shows a summary of the research re-
viewed in this section.

4.1. Multi-agent systems
Complex autonomic systems that are not com-
posed of a single self-managing component
can be built using intelligent agents (for infor-
mation on multi-agent systems, see [5]). Every
agent has its own goals, which drive its deci-
sions. An agent in an autonomic system is
proactive, and possesses social ability. The
latter can potentially lead to instabilities of the
overall system due to the chain reaction of
agents instructing other agents to change be-
haviour[1]. A difficult talk is also to define the
individual goals of the agents such that the
desired global goal is accomplished [1]. In an
autonomic system, we want to be able to pro-
vide goals in the form of high-level notions,
and expect the agents themselves to determine
what behaviour is necessary to reach them.

Wise et al. [37] propose a top-down hierar-
chical coordination model for agent applica-
tions, in the form of their visual process lan-
guage Little-JIL. A task is divided into steps,
and each step can further be divided into sub
steps. A step can then be assigned to an execu-
tion agent, which keeps an agenda of tasks to
complete.

Although in multi-agent systems each
component exhibits its own autonomic behav-
iour, there is usually a clean separation be-
tween the conventional component that per-
forms a task and the autonomic manager which
implements self-management around it. Figure
2 (based on a figure from [26]) shows a gen-
eral diagram for an autonomic agent. One
example is [20] known as the BDI methodol-
ogy. However, in some systems the autonomic

components are inseparable from the main
application logic in the agent.

Compared to the architecture design-based
approach, adaptive multi-agent systems have
an innate distributed architecture. With no
centralised monitoring infrastructure, agents
must monitor themselves (internal monitor)
but also other agents (external monitor). Ex-
ternal monitoring can be achieved proactively
by having each agent send its heartbeat or
pulse regularly on an autonomic signal channel
that other agents send and listen on [26]. The
heartbeat provides a summary of the state of an
agent to other agents responsible for monitor-
ing that state. Because the autonomic signal
channel connects agents that are not necessar-
ily on the same physical system, but could very
well be peer-to-peer or networked, there is the
danger here that external monitoring activity
may flood the autonomic signal channel with
lots of traffic. Thus, care must be taken in
designing the monitoring protocol. The heart-
beat approach has already been used by the
Open Grid Services Architecture (OGSA) [31]
and by NASA on its Deep Space 1 (DS1) mis-
sion [32] (although in NASA’s case it is used
in a different context). In both cases the heart-
beat is a compact message that provides very
limited information about the monitored
component.

Georgiadis et al show how components can
self-configure their interactions in compliance
with an overall architectural specification ex-
pressed using the Alloy language [25],[16].
Each component has a view of the entire sys-
tem maintained by the component manager.
They measure the elapsed time from the mo-
ment a new component is inserted into the
system until the moment when all components
have the new consistent view of the system.
Because of message broadcasting, this time
increasing roughly linearly in the number of
nodes in the system.

Kumar and Cohen [27] show with experi-
mental data how a team of broker agents can

recover when a broker agent gets disconnected
from the rest of the system. Again Broker
agents share the same global knowledge of the
system, and therefore when a broker agent
discovers that another agent has been discon-
nected, it shares this information with the rest
of the team.

Bigus et al. [36] are extending their ABLE
agent platform to support autonomic agents to
reduce the system administrator workload.
ABLE agents are built on top of Enterprise
JavaBeans. They use sensors to collect moni-
toring data and effectors to perform resulting
actions on an application. An important aspect
thereof is the ability of an intelligent auto-
nomic agent to maintain a model of the exter-
nal environment and its own components.

4.2. Architecture design-based auto-
nomic systems

In the architecture-based approach, the indi-
vidual components are not per se autonomic.
Instead, the infrastructure that handles the
autonomic behaviour of the system uses an
architectural description model of the running
system (which is not autonomic itself) to moni-
tor the running system, reason about it and
determine appropriate adaptive actions. The
adaptivity infrastructure is typically clearly
separated from the running system.

First of all, an architecture model is used to
design the system (as is often the case with
software development). In essence, an archi-
tecture model can be considered a graph of
interacting components [6]. The nodes of a
graph are called components, a general con-
cept, and what a component actually is de-
pends on the application. Often in research, the
example of a web server application is used, in
which the components are web servers and
clients, and possibly databases. It may be de-
sirable, however, to have a finer level of com-
ponentisation. For instance, user interfaces
could be considered components. The arcs in
the graph are called connectors and they repre-
sent the interaction paths between components
(again, a broad notion). Georgiadis et al [25]
also used a graph of components and connec-
tors, but there they are clearly mapped to self-
configuring software components and their
communication connections, respectively.
Here, the granularity level of the notion of
components in the model is not necessarily the
same for all architecture descriptions, but is
determined be the designer of the architectural
model of a specific system.

