
Dynamic
reconfiguration: Basic
building blocks for
autonomic computing
on IBM pSeries servers

by J. Jann
L. M. Browning
R. S. Burugula

A logical partition in an IBM pSeriesTM

symmetric multiprocessor (SMP) system is a
subset of the hardware of the SMP that can
host an operating system (OS) instance.
Dynamic reconfiguration (DR) on these
logically partitioned servers enables the
movement of hardware resources (such as
processors, memory, and I/O slots) from one
logical partition to another without requiring
reboots. This capability also enables an
autonomic agent to monitor usage of the
partitions and automatically move hardware
resources to a needy OS instance
nondisruptively. Today, as SMPs and
nonuniform memory access (NUMA) systems
become larger and larger, the ability to run
several instances of an operating system(s) on
a given hardware system, so that each OS
instance plus its subsystems scale or perform
well, has the advantage of an optimal
aggregate performance, which can translate
into cost savings for customers. Though static
partitioning provides a solution to this overall
performance optimization problem, DR
enables an improved solution by providing the
capability to dynamically move hardware
resources to a needy OS instance in a timely
fashion to match workload demands. Hence,
DR capabilities serve as key building blocks
for workload managers to provide self-
optimizing and self-configuring features.
Besides dynamic resource balancing, DR also
enables Dynamic Capacity Upgrade on
Demand, and self-healing features such as
Dynamic CPU Sparing, a winning solution for

users in this age of rapid growth in Web
servers on the Internet.

One of the cardinal features of an autonomic com-
ponent in an information technology (IT) infrastruc-
ture is the ability of the component to adapt itself
smoothly to changes in its environment. Endowing
a computing system with this self-management fea-
ture often translates to the implementation of self-
protecting, self-healing, self-optimizing, and self-con-
figuring algorithms and subcomponents. Because the
primary role of an operating system (OS) is to man-
age the physical resources of a computer system so
as to optimize the performance of its applications
(including middleware, which consists of applications
from the perspective of the OS), an OS supporting
autonomic computing1 needs to handle the changes
in the amount of physical resources allocated to it
in a smooth fashion. Some of the most prominent
physical resources of an OS are processors, physical
memory, and I/O devices.

The current tendency among the noncommodity
symmetric multiprocessor (SMP) system vendors is
to develop systems that are increasingly large in terms
of the number of processors, number of I/O slots, and
memory size. Although advances in the design of
hardware continue to provide rapid increases in the

�Copyright 2003 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003 0018-8670/03/$5.00 © 2003 IBM JANN, BROWNING, AND BURUGULA 29

sizes of these physical resources, a number of major
applications and subsystems often lag behind in scal-
ability; hence, the trend in high-end SMPs is to sup-
port partitioning of large SMPs and to use these sys-
tems for effective server consolidation. Partitioned
SMPs typically come in two kinds: systems with phys-
ical partitions (PPARs) and systems with logical par-
titions (LPARs). In a physically partitioned system,
the granularity of partitioning is typically coarse, be-
cause the partitioning occurs at physical boundaries
such as system boards. In a logically partitioned sys-
tem, the granularity of partitioning is typically much
more fine-grained, such as a single CPU or even a
fraction of a CPU, a small block of memory, or an
I/O-slot instead of an entire I/O-bus. Hence a given
SMP can be subdivided into many more LPARs than
PPARs.

