
Connector-Based Self-Healing Mechanism for
Components of a Reliable System

Michael E. Shin
Department of Computer Science

Texas Tech University
Lubbock, TX 79409-3104

(806) 742-3527

Michael.Shin@ttu.edu

Daniel Cooke
Department of Computer Science

Texas Tech University
Lubbock, TX 79409-3104

(806) 742-3527

Daniel.Cooke@ttu.edu

ABSTRACT
This paper describes the self-healing mechanism for components
in reliable systems. Each component in a self-healing system is
designed as a layered architecture, structured with the healing
layer and the service layer. The healing layer of a self-healing
component is responsible for detection of anomalous objects in
the service layer, reconfiguration of the service layer, and repair
of anomalous objects detected. The service layer of a self-healing
component provides functionality to other components, which
consists of tasks (concurrent or active objects), connectors, and
passive objects accessed by tasks. A connector supports the self-
healing mechanism for self-healing components as well as
encapsulates the synchronization mechanism for message
communication between tasks in a component. Connectors are
involved in detection of anomalous objects, reconfiguration of
components, and repair of anomalous objects. This paper also
specifies connectors - the message queue self-healing connector,
message buffer self-healing connector, and message buffer and
response self-healing connector - which provide functionalities
for the self-healing mechanism.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architecture.

General Terms
Design

Keywords
Connector, Self-Healing Mechanism, Component

1. INTRODUCTION
Each component in concurrent and distributed systems can be
structured with objects, namely tasks (i.e., active or concurrent
objects), passive objects accessed by tasks (e.g., entity objects),
and connectors between tasks. A task has its own thread of
control, initiating actions that affect other tasks and passive
objects [4]. Unlike a task, a passive object has no thread of
control; thus it cannot initiate any tasks. But a passive object is

invoked by tasks and can invoke other passive objects.
Connectors encapsulate the synchronization mechanism for
message communication between tasks. On behalf of a task,
connectors send messages to and receive them from other tasks.

The components in a reliable system that are structured with
objects such as tasks, connectors between tasks, and passive
objects accessed by tasks need to be self-managed against
anomalies of the objects. More specifically, unmanned control
systems such as elevator control systems or critical systems such
as spacecraft navigational systems need the robustness to detect
and self-heal anomalies of the system at run-time. To achieve this,
reliable systems need to be composed of self-healing components,
each of which encapsulates the self-healing mechanism to
autonomously detect anomalous objects in a component and heal
anomalies of the objects at run-time.

This paper describes an approach to the connector-based self-
healing mechanism for self-healing systems [2, 3, 7, 9, 11], in
which connectors between tasks in components play important
roles in detecting, reconfiguring, and repairing anomalous objects
in components. The self-healing mechanism encapsulated in a
component is realized by means of connectors between tasks. In
particular, this paper describes the specifications of connectors
supporting the self-healing mechanism for reliable components,
which is extended from the previous research [12] addressing the
self-healing mechanism. Although the self-healing mechanism for
components of reliable systems should include interaction
between a sick component containing anomalous objects and its
neighboring components (i.e., components requesting services
from the sick component) at the level of software architecture,
this paper mainly focuses on the self-healing mechanism within a
component on the basis of connectors between tasks.

This paper begins with describing the self-healing component
architecture for self-healing systems in section 2. Section 3
describes the connector-based self-healing mechanism
encapsulated in components. Section 4 specifies connectors
supporting the self-healing mechanism - the message queue self-
healing connector, message buffer self-healing connector, and
message buffer and response self-healing connector. Section 5
describes related work. Finally, section 6 concludes this paper.

2. SELF-HEALING COMPONENT
ARCHITECTURE
A self-healing component [6, 8] is a component that is able to
autonomously detect, isolate, and repair abnormalities on itself as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DEAS 2005, May 21, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-59593-039-6/05/0005...$5.00.

