
Building Component Families to Support Adaptation ∗

Karun N. Biyani Sandeep S. Kulkarni
Department of Computer Science and Engineering

Michigan State University
East Lansing, MI 48824 USA

{biyanika,sandeep}@cse.msu.edu

ABSTRACT
Autonomic systems undergo dynamic compositional adap-
tation that often require state transfer and synchronization
to correctly initialize the state of the new component, while
ensuring that multiple fractions of the component are added
and removed consistently. In general, if there are n differ-
ent components for a given functionality, then there exist
n(n − 1) possible adaptations for selecting an appropriate
component. Identifying all these adaptations is not an easy
task. Moreover, as verification of such adaptations is also
difficult, it is desirable to reduce total number of these adap-
tations.

We propose a component family design for systematically
building a repository of components from the perspective of
dynamic adaptation. For a family of n components, we show
that it suffices to identify n different adaptations. Moreover,
to add a new component to this family, it suffices to consider
only two adaptations. We also propose a design to separate
the adaptation concern from component functionality for
simplifying the specification and verification of adaptation.
We introduce the enhanced-primitive relation between two
components; when such a relation is known to exist, we
show that it is possible to simplify the adaptation and its
verification.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design and Tools—mod-
ules and interfaces; D.2.13 [Software Engineering]: Re-
usable Software—reusable libraries

General Terms
Design

Keywords
Dynamic Adaptation, Verification, Component-based Sys-
tems, Autonomic Computing
∗
This work was partially sponsored by NSF CAREER CCR-0092724,

DARPA Grant OSURS01-C-1901, ONR Grant N00014-01-1-0744, and
a grant from Michigan State University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEAS 2005, May 21, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-59593-039-6/05/0005 ...$5.00.

1. INTRODUCTION
Autonomic systems are often required to provide continu-
ous and uninterrupted service. Especially in case of critical
applications an interruption is highly undesirable and may
very often be catastrophic. Moreover, with the changing
requirements and/or execution environment, these systems
need to adapt to the change. Further, to provide uninter-
rupted service, the adaptation should be done while the sys-
tem continues to run.

Various techniques have been proposed in different re-
search projects for adaptation. These approaches can be
broadly classified (cf. [1]) based on the aspects of adaptation
they address, such as (1) static vs dynamic (2) necessity of
state transfer vs no state transfer (3) distributed systems vs
single process systems (4) parameter adaptation vs composi-
tional adaptation (5) application specific vs general purpose
(6) anticipated vs unanticipated (7) language dependent vs

language independent.
As component-based architecture is crucial for autonomic

systems, we consider compositional adaptation that modifies
the system dynamically (at run-time) by adding, removing,
or replacing components. These components implement a
part of the desired behavior of the system. For example,
retransmission and forward error correction components are
used to deal with message loss, or encryption components
are used to provide security. These components are often
distributed, i.e., the component consists of multiple fractions
[2, 3], where each fraction is associated with one process in
the distributed system. For example, a security component
consists of a fraction that does encryption at the sender and
a fraction that does decryption at the receiver. As a result,
multiple processes are affected during adaptation.

While adding or removing such distributed components,
all fractions of the component are not added or removed si-
multaneously. Hence, we will have a situation where some
processes have added/removed the component fractions while
some are yet to do that. In other words, fractions of differ-
ent components may co-exist. Therefore, while adding or
removing the fractions, the dependency relationship (cf. [2])
among the fractions should be handled correctly. In other
words, it may be necessary to add/remove these component
fractions in a certain order. For example, in case of a for-
ward error correction component, if the encoder fraction at
the sender is added before the decoder fraction is added at
the receiver, then the messages might be lost or decoded
incorrectly. Thus, synchronization among component frac-
tions is required while adding or removing the component.
Also, state-transfer between components may be required
for the adaptation to be transparent to the application.

We say that an adaptation from component A to com-

1

ponent B exists if there is an approach that allows one to
systematically replace all fractions of A by appropriate frac-
tions of B. If such an approach has been verified so that
the state transfer and synchronization issues are correctly
handled then we say that a verified adaptation from A to
B exists. One way to obtain a verified adaptation is to use
the transitional-invariant lattice from [4]. In this approach,
to replace component A by component B, we show that if
we begin in a state where the initial program containing A

starts in its invariant state then after the adaptation, the
program containing B will also be in its invariant.