Many systems allow components and con-
nectors to be annotated with a property list [6]
[12] and constraints [46],[48]. These properties

are updated during monitoring of the running
system and the constraints on them are used to
decide when an adaptation is necessary. The
autonomic infrastructure is loosely coupled
with the running system. In fact, it can run on a
different machine, so as not to hinder the run-
ning system [6]. In some the code of compo-
nents is augmented with checkpoints for ex-
ample to allow reporting of the occurrence of
specific method calls, thereby making monitor-
ing more straightforward.

4.2.1. Monitoring

Figure 2 shows a diagram of an architecture
model-based autonomic system illustrating the
monitoring infrastructure (it is based on figures
from [6],[28], [47] and [48].

Probes can be inserted into the running
system to monitor it. These probes are usually
localised and deliver system-specific observa-
tions. For example, a probe might be deployed
to report the size of files that are loaded into a
system, in which case the appropriate system
call in the OS would be instrumented to allow
this type of monitoring by a probe [8]. The raw
monitoring data provided by the probes must
be aggregated and mapped to high-level no-
tions in the architecture model. This job is
performed by so-called gauges, which are
intermediary components between the probes
in the running system and the architecture
manager, which controls adaptation of the
system at the architecture model level. Gauges
may need to collect data from various probes
to be able to compute high-level observations.
These high-level data allow the architecture
model to be updated based on the current state
of the executing system. When a property in
the architecture model is updated through
monitoring, the architecture model is analysed
to determine whether the system is still per-

Figure 2: Architecture model-based systems

Architecture Manager

Executing
System

Probes P
Raw monitoring data

Gauges
High-level notions

Arch. Model

Repair plan
execution
(effectors)

P P

G
G

forming adequately. If not, a repair plan is
created. The repair plan describes which
components or connectors are to be removed
or adjusted and which ones are to be inserted.
The repair plan is created based on repair
strategies that are defined in advance. For
many of the architectures the adaptive strategy
is closed in the future we may see the knowl-
edge of the success of past repair plans used to
determine the best strategy [7]. This can be
determined ‘of-line’ on another machine,
however a considerable amount of bandwidth
may be required for monitoring, and this can
become a problem if the monitoring data
travels on the same network interface as
application data as seen in Patia[48] and [6].

An advantage of the complete separation
between autonomic behaviour and the running
system is that software adaptation can be
“plugged into” a pre-existing system [28]. The
only direct interaction with the target system is
through the probes that monitor the system and
the effectors that make adjustments and recon-
figurations. Changes can be coarse-grained,
such as replacing entire components or rear-
ranging the connections among components,
but they can also be fine-grained, such as
changing the operational parameters, internal
state or functioning logic of individual compo-
nents [29]. Naturally, the architecture model
used for adaptation decisions has to be created
after the existing system. Valetto and Kaiser
[28] tested this concept on a server farm deliv-
ering instant messaging (IM) services. monitor
the load of IM servers, and if a threshold is
exceeded, another IM server is started. This
may also happen when an existing server fails.
The infrastructure implementing the adaptivity
of the system, e.g. the deployment of Worklets,
gauges and probes, is called Workflakes. The
workflow describing the adaptation process
was initially expressed as a set of coding pat-
terns in Java.

Because of the centralised nature of the ar-
chitecture-based approach to self-healing sys-
tems, deployment of such a system in a truly
distributed environment, where unplanned
failures, such as that of the central architecture
manager, can occur requires particular atten-
tion to fault tolerance in the infrastructure and
the individual components. For example [28],
use a decentralised workflow system that uses
agents that are part of the adaptivity infrastruc-
ture, which is cleanly, separated from the run-
ning system.

4.3. Hot swapping components
In this section, research projects are described
that focus on how to effect adaptation within
the system. This usually involves replacing

components in the system with new ones that
possess similar functionality but with a differ-
ent implementation and which are more appro-
priate to the current condition of the system
and its environment.

Much research has been carried out with
regard to the hot swapping of components to
reconfigure the system [11],[12],[13],[14] and
[51]. Typically this involves various stages:
terminating a component that is to be replaced
and suspending any components and connec-
tors bordering the affected area; removing
components and connectors and adding new
ones as defined by the repair plan; and resum-
ing components and connectors affected.