15

1

well as perform functional services requested from other
components. Each self-healing component [12] can be designed
as a layered architecture, structured with two layers (Fig. 1) - the
service layer and the healing layer - on a component basis. The
service layer is composed of tasks (i.e., active or concurrent
objects), passive objects accessed by tasks, and connectors
between tasks. In the normal phase, the service layer of a
component provides full functionality to service requests from
other components. Connectors between tasks in the service layer
notify the status of messages passed between tasks to the healing
layer. Passive objects accessed by tasks (e.g., entity objects) also
notify messages arrived from tasks to invoke their operations to
the healing layer. With these messages from the service layer, the
healing layer monitors objects in the service layer to detect any
anomalous behavior of objects.

Once the healing layer detects an anomalous object in the service
layer, it launches the self-healing mechanism for the sick
(anomalous) object. In the healing phase, the service layer may
not provide services any more or provide degraded services. The
healing layer reconfigures objects in the service layer of the
component at run-time to isolate the sick object and, if needed,
notifies the object sickness to neighboring components requiring
services from the sick component to reduce impact from the sick
component. It then starts repairing the sick object.

The healing layer of each component (Fig. 1) is structured with
the Component Reconfiguration Plan Generator, Component
Repair Plan Generator, Component Self-Healing Controller,
Component Monitor, Component Reconfiguration Executor, and
Component Repair Executor, which are responsible for detection,

reconfiguration, and repair of sick objects in the service layer
[12].

• Component Monitor. The Component Monitor contains
statecharts for each task thread in the service layer, which
model behavior of task threads. A thread of each task in a
component executes a statechart in which an incoming message
to or outgoing message from a task is expected to transition its
pre-defined statechart from one state to another within a
bounded time. With messages notified by both connectors
between tasks and passive objects accessed by tasks in the
service layer, the Component Monitor supervises the behavior
of tasks, connectors, and passive objects accessed by tasks
using statecharts for task threads.

• Component Reconfiguration Plan Generator. The Component
Reconfiguration Plan Generator maintains information about
the configuration of objects in the service layer, generating
reconfiguration plans in response to changes to the status of
objects in the service layer of a component. The Component
Reconfiguration Plan Generator of a component also involves
a list of its neighboring components, whose objects may also
need to be reconfigured to minimize the impact from paralyzed
objects in a sick component and to provide services
continuously without stopping any more than necessary. To
achieve this, the Component Reconfiguration Plan Generator
of a component maintains information on the interconnection
with other components in the system, and generates
reconfiguration plans if there are changes in the configuration
of objects in other components.

«component»

Task 1

Connector 1

«executor»
Component

Repair
Executor

Service
Layer

Healing
Layer

External
Object

A2, A24: Input arrived
A3, A25: Input Placed
A5, A27: Read Input
A6, A28: Input Info
Read

A11[Failed]:
Notify

A12: Request Reconfiguration
Plan

A38[Healed]: Request
Reconfiguration Plan

A13, A39:
Reconfiguration Plan

A16: Component Failure
Notification
A42: Component Health
Notification

A17: Failure
Notification
A43: Component
Healthy Notification

A20:
Repair plan

A21: Initialize
A23: Test data
A36: Initialize

A37: Repair
finished

Connector3

«plan
generator»
Component
Repair Plan
Generator

«monitor»
Component

Monitor

A22: Test Begin
A33: Request result
A35: Test Finished

A34: Test
Result

«external
device» «connector»

«task»

Connector 2

«connector»

A1:
Input

A7, A29:
Input info

«controller»
Component
Self-Healing
Controller

«connector»

A8, A30: Message

A9, A31: Message arrived
A10, A32: Message Placed

A4, A26:
Read Input

A21a: Initialize
A36a: Initialize

«plan
generator»
Component

Reconfiguration
Plan Generator

A18: Request
Repair Plan

A19: Repair
Plan

«executor»
Component

Reconfiguration
Executor

A14, A40:
Rec. Plan

A15: Com.
Failure
A41: Com.
Health

A14.1:
Block
Sender
A40.1:
Unblock
Sender

A14.1a:
Block
Receiver
A40.1a:
Unblock
Receiver

Fig.1. Self-healing component architecture and Message Sequence between Healing Layer and Service Layer

16

2

• Component Repair Plan Generator. The Component Repair
Plan Generator maintains knowledge of repairs specific to each
object such as a task, connector, and passive object accessed by
tasks in the service layer of a component, and generates repair
plans for repairing sick objects.

