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Abstract 
Autonomic Computing is a concept that brings 
together many fields of computing with the 
purpose of creating computing systems that are 
reflective and self-adaptive. In this paper we 
draw upon our experience of this field to dis-
cuss how we can attempt to evaluate auto-
nomic systems. By looking at the diverse sys-
tems that describe themselves as autonomic, 
we provide an introduction to the concepts of 
Autonomic Computing and describe some 
achievements that have already been made. We 
then discuss this work in terms of what is nec-
essary to evaluate and compare such systems. 
We conclude with a definitive set of metrics, 
which we believe are useful to evaluate 
autonomicity. 
 
 
1. Introduction 

Autonomic computing is generally consid-
ered to be a term first used by IBM in 2001 to 
describe computing systems that are said to be 
self-managing [1]. However the concept of 
self-management and adaptation in computing 
systems has been around for some time. The 
event of the combination of object-oriented 
programming paralleled with component-based 
software engineering essentially paved the way 
toward autonomic computing [49]. That is, it 
can be argued that without the concepts of 
dynamic re-binding of components a system 
cannot effectively reconfigure itself to adapt to 
improve its service.  

When reviewing the current state-of-the art 
in autonomic systems, the concept of self-
management usually groups into having four 
basic properties: self-configuration, self-
optimization, self-healing and self-protection. 
Here is a brief description of these properties 
(for more information, see [1] and [2]): 
• Self-configuration: an autonomic comput-

ing system configures itself according to 
high-level goals, i.e. by specifying what is 
desired, not necessarily how to accomplish 
it. This can mean being able to install itself 
based on the needs of a given platform and 
the user. 

• Self-optimization: an autonomic comput-
ing system optimises its use of resources. 
It may decide to initiate a change to the 
system proactively (as opposed to reactive 
behaviour) in an attempt to improve per-
formance. 

• Self-healing: an autonomic computing 
system detects and diagnoses problems. 
What kinds of problems are detected can 
be interpreted broadly: they can be as low-
level as a bit-error in a memory chip 
(hardware failure) or as high-level as an 
erroneous entry in a directory service 
(software problem) [3]. If possible, it 
should attempt to fix the problem, for ex-
ample by switching to a redundant compo-
nent or by downloading and installing soft-
ware updates. However, it is important that 
as a result of the healing process the 
system is not further harmed, for example 
by the introduction of new bugs or the loss 
of vital system settings. Fault-tolerance is 
an important aspect of self-healing. Typi-
cally, an autonomic system is said to be 
reactive to failures or early signs of a pos-
sible failure. 

• Self-protection: an autonomic system pro-
tects itself from malicious attacks but also 
from end users who inadvertently make 
software changes, e.g. by deleting an im-
portant file. The system autonomously 
tunes itself to achieve security, privacy 
and data protection. Thus, security is an 
important aspect of self-protection, not just 
in software, but also in hardware (e.g. 
TCPA [23]). A system may also be able to 
anticipate security breaches and prevent 
them from occurring in the first place. 

Self-management requires that a system 
monitor its components (internal knowledge) 
and its environment (external knowledge), so 
that it can adapt to changes that may occur, 
which may be known changes or unexpected 
changes where a certain amount of artificial 
intelligence may be required. 

However, there is no agreed definition of 
what an Autonomic system is, their evaluation 
and moreover comparison, is difficult. Fur-
thermore the very emergent nature of such 
systems adds further complexity to the evalua-
tion of such systems. This paper is an attempt 



to look at Autonomic computing and try to 
highlight areas, which can be used to compare 
performance and derive some form of metrics. 

The structure of this paper is as follows. 
Initially, in section 2 we survey the area of 
Autonomic computing to attempt to build a 
map of the subject. To this end we provide an 
introduction to the concepts of Autonomic 

Computing and describe some research that is 
taking place in various fields of computing and 
some achievements that have already been 
made, section 3. After that in section 4, we 
concentrate on research in the field of software 
engineering and describe projects that focus on 
adding autonomic behaviour to software sys-
tems. Finally, in sections 5 and 6 we combine 
this work together with a discussion on per-
formance evaluation and benchmarking, taking 
into account our experiences of measuring 
autonomic systems and provide some initial 
ideas on how such systems can be compared. 
 
2. Autonomic computing today 
The ideas behind autonomic computing are not 
new. In fact, it is possible to find some aspects 
of autonomic computing already in today’s 
software products [2]. For instance, Windows 
XP optimises its user interface (UI) by creating 
a list of most often used programs in the start 
menu. Thus, it is self-configuring in that it 
adapts the UI to the behaviour of the user, 
although in a fairly basic way, by monitoring 
what programs are called most often. It can 
also download and install new critical updates 
without user intervention, sometimes without 
restarting the system. Therefore, it also exhib-
its basic self-healing properties. DHCP and 
DNS services allow devices to self-configure 
to access a TCP/IP network (albeit in a limited 

way, as many settings such as web proxy 
server addresses or VPN security settings must 
still be entered manually). PCs on a LAN can 
discover other devices, such as printers, and 
install their drivers automatically (under the 
right conditions). Further many consider data-
base query optimisers an early form of auto-
nomic computing [4]. 