Rutherford et al. [33] show how an Enter-
prise JavaBeans system can be extended such
that components can be replaced with new
versions. In particular, they must implement
the reloading of parameters and refreshing its
bindings, two activities that are not part of the
standard JavaBean interface. Preliminary ex-
periments show that loading a new component
and binding it in the system takes on the order
of a few seconds.

Whisnant, Kalbarczyk and Iyer [34] de-
scribe a system model in which operational
elements can be reconfigured by changing the
bindings between operations and the code
blocks invoked through the operation. Interest-
ingly, this approach does not require entire
components to be terminated, removed and
replaced. Modelling at the level of code blocks
allows efficient adaptation of component
behaviour. Here adaptivity is fine-grained in
that it permeates the design of the system
down to the code such as at tree data structure.

Appavoo et al. [35] show how the compo-
nent-based operating system K42 has been
improved to support hot swapping of compo-
nents in the OS and support of applications.
This is carried out by the transfer of the com-
ponent state from the old component to the
new. This can be freely chosen by the compo-
nent, and need not follow a canonical form.
New components can be downloaded and
plugged into the running system at any time
after the deployment of the original system.
Their experiments showed that overhead was
negligible compared to the performance gains
achieved. This was possible because they im-
plemented hot swapping at the OS level. That
is, the notion of a component here is fine-
grained: a component is for example the File
Cache Manager (FCM)

5. Metrics and evaluation
With modern computing, consisting of new
paradigms such as planetary-wide computing,

pervasive, and ubiquitous computing, systems
are more complex than before. Interestingly,
when chip design became more complex we
employed computers to design them. Today we
are now at the point where humans have lim-
ited input to chip design. With systems becom-
ing more complex it is a natural progression to
have the system to not only automatically
generate code but build systems, and carryout
the day-to-day running and configuration of
the live system. Therefore autonomic comput-
ing has become inevitable and therefore will
become more prevalent. Hence their evaluation
is increasingly important. This section lists sets
of metrics and means by which we can com-
pare such systems.

5.1. Quality of Service (QoS)
QoS is possibly the top-level means to com-
pare modern systems – it should reflect the
degree to which the system is reaching its
primary goal. It is typically composed of a
number of metrics, e.g. data delivery turn-
around time over cost. It is a highly important
metric in autonomic systems as they are typi-
cally designed to improve some aspect of a
service. Most of the research in this field is
looking at using autonomicity to improve per-
formance (usually speed or efficiency). How-
ever other systems wish to improve the user’s
experience with the system in self-adaptive or
personalised GUI design for disabled people
etc. Overall this metric is tightly coupled to the
application area or service that is expected of
the system. It can be measured as a global goal
metric or at the sub-service or component level
where each unit’s ability to met its local goal is
measured.

5.2. Cost
Autonomicity costs, the degree of this cost and
its measurement is not clear-cut. Currently
most performance studies of architecture-based
autonomic systems have measured its ability to
reach its goal. However agent-based systems
typically compare the amount of communica-
tion, actions performed, and cost of actions
required to reach the goal.

For many commercial systems the aim is to
improve the cost of running an infrastructure,
which includes primarily people costs in terms
of systems administrators and maintenance.
This means that the reduction in cost for such
systems cannot be measured immediately but
over time and as the system becomes more and
more self-managing. Further many commercial
companies have had difficulties in sharing the
vision of autonomic computing with their
shareholders for this reason [53]. It should
however be noted that current de facto com-

mercial performance comparison has borne
cost in mind for some time. For example TPC
benchmarks have always taken cost per
performance into account [54].

Cost comparison is further complicated by
the fact that adding autonomicity means add-
ing intelligence, monitors and adaptation
mechanisms – and these cost. In Patia we
aimed to measure the cost of adding autonomic
features to a webserver, which can cope with
fluctuating demand and sudden high demand
(flash crowds) [48]. We found that the costs of
adding monitors and monitor traffic were only
just outweighed by the benefits they provided
under the normal operation of the server spe-
cifically. As this was fairly predictable it was
hardly worth-wile. However under duress the
system would not work without the autonomic
features. Therefore would a comparative char-
acteristic be to do with added functionality
achievable that would otherwise not be
achieved in a non-autonomic system? As this
might be found in a serendipitous fashion, it
could be difficult to predict what to test for in
advance.