• Component Reconfiguration Executor. The Component
Reconfiguration Executor substantially carries out the
reconfiguration plan generated by the Component
Reconfiguration Plan Generator to reconfigure the service
layer of a component in response to sick objects in the
component or other components

• Component Repair Executor. The Component Repair Executor
performs the repair plan generated by the Component Repair
Plan Generator to treat anomalous objects and test them after
repairing in order to check whether the objects just repaired
work normally.

• Component Self-Healing Controller. The Component Self-
Healing Controller of a component coordinates the Component
Reconfiguration Plan Generator, Component Repair Plan
Generator, Component Monitor, Component Reconfiguration
Executor, and Component Repair Executor to conduct the self-
healing mechanism for sick objects in a component,
cooperating with the Component Self-Healing Controllers of
other components for reconfiguration against object anomalies

3. CONNECTOR-BASED SELF-HEALING
MECHANISM
The role of connectors between tasks in a component is extended
to support the self-healing mechanism for self-healing
components, which includes detection of anomalous objects,
reconfiguration of the objects in the service layer of a component,
and testing of the repaired objects. In general, connectors between
tasks in a component are designed to synchronize message
communication between tasks. For detecting anomalies in
components, connectors between tasks in the service layer of self-
healing components notify message arrivals from tasks to the
Component Monitor in the healing layer. Using the messages
from connectors, the Component Monitor detects any behavioral
abnormality of tasks in the component. In the meanwhile,
connectors also acknowledge their status to the Component
Monitor after storing messages in queues or buffers in the
connectors, or delivering messages to other tasks on behalf of
their associated tasks. A passive object (e.g., an entity object
storing data) accessed by several tasks in the service layer of a
component also needs to notify the Component Monitor when its
operation is invoked by a task and when the operation has been
executed successfully. The trace of a task thread within a
connector and a passive object can determine the sickness of the
connector and passive object.

A message sequence between objects in the service layer and
healing layer of a component is depicted in Fig. 1 using the
collaboration model of the UML [1, 10], which is simplified for
this paper. The message sequence A1 through A10 describes the
normal service of Task1, Connector1, and Connector2. When the
Connector1 receives a message A1, it notifies the Component
Monitor of the message arrival (A2 in Fig.1), which makes the
Component Monitor wait for the next message “Input Placed” (A3
in Fig. 1) from the Connector1. After placing a message in a
queue or buffer, the Connector1 again notifies a message “Input

Placed” (A3 in Fig. 1) to the Component Monitor. The
Component Monitor presumes that the Connector1, Task1, or
Connector2 (in Fig. 1) may be sick if the expected messages have
not arrived within reasonable time intervals. In that case, the
Component Monitor reports sickness of an object (A11 in Fig. 1)
to the Component Self-Healing Controller, which in turn takes an
appropriate action against the sick object.

The connectors in self-healing components are involved in the
reconfiguration of sick objects in the components at run-time. A
sick object is isolated from healthy objects in a component so that
the healthy objects have minimal impact from the sick object. For
the reconfiguration, the Component Self-Healing Controller
consults with the Component Reconfiguration Plan Generator in
the healing layer, which generates a reconfiguration plan against
each sick object. Reconfiguration is carried out to block sick
objects for repair. To achieve this, the Component
Reconfiguration Executor sends the (incoming) connectors (to the
sick task) a message requesting blocking adding a new message in
the queues or buffers, while it sends the (outgoing) connectors
(from the sick task) a message requesting blocking reading any
message from the queues or buffers in the connectors. When
receiving the message, the connectors respectively freeze message
communication between a sick task and healthy tasks.