However our definition of what we mean 
by autonomic computing is that of a self-
adaptive system as opposed to an adaptive 
system. Therefore, here standard query opti-
misers would not be considered as providing 
autonomicity. However if while a query was 
running and the DBMS was monitoring the 
query’s execution and deciding on a different 
query plan, then we would consider that auto-
nomic. Nevertheless, we realise that the 
boundary from adaptive to self-adaptive sys-
tems is fuzzy. 
 
3. Why Autonomic computing 
In trying to understand how to evaluate an 
autonomic system one much understand the 
reason we would want such a system. This 
allows us to compare whether or not the objec-
tive has been met. 

 The main reason for large blue-chip com-
panies, like IBM, being interested in auto-
nomic computing is the need to reduce the cost 
and complexity of owning and operating an IT 
infrastructure [4]. In particular, there is a need 
to alleviate the complexity with which system 
administrators of IT services are faced today. 
The aim is to allow administrators to specify 
high-level policies that define the goals of the 
autonomic system, and let the system manage 
itself to accomplish these goals. At present, 
system administrators must tweak hundreds of 

Company Title Salient feature 
IBM eLiza servers and mainframes respond to unexpected changes and system components’ 

failure autonomously [3]. 
 LEO autonomic query optimiser for IBM’s DB2 database systems [38]. LEO monitors 

queries as they execute and compares its estimates of the cost for each step in the 
query execution plan with actual results. The detection of estimation errors can also 
trigger reoptimisation of a query in mid-execution. 

 Blue Gene/L 
(BG/L), 

IBM’s a supercomputer to be released in 2005, will implement self-healing and self-
management [3] using application programmers placing checkpoints in code. 

 IceCube The server tracks its components’ health and maximum capacity. It can then autono-
mously distribute data among the available nodes. Failed nodes (bricks) are worked 
around automatically, [17] 

Sun Jini network allow Systems experiencing failure of a component could find components on the 
network with the required functionality that are still functioning and then reallocate 
resources to them autonomously 

 Grid Engine 
Enterprise Edi-
tion 

Deadline policies can be used to make sure that projects nearing the deadline receive 
a greater share of resources. Then share based policies consider the accumulated 
resource usage of a user, so that if a user “over-uses” resources, then the grid will 
lower the entitlement of that user to resources for a certain period of time [39]. 

HP Superdome adding self-healing properties to replace a processor if there are too many errors to 
automatically fix 
Figure 1. Sample Commercial Autonomic Effort 



settings and often spend weeks before getting a 
system to run optimally. Autonomic systems 
are also faster at adapting to changes to the 
environment, e.g. by distributing its resources 
differently when a critical-project requires 
more CPU processing power. Furthermore, as 
information systems in enterprises grow larger, 
it is becoming increasing difficult to identify a 
failure in the system and repair the affected 

component quickly, as large systems are het-
erogeneous and no single person knows the 
entire system. Examples of such systems can 
be found in Figure 1. 

Autonomic behaviour is a topic that has 
found its way in many other computing fields 

in particular adhoc networking [52]. For ex-
ample, Liu and Martonosi [22] discuss the 
problem of propagating software updates in a 
wireless network of devices that are spread 
over a large area and are not all reachable from 
a base station. Sensors co-operate to propagate 
software updates to the entire network of sen-
sors, but at the same time they must optimise 
energy consumption, because of tight energy 

constraints. Further due to the autonomous 
nature of NASA’s DS1 (Deep Space 1) mis-
sion and the Mars Pathfinder [24],[18] some 
self-adaptation is required. That is, as mission 
control cannot rapidly send new commands to 
a probe, it must quickly adapt to extraordinary 

Group Domain Main characteristics Refs 

Multi-agent systems 
Kuo-Ming, James, 
Norman 

Framework for multi-
agent systems 

Communication middleware based on 
CORBA for monitoring and cooperation 

[19] 

Sterritt, Bustard Autonomic components Heartbeat or pulse monitor for monitoring [26] 
Georgiadis, Magee, 
Kramer 

Architectural constraints 
for self-organising 
components 

Self-organising components with a global 
view expressed as architecture description 

[25] 

Kumar, Cohen Adaptive Agent Archi-
tecture 

Broker agents used as to provide fault-
tolerance to overlying problem-solving 
agents. 

[27] 

Bigus et al. ABLE agent toolkit Framework for building multi-agent systems. 
Working on including autonomic agents. 