The actual architecture can also impact in
the measurement of the cost of a self-adaptive
system. For example most architecture-based
solutions consist of a service that has auto-
nomic features added. For many of these archi-
tectures the intelligence to run the system is
separate and centralised, the monitors or gages
are external to what they are measuring and the
decision to adapt and its supervision is external
to the component. Here the question is do we
compare systems that use other computing
nodes to run the autonomic services with those
who run the autonomic services on the same
system? With the former, costs could be in
terms of extra hardware and communications
to that hardware node, and the saving is that it
lessens the impact on the running of the main
system. Extra nodes dedicated to the auto-
nomic services means that they can be more
intelligent, checking the validity of a given
reconfiguration or if it is an optimum configu-
ration of many candidates. Further extra nodes
can allow resources for open intelligence
where the autonomic decisions themselves are
fed into the autonomic system for it to self-
evaluate and learn.

In AI and agent-based autonomic systems,
the intelligence is highly distributed and usu-
ally contained within the component or agent.
The latter type of system can have the intelli-
gence to carry out its service tightly coupled to
the self-management intelligence continued
within its component. Therefore the self-
management overhead is perhaps indistin-
guishable from the agent’s core function and

therefore it is more difficult to separate out the
costs – if sensible at all.

Further, a class of application very fitting
to autonomic computing is that of Ubiquitous
computing which typically consists of net-
works of sensors working together to create
intelligent homes, monitor the environment etc
[47]. This sort of application relies on self-
reliance, distributed self-configuration intelli-
gence and monitoring. However many of the
nodes in such a system are limited in resources
and can be wireless, which means that the cost
of autonomous computing involves resource
consumption such as battery power.

5.3. Granularity/Flexibility
The granularity of autonomicity is an impor-
tant issue when comparing autonomic systems.
Fine grained components with specific adapta-
tion rules will be highly flexible and perhaps
adapt to situations better, however this may
cause more overhead in terms of the global
system. That is, if we assume that each finer-
grained component requires environmental
data and is providing some form of feedback
on its performance then potentially there is
more monitoring data or at least environmental
information flowing around the global system.
Of course may not be the case in systems
where the intelligence is more centralised.
Many current commercial autonomic endeav-
ours are at the thicker grained service level.

Granularity is important for eg in [33],
where unbinding, loading and rebinding a
component took a few seconds. These few
seconds are tolerable in a thick-grained com-
ponent based architecture where the overheads
can be hidden in the system’s overall operation
and potentially change is not that regular.
However in finer-grained architectures, such as
an Operating System or Ubiquitous computing
where change is either more regular or the
components smaller, the hot swap time is
potentially too much.

One question we may ask is, can systems
that provide the same service be compared
with each other if the granularity of
autonomicity is different? Perhaps at a high
level yes.

5.4. Failure avoidance (Robustness)
Typically many autonomic systems are de-
signed to avoid failure at some level. Many are
designed to cope with hardware failure such as
a node in a cluster system or a component that
is no longer responding. Some avoid failure by
retrieving a missing component. Either way the
predictability of failure is an aspect in compar-
ing such systems. Some systems will be de-
signed for their ability to cope with predicted

failure e.g. using a mean time before failure
metric of hardware and others to cope with
unpredicted environments. To measure this,
the nature of the failure and how predictable
that failure is, needs to be varied and the sys-
tems’ ability to cope measured. Ability to cope
could be in terms of a Quality of Service met-
ric that pertains to the application domain.

For example in our Kendra1 audio server,
which is a closed self-adaptive system, we
would test Kendra’s failure avoidance abilities
by varying the bandwidth in terms of available
bandwidth and how quickly that bandwidth
varied. This would test its ability to avoid
periods of silence given certain environmental
circumstances. That is, in a network, who’s
bandwidth only varied slightly or in a predict-
able way, we observed that Kendra would
adapt more gracefully than in a bursty network
which saw Kendra adapt up and down the
codecs sometimes even missing an opportunity
to adapt as it did not notice environmental
change as it was handling the previous adapta-
tion [44].

5.5. Degree of Autonomy
Related to failure avoidance, we can compare
how autonomous a system is. This would re-
late to AI and agent-based autonomic systems
primarily as their autonomic process is usually
to provide an autonomous activity. For exam-
ple the NASA pathfinder must cope with un-
predicted problems and learn to overcome
them without external help. Decreasing the
degree of predictability in the environment and
seeing how the system copes could measure
this. Lower predictability could even reach it
having to cope with things it was not designed
to. A degree of proactivity could also compare
these features.