Reconfiguration against a sick Task1 (Fig. 1) is depicted via the
message sequence A12 through A17. The reconfiguration plan
(A13 in Fig. 1) generated by the Component Reconfiguration
Plan Generator is performed by the Component Reconfiguration
Executor (A14 in Fig. 1). To isolate the Task1, the Component
Reconfiguration Executor sends the Block Sender message
(A14.1) to the Connector1, which blocks adding a new message
from the External Object to the queue or buffer in the Connector1.
In the meantime, the Component Reconfiguration Executor sends
the Connector2 the Block Receiver message (A14.1a) in order for
other tasks not to read messages from the queue or buffer in the
Connector2. The reconfiguration plan may contain additionally a
list of components that should be notified through messages A15
through A17.

The Component Repair Plan Generator generates a plan for
repairing the sick object, which may include re-initialization or
re-installation. The repair plan is delivered to the Component
Repair Executor, which performs the plan as specified. In case a
sick task is detected, the objects involved in the repair are
confined to the sick task, (incoming) connectors from which the
sick task reads messages, (outgoing) connectors to which the sick
task adds messages for delivery, and passive objects accessed by
the sick task. Repairing the sick object is followed by testing of
the repaired object with a set of test data.

Testing of repaired objects is also performed through connectors
in the self-healing component. Testing of a repaired task begins
by initializing connectors relevant to the task. The test data for
each object in a component are predefined when the component is
designed to be self-healed. The test data are delivered to the
repaired task through the connectors associated with the task.
During the testing, connectors also notify arrivals of (test data)
messages from the Component Repair Executor and the repaired
task to the Component Monitor in the healing layer. The testing
procedure for a repaired task is similar to that of normal service,
except for the input to the connectors communicating with the
repaired task is provided by the Component Repair Executor in

17

3

the healing layer instead of tasks in the service layer of a
component.

Fig. 1 depicts repairing and testing of a sick task, Task1, by
means of messages A18 through A37. Following the repair plan
generated by Component Repair Plan Generator, the Component
Repair Executor initializes queues or buffers in the Connector1
and Connector2 (A21 and A21a in Fig. 1) ready to receive test
data. And then test data (A23 in Fig. 1) are delivered to the
Connector1, which is used for testing the repaired Task1. After
testing the Task1, the Connector1 and Connector2 are re-
initialized (A36 and A36a in Fig. 1) to communicate between the
Task1 and other tasks.

The objects and other components reconfigured for repairing a
sick object are back to the original configuration via connectors as
the repaired object resumes its service. The Component Self-
Healing Controller requests a plan for reconfiguring components
from the Component Reconfiguration Plan Generator (A38 and
A39 in Fig. 1). Using the reconfiguration plan, the Component
Reconfiguration Executor reconfigures the repaired object via
connectors (A40.1 and A40.1a in Fig. 1) in the component and
notifies the healthy state of the component (A41 through A43 in
Fig. 1) to its neighbor components previously reconfigured
through connectors between components. The neighboring
components notified reconfigure their objects blocked temporarily
in communication with the recovered neighbor. Otherwise, if the
repairing is not handled successfully, the Component Self-Healing
Controller may need to notify the unhealed objects to the
supervisor (i.e., human) who may monitor the system.

4. CONNECTORS SUPPORTING SEL-
HEALING MECHANISM
A connector between tasks in a component encapsulates the
synchronous mechanism for message communication. More
specifically, a connector can be classified to a message queue
connector, a message buffer connector, and a message buffer and
response connector [4]. Containing a message queue, a message
queue connector encapsulates the communication mechanism for
loosely coupled message communication (asynchronous message
communication). The size of queue is defined depending on
performance of components involved in communication. A
message buffer connector is used to encapsulate the mechanism
for tightly coupled message communication without reply, while a
message buffer and response connector is designed for tightly
coupled message communication with reply.

4.1 MESSAGE QUEUE SELF-HEALING
CONNECTOR
A message queue connector (MessageQueue in Fig. 2)
encapsulates the synchronization mechanism for loosely coupled
message communication, which provides two synchronized
operations - send a message and receive a message - to other
objects [4]. The operation, send a message, is called by a sender
task, and the operation, receive a message, is called by a receiver
task. The sender task is suspended if the queue is full (i.e.,
messageCount = maxCount), being reactivated when the queue
has a slot to accept a message. The sender task continues to
execute after adding a message to the queue. The receiver task is
suspended if a message is not available in the message queue (i.e.,

messageCount = 0), and a new message activates the suspended
receiver task. The receiver task is not suspended if a message is
available in the queue.