IBM first provided LPAR support in the Advanced In-
teractive Executive (AIX*) operating system with the
introduction of the pSeries* 690 system in Decem-
ber 2001. This first release of LPAR support was static
in nature, that is, the reassignment of a resource from
one LPAR to another LPAR cannot be made while AIX
is actively running, and both the donor LPAR and the
receiver LPAR must be rebooted to enable a reas-
signment. For such a system to provide support for
various resource-related autonomic computing fea-
tures, such as dynamic resource balancing across
LPARs, Capacity on Demand, Dynamic CPU Sparing,
and hot swapping, it needs to augment the static par-
titioning capabilities with dynamic LPAR (DLPAR) ca-
pabilities. As of 2002, the pSeries 690 supports the
dynamic reassignment of resources across LPARs run-
ning AIX. In AIX, this functionality is referred to as
dynamic reconfiguration (DR). Since AIX is an en-
terprise UNIX** operating system that has been de-
signed to be robust, high in performance, rich in
functions and support of platforms, and hence
monolithic, the addition of a valuable autonomic
computing feature such as DR has to be carefully
morphed into the existing semantics, code base, and
structural organization of the operating system.
These challenges found in adding autonomic com-
puting capabilities are encountered by most of the
large systems with a significant installation base.
Later in this paper, we briefly describe the design of
DR in AIX and show that with carefully developed
designs, autonomic computing capabilities can be
added to an enterprise quality OS, while preserving
its performance, semantics, and structural organi-
zation. Besides describing the designs within AIX that
enable the smooth migration of physical resources,
we also describe how these designs are being ex-

ploited to provide a variety of valuable autonomic
computing features to an IT establishment.

Autonomic benefits of DLPAR. DLPAR in a pSeries
690-AIX system offers a great deal of flexibility to
users, allowing resources to be shifted to where they
are most needed without impacting system availabil-
ity. The DLPAR technologies that have been devel-
oped provide the basic building blocks on which
many self-optimizing, self-configuring, self-protect-
ing, and self-healing features of the system are built.
These features enable the implementation of auto-
nomic system management and goal-oriented pol-
icies to optimize the performance and usage of
system resources. DR also improves the levels of re-
source utilization and the reliability and serviceabil-
ity (RAS) characteristics of the SMP, that translate into
real cost savings for the IT establishment.

Some of the benefits offered by an SMP with LPAR
capabilities are:

1. Servers can be consolidated by simply placing the
workloads of several smaller servers into separate
LPARs of a big SMP, hence reducing and unifying
systems administration tasks.

2. Workloads can be separated by designating sep-
arate LPARs to run different workloads, for exam-
ple, one LPAR for development work, one LPAR
for testing, and several LPARs for production
workloads.

3. The running of an application/subsystem/OS at its
optimal performance and scalability can be ob-
tained on an LPAR with optimal amounts of
physical resources for that specific instance of
application/subsystem/OS.

DLPAR additionally enables the following autonomic
features in a system:

● Dynamic Capacity on Demand (DCOD)—DLPAR
enables cross-partition workload management,
which is particularly important for server consol-
idation, in that it can be used to better leverage
system resources across partitions, thereby achiev-
ing higher levels of resource utilization, resulting
in enhanced system throughput. Here is a possi-
ble usage scenario: The LPARs on an SMP are the
servers for workloads originating from users in dif-
ferent time zones of the country, or even from dif-
ferent cities around the globe. While one LPAR
“sleeps,” its spare resources can be shifted to an-
other LPAR that “wakes up” to do its work for the
day. This shifting can be done manually via oper-

JANN, BROWNING, AND BURUGULA IBM SYSTEMS JOURNAL, VOL 42, NO 1, 200330

ator command, and then later can be automated
via the Global Resource Manager (GRM, an au-
tomated resource balancer across a specified group
of LPARs in an SMP, based on OS utilization and
needs) or the enterprise WorkLoad Manager
(eWLM, an end-to-end response-time-based load
balancer for “instrumented” applications spanning
LPARs in an SMP, or even across SMPs).

● Dynamic Capacity Upgrade on Demand
(DCUoD)—DLPAR enables the upcoming DCUoD
feature of the pSeries 690 by allowing customers
to purchase a server with extra unlicensed resource
capacity, and later license and add this capacity
dynamically to running AIX LPARs as their resource
requirements increase.