5.6. Adaptivity
We separate out the act of adaptation form the
monitoring and intelligence that causes the
system to adapt. Adaptivity can be something
simple as a parameter begin changed in for
example self-configuration systems. Here the
adaptation does not impact the performance so
much as a component-based reconfiguration.
In the latter a component may need to be hot-
swapped where state is saved, the new compo-
nent located and then bound into the system.
Some systems are designed to continue execu-
tion whilst reconfiguring, while others cannot.

1 Kendra is a self-adaptive audio player that was devel-
oped in 1995 and adapted the delivery of the audio codec
to best suit the available bandwidth between a client and
the audio server. It monitored audio delivery and if band-
width changed another codec was chosen. The aim was to
keep the audio quality as best as possible and avoid peri-
ods of silence [43,44,45,50].

Furthermore the location of such components
again impacts the performance of the adaptiv-
ity process. That is, a component object, which
is currently local to the system verses a com-
ponent (such as a printer driver for example),
having to be retrieved over the Internet, will
have significantly differing performance. Per-
haps more future systems will have the equiva-
lent of a pre-fetch of components that are
likely to be of use and are preloaded to speed
up the re-configuration process.

5.7. Time to adapt and Reaction Time
Related to cost and sensitivity, these are meas-
urements concerned with the system re-
configuration and adaptation. The time to
adapt is the measurement of the time a system
takes to adapt to a change in the environment.
That is, the time taken between the identifica-
tion that a change is required until the change
has been effected safely and the system moves
to a continue state. Reaction time can be seen
to partly envelop the adaptation time. This is
the time between when an environmental ele-
ment has changed and the system recognises
that change, decides on what reconfiguration is
necessary to react to the environmental change
and get the system ready to adapt. Further the
reaction time affects the sensitivity of the
autonomic system to its environment (see
below).

5.8. Sensitivity
This is a measurement of how well the self-
adaptive system fits with the environment it is
sitting in. At one extreme a highly sensitive
system will notice a subtle change as it hap-
pens and adapt (perhaps subtly) to improve
itself based on that change. However in reality,
depending on the nature of the activity, there is
usually some form of delay in the feedback
that some part of the environment has changed
effecting a change in the autonomic system.
Further the changeover takes time. Therefore if
a system is highly sensitive to its environment
potentially it can cause the system to be con-
stantly changing configuration etc and not
getting on with the job itself.

In measuring Kendra we made the parame-
ters such that the system became more sensi-
tive to the fluctuations in bandwidth to see if it
would improve the reaction and ultimately
have the delivery of the audio better match the
bandwidth available to it. As mentioned in
section 5.4, Kendra is a relatively simple self-
adaptation system, yet the numbers of parame-
ters, which affected the sensitivity of the adap-
tation mechanism, were many. For example we
could vary the buffer size (which is the data
area used to buffer audio), disaster horizon

(how close the system thinks it is to a disaster
situation), monitoring sample rates (how much
environmental data to monitor and store to use
predict change in bandwidth). We found that in
a generally low bandwidth link it is better that
the system is not sensitive as that adaptation
process impeded too much on the delivery of
the sound. However in good network condi-
tions it is better to be more sensitive as this
delivers the best all round quality of sound
[48].

5.9. Stabilisation
Another metric related to sensitivity is stabili-
sation. That is the time taken for the system to
learn its environment and stabilise its opera-
tion. This is particularly interesting for open
adaptive systems that learn how to best re-
configure the system. For closed autonomic
systems the sensitivity would be a product of
the static rule/constraint base and the stability
of the underlying environment the system must
adapt to.

5.10. Benchmarking
Finally, it will become necessary to bring these
metrics together to form some sort of bench-
marking tool. There are two approaches this
can take; either we can derive new autonomic
systems benchmarks or we can augment cur-
rent benchmarks to incorporate metrics, which
measure autonomic characteristics. Our initial
attempt to do with was with the Patia project
[Patia]. This project required we test our auto-
nomic webserver and compare its performance
with current webservers. We soon found that
current webserver benchmarks would not only
be able to test the autonomic aspects of Patia,
but actually did not measure how traditional
webservers were being used. It soon became
apparent that we would have to design and
build a new webserver benchmark, namely
Aeolus [42]. This took research, which de-
scribes modern web access and data, character-
istics, and built a benchmark based on this.
Further, we wished to test the robustness of our
Patia webserver under extreme conditions
where we simulated a flash crowd that would
test the autonomic features of Patia to the ex-
treme. Using many of the metrics we have
mentioned in this section, we extended the
Aeolus webserver benchmark accordingly.
However, we do not believe that deriving
benchmarks that measure autonomic systems is
the way forward. Instead, due to the diverse
application of autonomic systems, it seems
better to augment application specific bench-
marks to include metrics which evaluate auto-
nomic features of that system e.g. robustness,
reaction speed, stability etc. In particular the