The message queue connector (MessageQueue in Fig. 2) can be
extended to the message queue self-healing connector
(MessageQueueSH in Fig. 2) to support the self-healing
mechanism described in section 3. The message queue self-
healing connector adds new attributes, sendStatus and
receiveStatus, to the message queue connector class, which
indicate whether the connector provides message delivery service
between sender and receiver tasks. When the connector normally
delivers messages from a sender task to a receiver task, the values
of attributes, sendStatus and receiveStatus, are set to the
Unblocked, meaning that a sender task can add a message to the
queue and a receiver task can read the message from it. If the
connector is involved in healing an anomalous object, one of the
values of the attributes in a connector is set to the Blocked (by
messages A14.1 and A14.1a in Fig. 1), indicating that the
connector does not provide message delivery service except test
data. In the case where the connector is an incoming connector to
an anomalous task, a sender task cannot add messages to the
queue (sendStatus = Blocked). If the connector is an outgoing
connector from an anomalous task, a receiver task cannot read
messages from the queue in the connector (receiveStatus =
Blocked).

As the message queue connector (MessageQueue in Fig. 2) is
specialized to the message queue self-healing connector
(MessageQueueSH in Fig. 2), the operations, send and receive,
encapsulating the mechanism for synchronizing message
communication between objects are modified to support the self-
healing mechanism of components. The send and receive
operations in the message queue connector are modified in the
message queue shelf-healing connector to notify the Component
Monitor (Fig. 1) of the fact that a message is arrived at and
successfully handled by the connector. The send operation
notifies the Component Monitor of the arrival of a message when
it is invoked by a sender task (e.g., A1 and A2 in Fig. 1). The
send operation is suspended if the queue is full (messageCount =
0) or the send operation is blocked (sendStatus = Blocked). The
send operation is blocked when the connector receives messages
(e.g., A14.1 in Fig. 1) from the Component Reconfiguration
Executor so that the sick object is isolated from healthy objects in
the component. Otherwise, the send function adds the message to
the queue, and notifies the Component Monitor of completeness
of storing the message in the queue (e.g., A3 in Fig. 1). This
notification message shows the Component Monitor that the
connector works normally up to that point. As with the send
operation, the receive operation notifies the Component Monitor
of the invocation of the operation by a receiver task that reads a
message from the queue (e.g., A4 in Fig. 1). The Component
Monitor monitors anomaly of the receiver task with the
notification message from the receive operation (e.g., A5 in Fig.
1). The receive operation is suspended if the queue is full
(messageCount = 0) or the receive operation is blocked
(receiveStatus = Blocked). When an anomalous object is isolated
by reconfiguration at run-time, the receive operation is blocked so
that the receiver task cannot read the (test) data. Along with
blocking the send operation, blocking the receive operation
isolates objects associated with an anomalous object (i.e., sick
object) from normal objects (i.e., healthy objects), which aims at

18

4

localizing the anomalous object. If there is a message in the queue
(messageCount > 0) and the receive operation is not blocked
(receiveStatus = Unblocked), the receiver task can read a message
from the queue and inform the Component Monitor of successful
finishing of the receive operation by sending a notification
message at the end of the operation (e.g., A6 in Fig. 1). This
notification message ensures that the receive operation is
normally working up to that point.