● Dynamic CPU Guard and Dynamic CPU
Sparing—DLPAR allows systems to smoothly re-
place processors that show intermittent, but cor-
rectable, errors. This self-healing feature will con-
tinue to become important with reduction in the
silicon device size along with greater and greater
integration on a chip. The Dynamic CPU Guard
feature is an improved and dynamic version of the
existing RAS feature named CPU Guard in earlier
AIX versions. The older CPU Guard feature pre-

dicts the failure of a running CPU by monitoring
certain types of transient errors and dynamically
takes the CPU off line, but it does not provide a
substitute CPU, so that a customer is left with less
computing power. Additionally, the older feature
will not allow an SMP to operate with less than two
processors. The DLPAR technologies allow the OS
to function even with one processor. In addition,
the Dynamic CPU Sparing feature allows the trans-
parent substitution of a good unlicensed proces-
sor for one that is suspected of being defective. This
on-line switch is made seamlessly, so that appli-
cations and kernel extensions are not impacted.
The new processor autonomously replaces the de-
fective one. Dynamic CPU Guard and Dynamic CPU
Sparing work together to protect a customer’s in-
vestments through their self-diagnosing and self-
healing software. Both features are planned to be
available on pSeries 690 servers in AIX 5.2.

The IBM pSeries DLPAR system
architecture

The initial release of DR will be supported on the
POWER4 pSeries 690 and 670 servers. Figure 1 illus-

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003 JANN, BROWNING, AND BURUGULA 31

trates the RS/6000* system architecture for DLPAR.
In the diagram, LMB stands for logical memory block
and is the granularity of physical and logical mem-
ory assigned to an LPAR. In AIX 5.2, an LMB will con-
sist of 256 MB of contiguous memory. The size of an
LMB is expected to decrease in future releases of AIX.

In this section we list some of the pSeries system com-
ponents that had to be modified to become DR-aware
in order to implement DLPAR. Some of these com-
ponents were introduced during the implementation
of static LPAR (e.g., the hardware management con-
sole, hypervisor, global firmware, and two registers
for partition memory management), and some com-
ponents existed even before LPAR existed (e.g., lo-
cal firmware and AIX). We did not have to introduce
any new components for the implementation of
DLPAR; we only made changes to existing ones.

Hardware management console. The hardware
management console (HMC) is the main control point
for DLPAR configuration definitions and operations.
In the initial release, these operations are controlled
mainly through a new resource management graph-
ical user interface (GUI) that runs on the HMC. This
GUI invokes a new HMC command that encapsulates
the DLPAR request and provides the necessary se-
quencing, so that the firmware and the OS can act
in a coordinated fashion to achieve the desired re-
sult. Internally, this new HMC command notifies both
the OS and the global firmware of a remove or add
request. In time, this command will be used by other
programs such as the GRM to dynamically transfer
resources based on capacity requirements.

Global and local firmware. Global firmware provides
the basic DLPAR enablement through machine-de-
pendent logic that is designed to start, stop, and elec-
tronically isolate physical resources within the con-
text of a logical partition. That is, global firmware
performs these operations indirectly at the request
of the OS, which actually passes these requests to the
local firmware of the LPAR. In general, the local firm-
ware does not contain machine-dependent logic, but
is used to provide an abstraction to the OS of the log-
ical resources that are currently assigned to the LPAR.
The OS utilizes the local firmware interfaces to de-
termine the identity and physical characteristics of
logical resources that are present in the LPAR and
to control them. For example, local firmware pro-
vides interfaces to start, stop, isolate, and unisolate
logical resources by invoking functions provided by
the global firmware.

AIX. When the OS receives a request to add or re-
move a resource, it has to take actions, both in the
user space and in the kernel, to achieve the desired
result. These actions are described in more detail in
the next section.

AIX DR components

Dynamic reconfiguration support in AIX 5.2 is pro-
vided for three types of hardware resources: proces-
sors, memory, and I/O slots. In this AIX release, the
granularity of addition or removal for processors is
one CPU; for memory, 256 MB; and for I/O, one PCI
(Peripheral Component Interconnect) slot. In future
releases of AIX, finer granularities are planned for
both memory and processor. The following subsec-
tions briefly describe the design for the addition and
removal of each hardware resource type, and the ker-
nel modifications required for enabling DR in AIX.
Although we mostly focus on DR as an enabler of
autonomic computing in this paper, we have also
used autonomic computing principles even within the
DR design, an example of which is given in a sub-
sequent subsection entitled “Dynamic removal of
memory.”