[36] 

Architecture design-based autonomic systems 
Garlan, Schmerl Architecture model-

based adaptation for 
autonomic systems 

Probes, gauges for monitoring running sys-
tem, architecture manager implements adap-
tive behaviour, based on architecture-model 
of system. 

[7] 
[8][9] 
[10] 

de Lemos, Fiadeiro Architecture for fault-
tolerance in adaptive 
systems 

Components considered as black-boxes. [15] 

Dashofy, van der 
Hoek, Taylor 

Framework for architec-
ture-based adaptive 
systems 

xADL 2.0 architecture description language, 
c2.fw development framework. 

[11] 
[12] 

Valetto, Kaiser Adding autonomic be-
haviour to existing sys-
tems 

Autonomic behaviour as a distributed multi-
agent infrastructure called Workflakes. 

[28] 
[29] 

Hot swapping components 
Rutherford et al. Reconfiguration in EJB 

model 
BARK tool as an extension to EJB to support 
component replacement. 

[33] 

Whisnant, 
Kalbarczyk, Iyer 

Model for reconfigur-
able software 

Adaptivity through replacement of bindings 
between operations and invoked code blocks. 

[34] 

Appavoo et al. Hot-swapping at OS 
level 

High-performance hot-swapping of fine-
grained components in K42 OS. 

[35] 

Kon, Campbell et al. Reflective middleware DynamicTAO, a middleware for dynamically 
reconfigurable software. 

[40] 

G. S. Blair et al. Reflective middleware OpenORB, reflective middleware for self-
healing systems. 

[41] 

Table 1: Summary of reviewed research in software architectures for autonomic computing. 
 



Autonomic Element (agent)

Managed Component 

Internal 
Monitor 

Repair plan 
effector 

External 
Monitor 

Adaptation planner System 
Knowledge

Figure 2: An autonomic agent 

situations, therefore it is important that a probe 
be able to make decisions and carry them out 
on its own. 
 
4. Software architectures for auto-

nomic computing 
The autonomic research activities in software 
systems can broadly be categorised into four 
areas: monitoring of components, interpreta-
tion of monitored data, creation of a repair plan 
(i.e. an adaptation of the system), and execu-
tion of a repair plan. Based on this, we choose 
to group the approaches to autonomic comput-
ing systems orthogonally into two categories: 
intelligent multi-agent systems and architec-
ture design-based autonomic systems. How-
ever, the two approaches have common con-
cepts it is sometimes difficult to place a re-
search project in one particular category. 
 
Table 1 shows a summary of the research re-
viewed in this section. 

4.1. Multi-agent systems 
Complex autonomic systems that are not com-
posed of a single self-managing component 
can be built using intelligent agents (for infor-
mation on multi-agent systems, see [5]). Every 
agent has its own goals, which drive its deci-
sions. An agent in an autonomic system is 
proactive, and possesses social ability. The 
latter can potentially lead to instabilities of the 
overall system due to the chain reaction of 
agents instructing other agents to change be-
haviour[1]. A difficult talk is also to define the 
individual goals of the agents such that the 
desired global goal is accomplished [1]. In an 
autonomic system, we want to be able to pro-
vide goals in the form of high-level notions, 
and expect the agents themselves to determine 
what behaviour is necessary to reach them. 

Wise et al. [37] propose a top-down hierar-
chical coordination model for agent applica-
tions, in the form of their visual process lan-
guage Little-JIL. A task is divided into steps, 
and each step can further be divided into sub 
steps. A step can then be assigned to an execu-
tion agent, which keeps an agenda of tasks to 
complete. 

Although in multi-agent systems each 
component exhibits its own autonomic behav-
iour, there is usually a clean separation be-
tween the conventional component that per-
forms a task and the autonomic manager which 
implements self-management around it. Figure 
2 (based on a figure from [26]) shows a gen-
eral diagram for an autonomic agent. One 
example is [20] known as the BDI methodol-
ogy. However, in some systems the autonomic 

components are inseparable from the main 
application logic in the agent. 

Compared to the architecture design-based 
approach, adaptive multi-agent systems have 
an innate distributed architecture. With no 
centralised monitoring infrastructure, agents 
must monitor themselves (internal monitor) 
but also other agents (external monitor). Ex-
ternal monitoring can be achieved proactively 
by having each agent send its heartbeat or 
pulse regularly on an autonomic signal channel 
that other agents send and listen on [26]. The 
heartbeat provides a summary of the state of an 
agent to other agents responsible for monitor-
ing that state. Because the autonomic signal 
channel connects agents that are not necessar-
ily on the same physical system, but could very 
well be peer-to-peer or networked, there is the 
danger here that external monitoring activity 
may flood the autonomic signal channel with 
lots of traffic. Thus, care must be taken in 
designing the monitoring protocol. The heart-
beat approach has already been used by the 
Open Grid Services Architecture (OGSA) [31] 
and by NASA on its Deep Space 1 (DS1) mis-
sion [32] (although in NASA’s case it is used 
in a different context). In both cases the heart-
beat is a compact message that provides very 
limited information about the monitored 
component. 