+send (inmessage)
+receive (outmessage)

<<connector>>
MessageQueue

-messageQueue : Queue
-maxCount : Integer;
-messageCount : Integer := 0;

<<connector>>
MessageQueueSH

-sendStatus : {Blocked, Unblocked} : = Unblocked;
-receiveStatus: {Blocked, Unblocked} :=Unblocked;
+send (inmessage) {modified}
+receive (outmessage) {modified}
+sendT(inmessage)
+blockSender()
+unblockSender()
+blockReceiver()
+unblockReceiver()
+initialize()

Fig. 2. Message Queue Self-Healing Connector

The message queue self-healing connector (MessageQueueSH in
Fig. 2) has additional operations, sendT(in message),
blockSender(), unblockSender(), blockReceiver(),
unblockReceiver() and initialize(), which are invoked only by the
Component Repair Executor and the Component Reconfiguration
Executor in the healing layer of a component. The operation,
sendT(in message), is used to send test data to the connector (e.g.,
A23 in Fig. 1). This operation has the same functionality as the
send(in message) operation except that it is invoked by the
Component Repair Executor instead of a sender task. The
sendT(in message) operation adds test data to the queue of the
connector if the message queue is not full (messageCount <
maxCount) and the send function is blocked (sendStatus =
Blocked). The operation, blockSender(), keeps sender tasks from
adding messages to the queue by setting the sendStatus variable to
the Blocked (e.g., A14.1 in Fig. 1), while the operation,
unblockSender(), allows sender tasks to add messages to the
queue (e.g., A40.1 in Fig. 1). Similarly, the operation,
blockReceiver(), keeps receiver tasks from reading messages from
the queue by setting the receiverStatus variable to the Blocked
(e.g., A14.1a in Fig. 1), whereas the operation, unblockReceiver(),
releases the receive operation blocked (e.g., A40.1a in Fig. 1).
The operation, initialize(), initializes the message queue and
message count variable to test the repaired object (e.g., A21,
A21a, A36, and A36a in Fig. 1).

4.2 MESSAGE BUFFER SELF-HEALING
CONNECTOR
A message buffer connector (MessageBuffer in (a) of Fig. 3)
encapsulates a message buffer and provides two synchronized
operations – send a message and receive a message – for tightly
coupled message communication without reply [4]. The send and
receive operations are called by the sender task and the receiver
task, respectively. Once the sender task has stored a message into
the buffer, it is suspended until the receiver task receives the
message.

The message buffer self-healing connector (MessageBufferSH in
(a) of Fig. 3) is specialized from the message buffer connector
(MessageBuffer in (a) of Fig. 3) so that it supports the self-healing
mechanism in components. Like the message queue self-healing
connector (MessageQueueSH in Fig. 2), the message buffer self-
healing connector contains new attributes, sendStatus and
receiveStatus, to indicate whether it is involved in normal
message delivery or test data delivery. The send and receive
operations in the message buffer connector are modified for
supporting the notification mechanism in the message buffer
shelf-healing connector. The send operation informs the
Component Monitor both when it is invoked by a sender task and
when a message has been stored in the message buffer, whereas
the receive operation notifies the Component Monitor both when
it is invoked by a receiver task and when a message has been read
by a receiver task from the message buffer. Similar to the
message queue self-healing connector, the message buffer self-
healing connector provides additional operations, sendT(in
message), blockSender(), unblockSender(), blockReceiver(),
unblockReceiver() and initialize(), which are invoked by the
Component Repair Executor and the Component Reconfiguration
Executor in the healing layer.

4.3 MESSAGE BUFFER AND RESPONSE
SELF-HEALING CONNECTOR
A message buffer and response connector
(MessageBuffer&Response in (b) of Fig. 3) for tightly coupled
message communication with reply [4] encapsulates a single
message buffer and a single response buffer, and provides
synchronized operations to send a message, receive a message,
and send a reply. The sender task invokes the send message
operation while the receiver task invokes the receive message and
send reply operations. Once the sender task has stored a message
in the buffer, it is suspended until the response is received from
the receiver task.

Similar to the message queue self-healing connector
(MessageQueueSH in Fig. 2) and the message buffer self-healing
connector (MessageBufferSH in (a) of Fig. 3), the message buffer
and response self-healing connector
(MessageBuffer&ResponseSH in (b) of Fig. 3) is obtained by
specializing the message buffer and response connector
(MessageBuffer&Response in (b) of Fig. 3). The message buffer
and response self-healing connector involves new attributes,
sendStatus and receiveStatus, like other self-healing connectors
described above. Similarly, the send, receive, and reply operations
in the message buffer and response connector are modified to
support the self-healing mechanism in the message buffer and
response shelf-healing connector. In addition, the message buffer

19

5

and response self-healing connector provides operations, sendT(in
message), blockSender(), unblockSender(), blockReceiver(),
unblockReceiver() and initialize(), for reconfiguration, repair, and
test, which are performed by the healing layer.