DR of processors. Achieving dynamic reconfigura-
tion of processors introduced changes to the base
kernel as follows:

1. For consecutive CPU identifiers (IDs), the kernel
keeps track of its CPUs by assigning a distinct num-
ber, called a logical CPU ID, to each of its CPUs.
Prior to DR, the kernel assumed that these log-
ical CPU IDs were consecutive numbers, that is,
no holes were allowed. To be able to randomly
remove and add CPUs without perceptible disrup-
tion to applications, we had to modify the kernel
so that it can tolerate missing items in the num-
bering of logical CPU IDs. Though we could have
modified the kernel whichever way we wanted,
there are many third-party applications (e.g., de-
vice drivers and performance tools) that assume
consecutive numbering of CPUs, and they must be
provided with binary compatibility, so as to fulfill
the backward compatibility objective of AIX.
Hence, another layer of numbering, bind CPU IDs,
was introduced. The bind CPU ID abstraction pro-
vides a consecutive numbering of on-line CPUs for
applications, even when the logical CPU IDs in the
kernel are randomly removed and added, that is,
the list of logical CPU IDs now becomes a list of
on-line CPUs and off-line or removed CPUs.

JANN, BROWNING, AND BURUGULA IBM SYSTEMS JOURNAL, VOL 42, NO 1, 200332

2. For MP/UP locks, some components of the kernel
were coded to decide at boot time whether they
will acquire uniprocessor (UP) locks or multipro-
cessor (MP)-capable locks during the lifetime of
the OS session. These components were modified
so that they will function properly even when DR
changes the system dynamically from a UP to an
MP (and vice versa).

Dynamic removal of processors. Dynamic removal of
a processor involves the following tasks initiated from
the OS:

1. Notify DR-registered applications and kernel ex-
tensions, if any, so that they will voluntarily re-
move dependencies on the CPU to be removed.
This task typically involves unbinding the threads
that are bound to the CPU being removed.

2. Migrate threads bound to this CPU to another run-
ning CPU.

3. Retarget pending interrupts, and change the bind-
ings of all interrupts currently bound to the pro-
cessor to be removed. This task involves chang-
ing the interrupt controller data structures.

4. Migrate the timers and threads from the CPU be-
ing removed to another CPU within the same
LPAR.

5. Notify the hypervisor or firmware to complete the
removal task.

Dynamic addition of processors. Dynamic addition
of a processor involves the following tasks initiated
from the OS:

1. Create a process (waitproc) for idle looping on
the incoming CPU before it starts to do real work.

2. Set up various hardware registers (e.g., SDR1 �
Search Descriptor Register 1, which defines the
start physical address and size of the page table
in memory, GPR1 (General Purpose Register 1)
for kernel stack, GPR2 for the kernel table of con-
tents, etc.) of the incoming CPU.

3. Allocate or initialize, or both, the processor-spe-
cific kernel data structures (dispatcher run-queue,
per-processor data area, interrupt stack, etc.) for
the incoming CPU.

4. Add support for the incoming CPU to the inter-
rupt subsystem.

5. Notify the DR-registered applications and kernel
extensions that a new CPU has been added.

DR of memory. The implementation of dynamic re-
configuration of memory in AIX 5.2 enables the re-
moval and addition of 256 MB contiguous sections

of memory. This unit is referred to as a logical mem-
ory block (LMB). A smaller-sized LMB, for example,
16 MB, will be allowed in future releases of AIX.

Two important challenges were resolved during the
implementation of memory DR: In the first one, the
physical addresses of some memory are exposed to
manipulation by applications over which the kernel
does not have direct control. These accesses are al-
lowed for functional reasons in some cases (e.g., di-
rect memory access, or DMA), and for performance
reasons in other cases (e.g., pretranslated address-
es). Pretranslated addressing is an internal feature
of AIX with which virtual-to-physical address trans-
lations for a data buffer to be involved in a DMA op-
eration is done only once for the life of the data
buffer. DR of page-frames with these uses can be han-
dled in at least two ways: (1) by modifying the ker-
nel and firmware so that such accesses by kernel ex-
tensions to the page-frame being removed can be
controlled; or (2) by requiring kernel subsystems to
register a DR callback function with the kernel DR
subsystem, and invoking the callback function at
memory removal time.