Quality of Service benchmark, which we be-
lieve is the top-level measurement of how well
the system is meeting its goals, is specific to
the application in question. Therefore we see
traditional benchmarks such as the TPC
benchmarks being used to measure autonomic
DBMSs but perhaps extended to test the
autonomous nature of the system.

6. Conclusions
Autonomic computing is an engineering con-
cept that has found its way in a myriad of
computing fields. This paper is a review of
some typical examples of autonomic comput-
ing attempting to give the reader a feel for the
nature of these types of systems and in doing
so illustrate the complexities in trying to meas-
ure the performance of such systems and com-
pare them. We have presented two major types
of architecture that exhibit autonomic proper-
ties and describe these as AI (agent-based) and
architecture based. We have presented the
common components found in each of these
types of system, and from this derived a set of
metrics and methods which we believe can be
used to compare autonomic computing sys-
tems. These are:

• Quality of Service
• Cost
• Granularity/Flexibility
• Failure avoidance (Robustness)
• Degree of Autonomy
• Adaptivity
• Time to adapt and Reaction Time
• Sensitivity
• Stabilisation

We realise that some of these metrics are more
general than others and some pertain to some
autonomic systems and not to others. However
we believe that the next step is to take this
information and derive a more formal method
to compare performance of autonomic sys-
tems.

A final note regarding our experience of
evaluating the Kendra architecture. Here we
set the top-level QoS goal to be that the audio
quality was as high as possible while avoiding
periods of silence. When testing the system we
measured general quality levels, unnecessary
adaptation, missed opportunities to adapt,
sensitivity to environment etc. Kendra is a
relatively simple system with closed self-
adaptation (i.e. the autonomic intelligence does
not grow), yet the performance statistics were
of a large volume and difficult to interpret -
especially in terms of relating behaviour to
varying the many tuning parameters and differ-

ing environment (networking) conditions. We
felt that no concrete quantifiable conclusions
were really made other than to say that over
sensitivity in bursty networks is bad which we
possibly would have guessed.

Therefore, finally, it is interesting that alle-
viate the maintenance and operation of our
modern more complex systems we require that
addition of even more complexity. It is our
argument that this complexity makes such
systems much more difficult to evaluate than
before and therefore the need to derive metrics
and benchmarks is a highly important and
interesting area.

References

[1] Kephart J. O., Chess D.M.. The Vision of Auto-
nomic Computing. Computer, IEEE, Volume 36,
Issue 1, January 2003, Pages 41-50

[2] Bantz D. F. et al. Autonomic personal computing.
IBM Systems Journal, Vol 42, No 1, 2003

[3] Dailey Paulson L.. Computer System, Heal Thy-
self. Computer, IEEE, Volume 35, Issue 8, Au-
gust 2002, Pages 20-22

[4] Pescovitz D.. Helping computers help themselves.
Spectrum, IEEE, Volume 39, Issue 9, September
2002, Pages 49-53

[5] Wooldridge M., An Introduction to MultiAgent
Systems. John Wiley & Sons Ltd

[6] Garlan D., B. Schmerl. Exploiting Architectural
Design Knowledge to Support Self-Repairing Sys-
tems. Proceedings of the 14th international con-
ference on Software engineering and knowledge
engineering. July 2002

[7] Garlan D., B. Schmerl. Model-based Adaptation
for Self-Healing Systems. Proceedings of the first
workshop on Self-healing systems, November
2002

[8] Garlan D., Schmerl B., Chan J.. Using Gauges for
Architecture-Based Monitoring and Adaptation.
Working Conference on Complex and Dynamic
Systems Architecture, Brisbane, Australia, De-
cember 2001.