Georgiadis et al show how components can 
self-configure their interactions in compliance 
with an overall architectural specification ex-
pressed using the Alloy language [25],[16]. 
Each component has a view of the entire sys-
tem maintained by the component manager. 
They measure the elapsed time from the mo-
ment a new component is inserted into the 
system until the moment when all components 
have the new consistent view of the system. 
Because of message broadcasting, this time 
increasing roughly linearly in the number of 
nodes in the system. 

Kumar and Cohen [27] show with experi-
mental data how a team of broker agents can 



recover when a broker agent gets disconnected 
from the rest of the system. Again Broker 
agents share the same global knowledge of the 
system, and therefore when a broker agent 
discovers that another agent has been discon-
nected, it shares this information with the rest 
of the team.  

Bigus et al. [36] are extending their ABLE 
agent platform to support autonomic agents to 
reduce the system administrator workload. 
ABLE agents are built on top of Enterprise 
JavaBeans. They use sensors to collect moni-
toring data and effectors to perform resulting 
actions on an application. An important aspect 
thereof is the ability of an intelligent auto-
nomic agent to maintain a model of the exter-
nal environment and its own components.  
 

4.2. Architecture design-based auto-
nomic systems 

In the architecture-based approach, the indi-
vidual components are not per se autonomic.  
Instead, the infrastructure that handles the 
autonomic behaviour of the system uses an 
architectural description model of the running 
system (which is not autonomic itself) to moni-
tor the running system, reason about it and 
determine appropriate adaptive actions. The 
adaptivity infrastructure is typically clearly 
separated from the running system. 

First of all, an architecture model is used to 
design the system (as is often the case with 
software development). In essence, an archi-
tecture model can be considered a graph of 
interacting components [6]. The nodes of a 
graph are called components, a general con-
cept, and what a component actually is de-
pends on the application. Often in research, the 
example of a web server application is used, in 
which the components are web servers and 
clients, and possibly databases. It may be de-
sirable, however, to have a finer level of com-
ponentisation. For instance, user interfaces 
could be considered components. The arcs in 
the graph are called connectors and they repre-
sent the interaction paths between components 
(again, a broad notion). Georgiadis et al [25] 
also used a graph of components and connec-
tors, but there they are clearly mapped to self-
configuring software components and their 
communication connections, respectively. 
Here, the granularity level of the notion of 
components in the model is not necessarily the 
same for all architecture descriptions, but is 
determined be the designer of the architectural 
model of a specific system. 

Many systems allow components and con-
nectors to be annotated with a property list [6] 
[12] and constraints [46],[48]. These properties 

are updated during monitoring of the running 
system and the constraints on them are used to 
decide when an adaptation is necessary. The 
autonomic infrastructure is loosely coupled 
with the running system. In fact, it can run on a 
different machine, so as not to hinder the run-
ning system [6]. In some the code of compo-
nents is augmented with checkpoints for ex-
ample to allow reporting of the occurrence of 
specific method calls, thereby making monitor-
ing more straightforward. 
 
4.2.1. Monitoring 

 
Figure 2 shows a diagram of an architecture 
model-based autonomic system illustrating the 
monitoring infrastructure (it is based on figures 
from [6],[28], [47] and [48]. 

Probes can be inserted into the running 
system to monitor it. These probes are usually 
localised and deliver system-specific observa-
tions. For example, a probe might be deployed 
to report the size of files that are loaded into a 
system, in which case the appropriate system 
call in the OS would be instrumented to allow 
this type of monitoring by a probe [8]. The raw 
monitoring data provided by the probes must 
be aggregated and mapped to high-level no-
tions in the architecture model. This job is 
performed by so-called gauges, which are 
intermediary components between the probes 
in the running system and the architecture 
manager, which controls adaptation of the 
system at the architecture model level. Gauges 
may need to collect data from various probes 
to be able to compute high-level observations. 
These high-level data allow the architecture 
model to be updated based on the current state 
of the executing system. When a property in 
the architecture model is updated through 
monitoring, the architecture model is analysed 
to determine whether the system is still per-

Figure 2: Architecture model-based systems 
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forming adequately. If not, a repair plan is 
created. The repair plan describes which 
components or connectors are to be removed 
or adjusted and which ones are to be inserted. 
The repair plan is created based on repair 
strategies that are defined in advance. For 
many of the architectures the adaptive strategy 
is closed in the future we may see the knowl-
edge of the success of past repair plans used to 
determine the best strategy [7]. This can be 
determined ‘of-line’ on another machine, 
however a considerable amount of bandwidth 
may be required for monitoring, and this can 
become a problem if the monitoring data 
travels on the same network interface as 
application data as seen in Patia[48] and [6]. 