We have applied both techniques, choosing one over
the other, depending on the specific circumstances,
while minimizing the impact on system performance
as well as kernel changes. In the case of DMA, the
kernel and firmware control the access to the mem-
ory being removed by selectively disabling the bus
traffic while the contents of the memory with DMA
are being migrated to a new location. In the case of
pretranslated addresses, a callback mechanism is
used.

The second challenge is enabling the translation-on
execution of the majority of the kernel, which pre-
viously was run in translation-off mode and hence
required maximally sized data structures to be al-
located at boot time for the maximum amount of
physical memory that the AIX/LPAR instance can po-
tentially grow into.

Dynamic removal of memory. For the purpose of dy-
namic removal, we classify the memory page frames
of AIX into five categories: unused, pageable, pinned,
DMA-mapped, and translation-off memory. The ap-
proach taken to remove a page-frame (4096 bytes)
in each of these categories is as follows:

1. A page-frame containing a free page is simply re-
moved from its free-list.

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003 JANN, BROWNING, AND BURUGULA 33

2. A page-frame containing a pageable page can be
made to either page out its contents to disk or to
migrate its contents to a different free page-frame.
In the future, an autonomous agent, for exam-
ple, GRM or eWLM, can choose one of these two
approaches, depending on its knowledge of mem-
ory availability.

3. A page-frame containing a pinned page will have
its contents migrated to a different page-frame;
also the page-fault reload handler had to be made
to spin during the migration.

4. A page-frame containing a DMA-mapped page
cannot be removed or have its contents migrated
until all the accesses to the page are blocked.
Here, the term “DMA-mapped page-frame” is
used generically to mean a page-frame whose
physical address is subject to read or write by an
external (to kernel) entity such as a DMA engine.
The contents of a DMA-mapped page-frame are
migrated to a different page-frame with a new hy-
pervisor call (h_migrate_dma) that will selectively
suspend the bus traffic while it is modifying the
TCEs (translation control entries) in system mem-
ory used by the bus unit controller for DMA ac-
cesses.

Other page-frames whose physical addresses are
exposed to external entities are handled by invok-
ing preregistered DR callback routines and then
waiting for completion of the removal of their de-
pendencies on the page.

5. A page-frame containing translation-off pages will
not be removed by DR in AIX 5.2. Fortunately,
there is just a small amount of these page-frames,
and they are usually colocated in low memory.
These page frames are intended to be handled in
later AIX releases.

The design and implementation of dynamic mem-
ory removal has manifested itself as three modular
functions, such that one can mix and match these
functions in several possible ways, adapting to the
state of the system at the time of memory removal,
thus achieving the desired end result with the most
optimal path. This design adheres to the self-opti-
mizing principles of autonomic computing, as de-
scribed in Reference 2. These three modular func-
tions perform the following three tasks respectively
on the memory (LMB) being removed: (a) remove
its free and clean pages from the regular use of VMM
(Virtual Memory Manager), (b) page-out its page-

able dirty pages, and (c) migrate the contents of each
remaining page-frame in the LMB to a free page-
frame outside the LMB. Memory removal can be im-
plemented with any one of the sequences: abc, ac,
bc, or just c.

For example, the decision to either invoke page-out
(task b) or to migrate (task c) all the pages depends
on the load in the LPAR at that particular time. If
the LMB being removed contains a lot of dirty pages
that belong to highly active threads, then it does not
make sense to invoke task b, because these pages
will be paged back in almost immediately, negatively
impacting the efficiency of the system.

As a second example, if there are not enough free
frames in other LMBs to migrate the pages to, then
the memory removal procedure can invoke task b
before invoking task c, so that there will be far fewer
pages left that need to be migrated in task c.