[9] Cheng S-W., Garlan D., Schmerl B., Sousa J. P.,
Spitznagel B., Steenkiste P.. Using Architectural
Syle as a Basis for System Self-repair. Software
Architecture: System Design, Development, and
Maintenance (Proceedings of the 3rd Working
IEEE/IFIP Conference on Software Architecture)
Bosch J., Gentleman M., Hofmeister C. Kuusela ,
J. (Eds), Kluwer Academic Publishers, August
25-31, 2002. Pages 45-59

[10] Cheng S-W., Garlan D., Schmerl B., Steenkiste
P., Ningning Hu. Software Architecture-based
Adaptation for Grid Computing. 11th IEEE Con-
ference on High Performance Distributed Com-
puting (HPDC’02), Edinburgh, Scotland, July
2002.

[11] Dashofy E. M., van der Hoek A., Taylor R. N..
Towards Architecture-based Self-Healing Sys-
tems. Proceedings of the first workshop on Self-
healing systems, November 2002

[12] Dashofy E. M., van der Hoek A., Taylor R.N.. An
Infrastructure for the Rapid Development of

XML-based Architecture Description Languages.
Proceedings Of the 24th International Conference
on Software Engineering (ICSE2002), Orlando,
Florida, May 2002.

[13] xADL 2.0 Homepage. URL:
http://www.isr.uci.edu/projects/xarchuci/

[14] ArchStudio 3 Foundations – c2.fw.
URL: http://www.isr.uci.edu/projects/archstudio/c
2fw.html

[15] de Lemos R., Fiadeiro J. L.. An Architectural
Support for Self-Adaptive Software for Treating
Faults

[16] Kramer J. and Magee J.. The Evolving Philoso-
pher Problem: Dynamic Change Management.
IEEE Transactions on Software Engineering, Vol.
16, No. 11, November 1990.

[17] BlueGene/L Team at IBM and Lawrence Liver-
more National Laboratory, IBM Research and
IBM Rochester. An Overview of the BlueGene/L
Supercomputer.

[18] Wolpert D. H., Wheeler K. R., Tumer K., Collec-
tive Intelligence for Control of Distributed Dy-
namical Systems. NASA Ames Research Center,
Technical Report No NASA-ARC-IC-99-44.

[19] Kuo-Ming C., James A., Norman P.. A Frame-
work for Intelligent Agents within Effective Con-
current Design. The Sixth International Confer-
ence on Computer Supported Cooperative Work
in Design, 12-14 July 2001, Pages 338–343

[20] Gamma E. et al. Design patterns: elements of
reusable object-oriented software. Addison
Wesley.

[21] Object Management Group. URL:
http://www.omg.org/

[22] Liu T., Martonosi M.. Impala: A Middleware
System for Managing Autonomic Parallel Sensor
Systems. Proceedings of the ninth ACM
SIGPLAN symposium on Principles and practice
of parallel programming, June 2003.

[23] TCPA – The Trusted Computing Platform Alli-
ance. URL: http://www.trustedcomputing.org/

[24] Muscettola N., Nayak P. P., Pell B., Williams B.
C.. Remote Agent: To Boldly Go Where No AI
System Has Gone Before. NASA Ames Research
Center.

[25] Georgiadis I., Magee J., Kramer J.. Self-
Organising Software Architectures for Distrib-
uted Systems. ACM, Proceedings of the first
workshop on Self-healing systems, November
2002.

[26] Sterritt R., Bustard D.. Towards an Autonomic
Computing Environment. University of Ulster,
Northern Ireland.

[27] Kumar S.,. Cohen P. R. Towards a Fault-Tolerant
Multi-Agent System Architecture.

[28] Valetto G., Kaiser G.. A Case Study in Software
Adaptation. ACM, Proceedings of the first work-
shop on Self-healing systems. November 2002.

[29] Valetto G., Kaiser G.. Combining Mobile Agents
and Process-based Coordination to Achieve Soft-
ware Adaptation. Columbia University.

[30] Cougaar – Cognitive Agent Architecture.
URL: http://www.cougaar.org/

[31] The Globus Heartbeat Monitor Specification
v. 1.0.
URL: http://www-
fp.globus.org/hbm/heartbeat_spec.html

[32] Wyatt J., Hotz, H. Sherwood R., Szijjaro J., Sue
M., Beacon Monitor Operations on the Deep
Space One Mission. 5th Int. Sym. AI, Robotics
and Automation in Space, Tokyo, Japan, 1998.

[33] Rutherford M. J., Anderson K., Carzaniga A.,
Heimbigner D., Wolf A. L., Reconfiguration in
the Enterprise Javabean Component Model. Pro-
ceedings of the IFIP/ACM Working Conference
on Component Deployment, Berlin, 2002, Pages
67-81.