An advantage of the complete separation 
between autonomic behaviour and the running 
system is that software adaptation can be 
“plugged into” a pre-existing system [28]. The 
only direct interaction with the target system is 
through the probes that monitor the system and 
the effectors that make adjustments and recon-
figurations. Changes can be coarse-grained, 
such as replacing entire components or rear-
ranging the connections among components, 
but they can also be fine-grained, such as 
changing the operational parameters, internal 
state or functioning logic of individual compo-
nents [29]. Naturally, the architecture model 
used for adaptation decisions has to be created 
after the existing system. Valetto and Kaiser 
[28] tested this concept on a server farm deliv-
ering instant messaging (IM) services. monitor 
the load of IM servers, and if a threshold is 
exceeded, another IM server is started. This 
may also happen when an existing server fails. 
The infrastructure implementing the adaptivity 
of the system, e.g. the deployment of Worklets, 
gauges and probes, is called Workflakes. The 
workflow describing the adaptation process 
was initially expressed as a set of coding pat-
terns in Java.  

Because of the centralised nature of the ar-
chitecture-based approach to self-healing sys-
tems, deployment of such a system in a truly 
distributed environment, where unplanned 
failures, such as that of the central architecture 
manager, can occur requires particular atten-
tion to fault tolerance in the infrastructure and 
the individual components. For example [28], 
use a decentralised workflow system that uses 
agents that are part of the adaptivity infrastruc-
ture, which is cleanly, separated from the run-
ning system. 

4.3. Hot swapping components 
In this section, research projects are described 
that focus on how to effect adaptation within 
the system. This usually involves replacing 

components in the system with new ones that 
possess similar functionality but with a differ-
ent implementation and which are more appro-
priate to the current condition of the system 
and its environment.  

Much research has been carried out with 
regard to the hot swapping of components to 
reconfigure the system [11],[12],[13],[14] and 
[51]. Typically this involves various stages: 
terminating a component that is to be replaced 
and suspending any components and connec-
tors bordering the affected area; removing 
components and connectors and adding new 
ones as defined by the repair plan; and resum-
ing components and connectors affected. 

Rutherford et al. [33] show how an Enter-
prise JavaBeans system can be extended such 
that components can be replaced with new 
versions. In particular, they must implement 
the reloading of parameters and refreshing its 
bindings, two activities that are not part of the 
standard JavaBean interface. Preliminary ex-
periments show that loading a new component 
and binding it in the system takes on the order 
of a few seconds. 

Whisnant, Kalbarczyk and Iyer [34] de-
scribe a system model in which operational 
elements can be reconfigured by changing the 
bindings between operations and the code 
blocks invoked through the operation. Interest-
ingly, this approach does not require entire 
components to be terminated, removed and 
replaced. Modelling at the level of code blocks 
allows efficient adaptation of component 
behaviour. Here adaptivity is fine-grained in 
that it permeates the design of the system 
down to the code such as at tree data structure. 

Appavoo et al. [35] show how the compo-
nent-based operating system K42 has been 
improved to support hot swapping of compo-
nents in the OS and support of applications. 
This is carried out by the transfer of the com-
ponent state from the old component to the 
new. This can be freely chosen by the compo-
nent, and need not follow a canonical form. 
New components can be downloaded and 
plugged into the running system at any time 
after the deployment of the original system. 
Their experiments showed that overhead was 
negligible compared to the performance gains 
achieved. This was possible because they im-
plemented hot swapping at the OS level. That 
is, the notion of a component here is fine-
grained: a component is for example the File 
Cache Manager (FCM)  
 
5. Metrics and evaluation 
With modern computing, consisting of new 
paradigms such as planetary-wide computing, 



pervasive, and ubiquitous computing, systems 
are more complex than before. Interestingly, 
when chip design became more complex we 
employed computers to design them. Today we 
are now at the point where humans have lim-
ited input to chip design. With systems becom-
ing more complex it is a natural progression to 
have the system to not only automatically 
generate code but build systems, and carryout 
the day-to-day running and configuration of 
the live system. Therefore autonomic comput-
ing has become inevitable and therefore will 
become more prevalent. Hence their evaluation 
is increasingly important. This section lists sets 
of metrics and means by which we can com-
pare such systems. 

5.1. Quality of Service (QoS) 
QoS is possibly the top-level means to com-
pare modern systems – it should reflect the 
degree to which the system is reaching its 
primary goal. It is typically composed of a 
number of metrics, e.g. data delivery turn-
around time over cost. It is a highly important 
metric in autonomic systems as they are typi-
cally designed to improve some aspect of a 
service. Most of the research in this field is 
looking at using autonomicity to improve per-
formance (usually speed or efficiency). How-
ever other systems wish to improve the user’s 
experience with the system in self-adaptive or 
personalised GUI design for disabled people 
etc. Overall this metric is tightly coupled to the 
application area or service that is expected of 
the system. It can be measured as a global goal 
metric or at the sub-service or component level 
where each unit’s ability to met its local goal is 
measured. 