Dynamic addition of memory. When a memory-add
request arrives at AIX, it has to perform two tasks:
allocate and initialize software page descriptors that
will hold meta-data for the incoming memory, and
distribute the incoming memory among several free-
frame pools so as to preserve the behavior of mem-
ory management algorithms. The challenges encoun-
tered in implementing these two tasks and how they
were resolved are now described.

The primary challenge was the allocation of mem-
ory for the software page descriptors for the incom-
ing memory. The problem was that, prior to DR, these
page descriptors could be accessed in translation-
off mode while trying to reload a page mapping into
the hardware page table. If the page descriptors are
allowed to be accessed in translation-off mode, the
memory allocated for those new descriptors has to
be physically contiguous with the memory for exist-
ing descriptors, which implies that memory has to
be reserved at boot time for descriptors for the max-
imal amount of memory that the OS instance can po-
tentially grow into. This can potentially incur inef-
ficiency and wastage of much memory, particularly
if not utilized. We avoided this wastage by changing
the kernel so that software page descriptor data
structures are always accessed in translation-on
mode.

Another challenge that was resolved while imple-
menting dynamic memory addition was the difficulty
in distributing the incoming memory across differ-
ent page replacement daemons, so that each dae-

JANN, BROWNING, AND BURUGULA IBM SYSTEMS JOURNAL, VOL 42, NO 1, 200334

mon handles a roughly equal load. In AIX, memory
is hierarchically represented by the data structures
vmpool, mempool, and frameset. A vmpool repre-
sents an affinity domain of memory. A vmpool is di-
vided into multiple mempools, each mempool be-
ing managed by a single page replacement least
recently used (LRU) daemon. Each mempool is fur-
ther subdivided into one or more framesets that con-
tain the free-frame lists, so as to improve the scal-
ability of free-frame allocators. When new memory
is added to AIX, the vmpool that it should belong to
is defined by the physical placement of the memory
chip. Within that vmpool, we want to distribute the
memory across all the available mempools to bal-
ance the load on page replacement daemons. How-
ever, the kernel assumed that a mempool consisted
of physically contiguous memory. Thus, to be able
to break up the new memory (LMB) into several parts
and distribute them across different mempools, the
kernel was modified to allow mempools to be made
up of discontiguous sections of memory.

DR of I/O slots. The methods to dynamically con-
figure or unconfigure a device have been introduced
as early as AIX version 3. The changes required in
the kernel design for DR of I/O slots were not in the
same scale as those for DR of processors, and par-
ticularly those for DR of memory. The reason is that
the onus of configuring or unconfiguring a device lies
with the device driver software, which operates in
the kernel extension environment. The kernel just
acts as a provider of serialization mechanisms for
devices accessing common resources and as an in-
termediary between the applications and the device
drivers.

Challenges of adding autonomic features to
a mature UNIX OS

The AIX kernel is an industrial strength pageable and
pre-emptable kernel that offers high performance
and scalability (up to 32-way SMP) and supports many
vendor device drivers, databases, and applications.
The same kernel source code supports all reason-
able combinations of 32-bit or 64-bit kernels, 32- or
64-bit applications, and 32- or 64-bit RISC (reduced
instruction-set computer) systems with old and new
RISC architectures, uniprocessors, and multiproces-
sors. Being friendly to its users, AIX goes out of its
way to offer backward binary compatibility in a wide
variety of situations. Being robust and having high
performance, the critical kernel sections are skill-
fully guarded by a carefully crafted hierarchy of data
and code locks. Implementing DR involved careful

changes to numerous critical components of the AIX
kernel.

Self-healing and self-protecting features

DR also serves as the foundation for a new advanced
self-healing and self-protecting technology, especially
when it is coupled with the presence of extra unli-
censed capacity. This new technology enhances a pre-
existing self-diagnosing technology, called the CPU
Guard feature, that monitors recoverable error rates
for processors. At its simplest level, this new tech-
nology substitutes a spare processor in a transparent
fashion for a processor that the system has internally
diagnosed as being defective. Spare resources are
only present if the system was shipped with extra un-
licensed capacity as defined by the Capacity Upgrade
on Demand solution, although it should be noted
that there are no license keys that have to be entered
to enable this new Dynamic CPU Sparing technol-
ogy. This Dynamic CPU Sparing feature does not ad-
dress the case in which a CPU fails so suddenly that
a state-save and an orderly live swap of the CPU can-
not be performed.