5. RELATED WORK
[8] has proposed a taxonomy for describing potential research
issues in self-healing systems. In this taxonomy, self-healing
system approaches are characterized with fault models, system
responses, system completeness, and design context. In [6], the
authors have presented the structure of a fault-tolerant component
based on the C2 architectural style. The iC2C (Idealized C2
Component) is structured to two parts: one for maintaining the
normal behavior of the component and detecting errors, and the
other for being responsible for error recovery. These parts
communicate with each other through connectors specialized
from C2 connectors in the C2 architecture style. This approach
focuses on the fault detection using pre- and post-condition, and
invariants of operations, while the approach in this paper is
concerned with self-healing of a component in terms of detection,
reconfiguration, repair, and test of a component. [2] has presented
tools and methods for implementing architecture-based self-
healing systems. The changes to a running software system are
handled at the architectural level. In particular, this approach
focuses on flexible architectural changes after the system was
deployed. Rather than being concerned with a software
architectural repair in [2], the approach in this paper concentrates

on a self-healing component architecture encapsulating a healing
mechanism on each component basis. [3] uses architectural
models as the basis for monitoring, problem detection, and repair
for self-healing systems. The architectural models can be
specialized to the particular style of the system such as
performance, reliability or security. For reconfiguration of
components, [11] describes an approach to devising
reconfiguration mechanism for Enterprise JavaBeans (EJB). This
approach is supported by the BARK reconfiguration tool, which
is designed to facilitate the management and automation of the
deployment life cycle for EJB.

6. CONCLUSIONS
This paper has described the connector-based self-healing
mechanism for self-healing components of systems. The role of
connectors encapsulating the synchronization mechanism for
message communication between tasks in a component is
extended to the self-healing mechanism for reliable components.
In the self-healing mechanism, connectors in self-healing
components notify message arrivals from tasks to the healing
layer to detect anomalies in the component. Once detecting an
anomalous object, the component autonomously reconfigures
objects and repairs the sick object through connectors. This paper
also has defined the specifications for the message queue self-
healing connector, message buffer self-healing connector, and
message buffer and response self-healing connector, which
support the self-healing mechanism.

+send (in message, out response)
+receive (out message)
+reply (in message)

<<connector>>
MessageBuffer&Response

-messageBuffer : Buffer
-responseBuffer : Buffer
-messageBufferFull = false;
-responseBufferFull = false;

<<connector>>
MessageBuffer&ResponseSH

-sendStatus : {Blocked, Unblocked} : = Unblocked;
-receiveStatus : {Blocked, Unblocked} :=Unblocked;

+send (in message, out response) {modified}
+receive (out message) {modified}
+reply (in message) {modified}
+sendT (in message)
+blockSender()
+unblockSender()
+blockReceiver()
+unblockReceiver()
+initialize()

a) Message Buffer Self-Healing Connector b) Message Buffer & Response Self-Healing Connector

+send (in message)
+receive (out message)

<<connector>>
MessageBuffer

-messageBuffer : Buffer
-messageBufferFull : Boolean := false;

<<connector>>
MessageBufferSH

-sendStatus : {Blocked, Unblocked} := Unblocked;
-receiveStatus : {Blocked, Unblocked} :=Unblocked;

+send (in message) {modified}
+receive (out message) {modified}
+sendT (in message)
+blockSender()
+unblockSender()
+blockReceiver()
+unblockReceiver()
+initialize()

Fig. 3. Message Buffer Self-Healing Connector and Message Buffer & Response Self-Healing Connector

20

6

The approach to the connector-based self-healing mechanism
suggested in this paper has several strong points. The first
advantage is that the self-healing concern and the functional
service concern modeled in their separate layers of a component
are composed into a self-healing component by means of
connectors. To achieve this, connectors are involved in the self-
healing mechanism - detection, reconfiguration and repair of
anomalous objects - as well as the synchronization mechanism.
Another benefit is that the connectors between tasks in a self-
healing component help isolate objects under repair. Connectors
separate anomalous tasks from healthy ones by controlling input
to and output from the anomalous tasks. However, the connector-
based self-healing mechanism can cause relatively low
performance to a self-healing component due to communications
between connectors in the service layer and the monitor in the
healing layer.