5.2. Cost 
Autonomicity costs, the degree of this cost and 
its measurement is not clear-cut. Currently 
most performance studies of architecture-based 
autonomic systems have measured its ability to 
reach its goal. However agent-based systems 
typically compare the amount of communica-
tion, actions performed, and cost of actions 
required to reach the goal. 

For many commercial systems the aim is to 
improve the cost of running an infrastructure, 
which includes primarily people costs in terms 
of systems administrators and maintenance. 
This means that the reduction in cost for such 
systems cannot be measured immediately but 
over time and as the system becomes more and 
more self-managing. Further many commercial 
companies have had difficulties in sharing the 
vision of autonomic computing with their 
shareholders for this reason [53]. It should 
however be noted that current de facto com-

mercial performance comparison has borne 
cost in mind for some time. For example TPC 
benchmarks have always taken cost per 
performance into account [54]. 

Cost comparison is further complicated by 
the fact that adding autonomicity means add-
ing intelligence, monitors and adaptation 
mechanisms – and these cost. In Patia we 
aimed to measure the cost of adding autonomic 
features to a webserver, which can cope with 
fluctuating demand and sudden high demand 
(flash crowds) [48]. We found that the costs of 
adding monitors and monitor traffic were only 
just outweighed by the benefits they provided 
under the normal operation of the server spe-
cifically. As this was fairly predictable it was 
hardly worth-wile. However under duress the 
system would not work without the autonomic 
features. Therefore would a comparative char-
acteristic be to do with added functionality 
achievable that would otherwise not be 
achieved in a non-autonomic system? As this 
might be found in a serendipitous fashion, it 
could be difficult to predict what to test for in 
advance. 

The actual architecture can also impact in 
the measurement of the cost of a self-adaptive 
system. For example most architecture-based 
solutions consist of a service that has auto-
nomic features added. For many of these archi-
tectures the intelligence to run the system is 
separate and centralised, the monitors or gages 
are external to what they are measuring and the 
decision to adapt and its supervision is external 
to the component. Here the question is do we 
compare systems that use other computing 
nodes to run the autonomic services with those 
who run the autonomic services on the same 
system? With the former, costs could be in 
terms of extra hardware and communications 
to that hardware node, and the saving is that it 
lessens the impact on the running of the main 
system. Extra nodes dedicated to the auto-
nomic services means that they can be more 
intelligent, checking the validity of a given 
reconfiguration or if it is an optimum configu-
ration of many candidates. Further extra nodes 
can allow resources for open intelligence 
where the autonomic decisions themselves are 
fed into the autonomic system for it to self-
evaluate and learn.  

In AI and agent-based autonomic systems, 
the intelligence is highly distributed and usu-
ally contained within the component or agent. 
The latter type of system can have the intelli-
gence to carry out its service tightly coupled to 
the self-management intelligence continued 
within its component. Therefore the self-
management overhead is perhaps indistin-
guishable from the agent’s core function and 



therefore it is more difficult to separate out the 
costs – if sensible at all. 

Further, a class of application very fitting 
to autonomic computing is that of Ubiquitous 
computing which typically consists of net-
works of sensors working together to create 
intelligent homes, monitor the environment etc 
[47]. This sort of application relies on self-
reliance, distributed self-configuration intelli-
gence and monitoring. However many of the 
nodes in such a system are limited in resources 
and can be wireless, which means that the cost 
of autonomous computing involves resource 
consumption such as battery power. 

5.3. Granularity/Flexibility 
The granularity of autonomicity is an impor-
tant issue when comparing autonomic systems. 
Fine grained components with specific adapta-
tion rules will be highly flexible and perhaps 
adapt to situations better, however this may 
cause more overhead in terms of the global 
system. That is, if we assume that each finer-
grained component requires environmental 
data and is providing some form of feedback 
on its performance then potentially there is 
more monitoring data or at least environmental 
information flowing around the global system. 
Of course may not be the case in systems 
where the intelligence is more centralised. 
Many current commercial autonomic endeav-
ours are at the thicker grained service level.  

Granularity is important for eg in [33], 
where unbinding, loading and rebinding a 
component took a few seconds. These few 
seconds are tolerable in a thick-grained com-
ponent based architecture where the overheads 
can be hidden in the system’s overall operation 
and potentially change is not that regular. 
However in finer-grained architectures, such as 
an Operating System or Ubiquitous computing 
where change is either more regular or the 
components smaller, the hot swap time is 
potentially too much. 