The technical aspects of this new technology are out-
lined next. Firmware monitors the health of each pro-
cessor in terms of the number of recoverable errors.
If this number exceeds an internal threshold, it raises
a repeat guard error to the operating system and
makes available an unlicensed processor, assuming
that one is available. AIX acts on this error notifi-
cation by invoking the DR Manager, which guides
the self-protecting procedure from the perspective
of an operating system. If an unlicensed processor
is not available, it proceeds to take the defective pro-
cessor off line in a fashion similar to that of the ex-
isting CPU Guard feature; this procedure constitutes
a self-protecting feature of the system. If an unli-
censed processor is available, the procedure uses it
as a substitute for the defective one, making the
switch transparently with the new DR technologies.
This action constitutes a self-healing feature of the
system.

The DR Manager determines whether an unlicensed
processor is available through the use of new firm-
ware routines, and if it finds one, attempts to take
ownership of it from the firmware by invoking new
firmware routines. These new firmware routines are
the same ones that are used for DR processor ad-
dition, although a different return code is used to
indicate that they are reserved for self-healing. Next,
the DR Manager queries the kernel to determine the

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003 JANN, BROWNING, AND BURUGULA 35

identity of the defective processor, which was named
by the repeat guard error log entry. Finally, it invokes
the kernel to perform the live swap.

The new processor is always started before the de-
fective one is stopped, so that this technology can
be applied to a single-processor LPAR—an improve-
ment over the old CPU Guard self-protecting tech-
nology, which could not remove the last two on-line
processors. At a high level, the switch is made by tak-
ing over the execution of the defective processor and
using it to control the sequence of events that are
required to transparently complete the switch, much
of which has to be run on the defective processor
itself, since the new processor is going to assume the
logical identity of the failing one eventually. This is
largely a matter of preserving the physical state of
the defective processor and atomically reprogram-
ming any funneled hardware interrupts that may be
directed to the defective physical processor before
allowing the new processor to begin operating.

The kernel actually performs the switch by masking
external interrupts on the defective processor, so that
it is not expected to respond to external events that
may be generated by adapters or other processors
in the partition, and by tightly controlling the exe-
cution of the new processor. Before starting the new
processor, the defective processor saves the state of
its registers, so that they can be restored by the new
processor once it is functioning. Next, it vacates its
logical CPU ID inside the kernel so that the new pro-
cessor can be brought up in the proper logical CPU ID
relative to the kernel. This is important in that log-
ical workloads assigned to the defective logical pro-
cessor (e.g., its threads and timers) do not need to
be migrated, which in large part constitutes the trans-
parency of the switch. There are many logical pro-
cessor states and very few physical processor states
that need to be taken care of. Next, it invokes firm-
ware to start the new processor at a startup routine
that is specific to this algorithm, and it waits for the
new processor to indicate that it has successfully
added itself to the global processor interrupt queue.
Once this occurs, the defective processor can stop
itself without fear of losing any external interrupts.
This synchronization point is required to ensure that
the global processor interrupt queue has at least one
processor at all times. At this point, the new pro-
cessor loads the register state that was previously pre-
served and resumes the execution path previously
established by the defective processor.

This self-healing technology is built into the AIX base
operating system and is automatically enabled by de-
fault, although the customer may disable it through
system management options. This new technology
is initially available on the pSeries model 690.