This approach retains several research issues associated with
connectors in self-healing components. The connector-based self-
healing mechanism described in this paper should be extended to
include inter-components interaction at the level of software
architecture of systems. The connectors between self-healing
components [5] may provide different functionality compared to
those between tasks within a self-healing component. The status
of objects (i.e., sickness or health of objects) in a component can
be delivered to its neighboring components through the
connectors. In addition, the detection mechanism of the
Component Monitor in the healing layer should be refined to
reduce the rate of error in determining whether an object in a
component is anomalous. To achieve this, the Component
Monitor may consider the status of thread of neighbouring tasks
around a specific object before it makes a decision on sickness of
the object.

6. REFERENCES
[1] G. Booch, J. Rumbaugh, I. Jacobson, “The Unified Modeling

Language User Guide”, Addison Wesley, Reading MA,
1999.

[2] Eric M. Dashofy, Andre van der Hoek, and Richard N.
Taylor, “Towards Architecture-based Self-Healing Systems,”
Workshop on Self-healing systems, Proceedings of the first
workshop on Self-healing systems, Charleston, SC,
November18-19, 2002.

[3] David Garlan and Bradley Schmerl, “Model-based
Adaptation for Self-Healing Systems,” Workshop on Self-
healing systems, Proceedings of the first workshop on Self-
healing systems, Charleston, SC, November18-19, 2002.

[4] Hassan Gomaa, “Designing Concurrent, Distributed, and
Real-Time Applications with UML,” Addison-Wesley, 2000.

[5] Hassan Gomaa, Daniel A. Menasce, and Michael E. Shin,
“Reusable Component Patterns for Distributed Software
Architectures,” 2001 Symposium on Software Reusability
(SSR’01 Sponsored by ACM/SIGSOFT), Toronto, Ontario,
Canada, May 18-20, 2001.

[6] Paulo Asterio de C. Guerra and Rogerio de Lemos, “An
Idealized Fault-Tolerant Architectural Component,”
Workshop on Architecting Dependable Systems, ICSE’02
International Conference on Software Engineering, Orlando,
FL, May 25, 2002.

[7] IBM, “An architectural blueprint for autonomic computing,”
IBM and autonomic computing, April 2003.

[8] Philip Koopman, “Elements of the Self-Healing System
Problem Space,” Workshop on Software Architectures for
Dependable Systems (WADS2003), ICSE’03 International
Conference on Software Engineering, Portland, Oregon, May
3-11, 2003.

[9] Oriezy, P., Gorlick, M.M., Taylor, R.N., Johnson, G.,
Medvidovic, N., Quilici, A., Rosenblum, D., and Wolf, A.,
“An Architecture-Based Approach to Self-Adaptive
Software,” In IEEE Intelligent Systems 14(3):54-62,
May/June, 1999.

[10] J. Rumbaugh, G. Booch, I. Jacobson, “The Unified Modeling
Language Reference Manual,” Addison Wesley, Reading
MA, 1999.

[11] M. J. Rutherford, K. Anderson, A. Carzaniga, D.
Heimbigner, and A. L. Wolf, “Reconfiguration in the
Enterprise JavaBean Component Model” In Proceedings of
the IFIP/ACM Working Conference on Component
Deployment, Berlin, 2002, pp. 67-81.

[12] Michael E. Shin, “Self-Healing Component in Robust
Software Architecture for Concurrent and Distributed
Systems,” 2005 (Accepted for publication in the Science of
Computer Programming).

21

7