One question we may ask is, can systems 
that provide the same service be compared 
with each other if the granularity of 
autonomicity is different? Perhaps at a high 
level yes. 

5.4. Failure avoidance (Robustness) 
Typically many autonomic systems are de-
signed to avoid failure at some level. Many are 
designed to cope with hardware failure such as 
a node in a cluster system or a component that 
is no longer responding. Some avoid failure by 
retrieving a missing component. Either way the 
predictability of failure is an aspect in compar-
ing such systems. Some systems will be de-
signed for their ability to cope with predicted 

failure e.g. using a mean time before failure 
metric of hardware and others to cope with 
unpredicted environments. To measure this, 
the nature of the failure and how predictable 
that failure is, needs to be varied and the sys-
tems’ ability to cope measured. Ability to cope 
could be in terms of a Quality of Service met-
ric that pertains to the application domain.  

For example in our Kendra1 audio server, 
which is a closed self-adaptive system, we 
would test Kendra’s failure avoidance abilities 
by varying the bandwidth in terms of available 
bandwidth and how quickly that bandwidth 
varied. This would test its ability to avoid 
periods of silence given certain environmental 
circumstances. That is, in a network, who’s 
bandwidth only varied slightly or in a predict-
able way, we observed that Kendra would 
adapt more gracefully than in a bursty network 
which saw Kendra adapt up and down the 
codecs sometimes even missing an opportunity 
to adapt as it did not notice environmental 
change as it was handling the previous adapta-
tion [44]. 

5.5. Degree of Autonomy  
Related to failure avoidance, we can compare 
how autonomous a system is. This would re-
late to AI and agent-based autonomic systems 
primarily as their autonomic process is usually 
to provide an autonomous activity. For exam-
ple the NASA pathfinder must cope with un-
predicted problems and learn to overcome 
them without external help. Decreasing the 
degree of predictability in the environment and 
seeing how the system copes could measure 
this. Lower predictability could even reach it 
having to cope with things it was not designed 
to. A degree of proactivity could also compare 
these features. 

5.6. Adaptivity 
We separate out the act of adaptation form the 
monitoring and intelligence that causes the 
system to adapt. Adaptivity can be something 
simple as a parameter begin changed in for 
example self-configuration systems. Here the 
adaptation does not impact the performance so 
much as a component-based reconfiguration. 
In the latter a component may need to be hot-
swapped where state is saved, the new compo-
nent located and then bound into the system. 
Some systems are designed to continue execu-
tion whilst reconfiguring, while others cannot. 
                                                            
1 Kendra is a self-adaptive audio player that was devel-
oped in 1995 and adapted the delivery of the audio codec 
to best suit the available bandwidth between a client and 
the audio server. It monitored audio delivery and if band-
width changed another codec was chosen. The aim was to 
keep the audio quality as best as possible and avoid peri-
ods of silence [43,44,45,50]. 



Furthermore the location of such components 
again impacts the performance of the adaptiv-
ity process. That is, a component object, which 
is currently local to the system verses a com-
ponent (such as a printer driver for example), 
having to be retrieved over the Internet, will 
have significantly differing performance. Per-
haps more future systems will have the equiva-
lent of a pre-fetch of components that are 
likely to be of use and are preloaded to speed 
up the re-configuration process. 

5.7. Time to adapt and Reaction Time 
Related to cost and sensitivity, these are meas-
urements concerned with the system re-
configuration and adaptation. The time to 
adapt is the measurement of the time a system 
takes to adapt to a change in the environment. 
That is, the time taken between the identifica-
tion that a change is required until the change 
has been effected safely and the system moves 
to a continue state. Reaction time can be seen 
to partly envelop the adaptation time. This is 
the time between when an environmental ele-
ment has changed and the system recognises 
that change, decides on what reconfiguration is 
necessary to react to the environmental change 
and get the system ready to adapt. Further the 
reaction time affects the sensitivity of the 
autonomic system to its environment (see 
below). 

5.8. Sensitivity 
This is a measurement of how well the self-
adaptive system fits with the environment it is 
sitting in. At one extreme a highly sensitive 
system will notice a subtle change as it hap-
pens and adapt (perhaps subtly) to improve 
itself based on that change. However in reality, 
depending on the nature of the activity, there is 
usually some form of delay in the feedback 
that some part of the environment has changed 
effecting a change in the autonomic system. 
Further the changeover takes time. Therefore if 
a system is highly sensitive to its environment 
potentially it can cause the system to be con-
stantly changing configuration etc and not 
getting on with the job itself.  