[34] Whisnant K., Kalbarczyk Z. T., Iyer R. K., A
system model for dynamically reconfigurable
software. IBM Systems Journal, Vol. 42, No. 1,
2003.

[35] Appavoo J. et al. Enabling autonomic behaviour
in systems software with hot swapping. IBM Sys-
tems Journal, Vol. 42, No. 1, 2003.

[36] Bigus J. P. et al. ABLE: A toolkit for building
multiagent autonomic systems. IBM Systems
Journal, Vol. 41, No. 3, 2002.

[37] Wise A. et al. Using Little-JIL to Coordinate
Agents in Software Engineering. In Automated
Software Engineering Conference (ASE 2000),
September 2000.

[38] Markl V., Lohman G. M., Raman V.. LEO: An
autonomic query optimizer for DB2. IBM Sys-
tems Journal, Vol. 42, No. 1, 2003.

[39] How Sun™ Grid Engine, Enterprise Edition 5.3
Works.
URL: http://wwws.sun.com/software/gridware/sg
eee53/wp-sgeee/wp-sgeee.pdf

[40] Kon F., Campbell R. H., Mickunas M. D.,.
Nahrstedt, K Ballesteros F. J.. 2K: A Distributed
Operating System for Dynamic Heterogeneous
Environments. IEEE, Proceedings of The Ninth
International Symposium on High-Performance
Distributed Computing, 1-4 Aug. 2000, Pages
201-208.

[41] Blair G. S. et al. Reflection, Self-Awareness and
Self-Healing in OpenORB. ACM, Proceedings of
the first workshop on Self-healing systems, No-
vember 2002. Pages 9-14.

[42] Bletsas E. N., McCann, J. A AEOLUS: An Ex-
tensible Webserver Benchmarking Tool submit-
ted to 13th IW3C2 and ACM World Wide Web
Conference (WWW04), New York City, 17-22
May 2004.

[43] McCann J. A,. Crane J.S.,'Kendra: Internet Dis-
tribution & Delivery System an introductory pa-
per', Proc. SCS EuroMedia Conference, Leicester,
UK, Ed. Verbraeck A., Al-Akaidi M., Society for
Computer Simulation International, January 1998.
pp 134-140

[44] McCann J.A., Howlett P., Crane J.S., 'Kendra:
Adaptive Internet System', Journal of Systems
and Software, Elsevier Science, Volume 55, Issue
1, 5 November 2000 .pp 3-17.

[45] McCann J.A., 'The Kendra Cache Replacement
Policy and its Distribution', published in World
Wide Web An International Journal, Volume 3,
Number 4, Baltzer Science Publishers, ISSN
1386-145X, December 2000.pp231-240.

[46] McCann J .A. , Jawaheer G., Sun L., 'Patia: Adap-
tive Distributed Webserver (a Position Paper)' In-
ternational Symposium on Autonomous Decen-
tralized Systems (ISADS). April 2003

[47] McCann J .A., 'ANS (Autonomic Networked
System): A Position Paper', 1st UK-UbiNet
Workshop,25-26th September 2003

[48] McCann J .A., Jawaheer G. 'Experiences in Build-
ing the Patia Autonomic Webserver' 1st Interna-
tional Workshop "Autonomic Computing Sys-
tems", DEXA 2003

[49] McCann J .A. 'The Database Machine: Old Story,
New Slant?' Proceedings of the first Biennial
Conference on Innovative Data Systems Re-
search, VLDB, January 5-8 2003

[50] McCann J .A., 'Adaptivity for Improving Web
Streaming Application Performance', chapter in
Adaptive Evolutionary Information Systems. ed.
N. V. Patel, 2002

[51] Kostkova P., McCann J .A., ' Support for Dy-
namic Trading and Runtime Adaptability in Mo-
bile Environments' chapter in Adaptive Evolu-
tionary Information Systems. ed. N. V. Patel,
2002.

[52] Barr R., Bicket J. C., Dantas D.S., Du B., T. W.
D. Kim, B. Zhou, E. Gün Sirer ‘On the need for
system-level support for ad hoc and sensor net-
works. ACM SIGOPS Operating Systems Re-
view, Volume 36 Issue 2

[53] Nussey I and Telford R presentation part of the
IBM Academic Autonomic Computing Day, Lon-
don, 29th October 2003.

[54] The Transaction and Performance Processing
Council, PC http://www.tpc.org/