Self-optimizing and self-configuring
features

The next release of AIX will have provisions for the
automatic movement of its logical resources between
LPARs, allowing the overall utilization of the phys-
ical resources of an SMP to be increased at no extra
cost to the installation. For example, an agent, such
as a Global Resource Manager (GRM), will monitor
the utilizations, needs, and Service Level Agreements
(SLAs) of a pool of LPARs and autonomously move
the DR resources from an underutilized LPAR to a
needy one, hence enriching the SMP with self-opti-
mizing and self-configuring capabilities in a timely
fashion. GRM also ensures that the DR movements
will be orchestrated in a smooth fashion and with-
out undesirable oscillations.

Additionally, as part of the IBM autonomic initiative,
work is ongoing to provide optimal end-to-end re-
sponse time for “instrumented” Web and commer-
cial applications that span the LPARs of an SMP, as
well as applications that span SMPs with or without
LPARs, based on SLAs.

Conclusion

The DLPAR and DR technologies that have been de-
veloped on the IBM pSeries 690 servers have enabled
these servers to become truly autonomic computer
servers. As described in this paper, these servers have
features that are self-protecting and self-healing, and
they have the basic building blocks that enable these
systems to be self-configuring and self-optimizing.
The self-configuring and self-optimizing features are
currently planned to be available in the near future.
Thus, all four self-managing features that are at the
heart of an autonomic server will soon be available
on the pSeries 690. DLPAR is a strategic pSeries AIX
capability and will also be made available on future
pSeries servers.

In a possible future enhancement, virtualization of
a physical processor into virtual processors allows
the processor resource to be sharable in a fine-
grained fashion (instead of one processor at a time)
among a pool of LPARs in the SMP.

JANN, BROWNING, AND BURUGULA IBM SYSTEMS JOURNAL, VOL 42, NO 1, 200336

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of The Open Group.

Cited references

1. P. Horn, Autonomic Computing: IBM’s Perspective on the State
of Information Technology, IBM Corporation (October 15,
2001); available at http://www.research.ibm.com/autonomic/
manifesto/autonomic_computing.pdf.

2. K. Ekanadham et al., Anatomy of Autonomic Server Compo-
nents, Research Report RC 22637, IBM T. J. Watson Research
Center, Yorktown Heights, NY.

Accepted for publication August 16, 2002.

Joefon Jann IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598 (elec-
tronic mail: joefon@us.ibm.com). Ms. Jann is a Senior Technical
Staff Member at the Watson Research Center, where she leads
a small team that conceived and prototyped the notion of
DLPAR for AIX. She is currently working on automating
DLPAR. Her previous projects in IBM include the design and
prototype of a DSM (distributed shared memory) system for the
pSeries servers, the design and implementation of the LoadLev-
eler� hierarchical communication infrastructure, which enables
IBM’s LoadLeveler product to work in the largest SPTM instal-
lations. She coinvented the “Jann MPP Workload Model,” was
a member of the Deep Blue Computer chess team, a developer
of the IBM product VMPRF (VM Performance Reporting
Facility), a VM/SNA Area Specialist, and an APL programmer.
Ms. Jann was a lecturer in mathematics at Lehman College for
three years, and holds B.A. and M.A. degrees in pure mathemat-
ics from Wellesley College–MIT and the City University of New
York (CUNY), respectively, and an M.S. degree in computer sci-
ence from Columbia University. She is a member of the IEEE.

Luke M. Browning IBM Server Group, 11501 Burnet Road, Aus-
tin, Texas 78758 (electronic mail: browninl@us.ibm.com). Mr.
Browning is a Senior Technical Staff Member in the AIX Kernel
Architecture and Design Department of the IBM Server Group,
working on dynamic LPAR, workload management, threads, and
process management. He joined IBM in 1984 in Austin after re-
ceiving his bachelor of science degree in computer science from
the University of Texas at Austin.

R. Sarma Burugula IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: burugula@us.ibm.com). Mr. Burugula is an ad-
visory software engineer at the Watson Research Center. He re-
ceived his B.S. degree from Regional Engineering College Waran-
gal and an M.S. degree from the Indian Institute of Technology
Kanpur in India, both in computer science. He joined IBM in
1996 and has been working primarily on the IBM pSeries plat-
form, developing various parallel and scalable subsystems.

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003 JANN, BROWNING, AND BURUGULA 37