In measuring Kendra we made the parame-
ters such that the system became more sensi-
tive to the fluctuations in bandwidth to see if it 
would improve the reaction and ultimately 
have the delivery of the audio better match the 
bandwidth available to it. As mentioned in 
section 5.4, Kendra is a relatively simple self-
adaptation system, yet the numbers of parame-
ters, which affected the sensitivity of the adap-
tation mechanism, were many. For example we 
could vary the buffer size (which is the data 
area used to buffer audio), disaster horizon 

(how close the system thinks it is to a disaster 
situation), monitoring sample rates (how much 
environmental data to monitor and store to use 
predict change in bandwidth). We found that in 
a generally low bandwidth link it is better that 
the system is not sensitive as that adaptation 
process impeded too much on the delivery of 
the sound. However in good network condi-
tions it is better to be more sensitive as this 
delivers the best all round quality of sound 
[48].  

5.9. Stabilisation  
Another metric related to sensitivity is stabili-
sation. That is the time taken for the system to 
learn its environment and stabilise its opera-
tion. This is particularly interesting for open 
adaptive systems that learn how to best re-
configure the system. For closed autonomic 
systems the sensitivity would be a product of 
the static rule/constraint base and the stability 
of the underlying environment the system must 
adapt to. 

5.10. Benchmarking 
Finally, it will become necessary to bring these 
metrics together to form some sort of bench-
marking tool. There are two approaches this 
can take; either we can derive new autonomic 
systems benchmarks or we can augment cur-
rent benchmarks to incorporate metrics, which 
measure autonomic characteristics. Our initial 
attempt to do with was with the Patia project 
[Patia]. This project required we test our auto-
nomic webserver and compare its performance 
with current webservers. We soon found that 
current webserver benchmarks would not only 
be able to test the autonomic aspects of Patia, 
but actually did not measure how traditional 
webservers were being used. It soon became 
apparent that we would have to design and 
build a new webserver benchmark, namely 
Aeolus [42]. This took research, which de-
scribes modern web access and data, character-
istics, and built a benchmark based on this. 
Further, we wished to test the robustness of our 
Patia webserver under extreme conditions 
where we simulated a flash crowd that would 
test the autonomic features of Patia to the ex-
treme. Using many of the metrics we have 
mentioned in this section, we extended the 
Aeolus webserver benchmark accordingly. 
However, we do not believe that deriving 
benchmarks that measure autonomic systems is 
the way forward. Instead, due to the diverse 
application of autonomic systems, it seems 
better to augment application specific bench-
marks to include metrics which evaluate auto-
nomic features of that system e.g. robustness, 
reaction speed, stability etc. In particular the 



Quality of Service benchmark, which we be-
lieve is the top-level measurement of how well 
the system is meeting its goals, is specific to 
the application in question. Therefore we see 
traditional benchmarks such as the TPC 
benchmarks being used to measure autonomic 
DBMSs but perhaps extended to test the 
autonomous nature of the system. 
 
6. Conclusions 
Autonomic computing is an engineering con-
cept that has found its way in a myriad of 
computing fields. This paper is a review of 
some typical examples of autonomic comput-
ing attempting to give the reader a feel for the 
nature of these types of systems and in doing 
so illustrate the complexities in trying to meas-
ure the performance of such systems and com-
pare them. We have presented two major types 
of architecture that exhibit autonomic proper-
ties and describe these as AI (agent-based) and 
architecture based. We have presented the 
common components found in each of these 
types of system, and from this derived a set of 
metrics and methods which we believe can be 
used to compare autonomic computing sys-
tems. These are: 
 

• Quality of Service 
• Cost 
• Granularity/Flexibility 
• Failure avoidance (Robustness) 
• Degree of Autonomy  
• Adaptivity 
• Time to adapt and Reaction Time 
• Sensitivity 
• Stabilisation  

 
We realise that some of these metrics are more 
general than others and some pertain to some 
autonomic systems and not to others. However 
we believe that the next step is to take this 
information and derive a more formal method 
to compare performance of autonomic sys-
tems.  

A final note regarding our experience of 
evaluating the Kendra architecture. Here we 
set the top-level QoS goal to be that the audio 
quality was as high as possible while avoiding 
periods of silence. When testing the system we 
measured general quality levels, unnecessary 
adaptation, missed opportunities to adapt, 
sensitivity to environment etc. Kendra is a 
relatively simple system with closed self-
adaptation (i.e. the autonomic intelligence does 
not grow), yet the performance statistics were 
of a large volume and difficult to interpret - 
especially in terms of relating behaviour to 
varying the many tuning parameters and differ-

ing environment (networking) conditions. We 
felt that no concrete quantifiable conclusions 
were really made other than to say that over 
sensitivity in bursty networks is bad which we 
possibly would have guessed. 

Therefore, finally, it is interesting that alle-
viate the maintenance and operation of our 
modern more complex systems we require that 
addition of even more complexity. It is our 
argument that this complexity makes such 
systems much more difficult to evaluate than 
before and therefore the need to derive metrics 
and benchmarks is a highly important and 
interesting area. 
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