Now, consider the scenario where there are n different
components that provide similar interface and functionality,
and the choice of the component depends on application re-
quirements and environment conditions. In this case, there
are n(n− 1) possible adaptations among these components.
Identifying the way in which all these adaptations can be
performed and verifying them is difficult. Moreover, if the
developer of the component wants to expose its details to
only a subset of developers of other components then adap-
tation between that component and remaining components
may not be possible. Thus, it is desirable to have a de-
sign methodology that helps in reducing the number of these
adaptations, while still allowing adaptation between any two
of these components.

Towards this end, we propose the notion of component
family to limit the number of adaptations that need to be
identified. This work is based on the ideas of family of
programs as proposed by Parnas [5] and work on design of
component-based software systems by Batory [6]. It focuses
on building a family (library) of related components from
the perspective of dynamic adaptation. The design of com-
ponent family helps in: (1) simplifying the adaptation from
one component to another, (2) facilitating the independent
development of new components that can be used for adap-
tation, (3) enhancing the reusability of components, and (4)
simplifying the verification of adaptation.

We also propose a design to separate adaptation concern
from component functionality, i.e., to separate part of the
component that provides the desired functionality and part
of the component that is involved only during addition or
removal of that component. This separation helps in au-
tomatically identifying and verifying adaptations, and en-
ables modification of adaptation without affecting the com-
ponent functionality. Our approach differs from previous
work (e.g., [7]), where separation of application functionality
and added components for adaptation is considered. While
such separation is desirable in developing component-based
systems, in this approach, the entire component is consid-
ered as an adaptive code. The separation proposed in our
work is fine-grained, and is especially beneficial when one
needs to specify and verify the necessary synchronization
and state-transfer between components during adaptation.
Specifically, such separation allows us to focus only on a sub-
set of component implementation that is involved in adap-
tation.

We note that, in this paper, we do not address the issue of
making an existing application adapt-ready. An application
is defined to be adapt-ready, if it supports the adaptation by
allowing addition, removal, or replacement of components.
The common technique for making an application adapt-
ready is often through some kind of indirection (e.g., [2,
7–11]). Further, we do not address “decision-making” , i.e.,
how an autonomic system selects an appropriate component.
In this paper, we are interested in methodology that allows

us to separate the adaptation concern, and simplifies the
specification and verification of adaptation, while enabling
independent development and reuse of components. Our
approach for verification of adaptation is discussed in [4].
Organization of the paper. In Section 2, we discuss
the structure and advantages of the component family. We
discuss how the distributed program, component, and adap-
tation are modeled in Section 3. We present a case study
discussing the example of a component family of reliable
communication components in Section 4. In Section 5, we
answer some of the questions related to our work on com-
ponent family. Finally, we conclude in Section 6.

2. COMPONENT FAMILY
There are various components available for a given func-
tional requirement. For example, to provide reliable com-
munication one can use a proactive component based on
forward error correction, or a reactive component based on
message acknowledgments and retransmission. The key mo-
tivation for adaptation in autonomic systems is to provide
an appropriate component for a given functionality based on
the application requirements and environment conditions.

To perform adaptation from one component to another,
there are two important issues, namely, state-transfer and
synchronization, that need to be addressed. As discussed
in Section 1, providing adaptation from one arbitrary com-
ponent to another arbitrary component is difficult. More-
over, for the case where one does not know the details of
some components, it is impossible to provide assurance for
adaptations to and from those components. Further, while
developing new component one does not know about all the
existing components that can potentially be replaced by the
new component. Also, it is difficult to anticipate the com-
ponents that can be developed later. To overcome these
limitations and to simplify the use of components in adap-
tation, we propose a design to build a systematic repository
of components that provide similar functionality. Towards
this end, we define the notion of a component family.
Definition. A component family is a strongly connected di-
rected graph, say (V, E), where (i) each vertex in V denotes
a component, (ii) all components have compatible interfaces
and provide a similar functionality, and hence, any compo-
nent in the family can be replaced by another, and (iii)
Each arc (v1, v2) ∈ E denotes that there exists an adapta-
tion (that provides the necessary synchronization and state-
transfer) from v1 to v2.

We illustrate a component family in Figure 1. Consider
the subgraph consisting of vertices A, B, C, and D, which
are the four components in the family. Direct adaptations
are defined for each arc in this graph. The arc from A to D

denotes that there exists an adaptation from A to D. We
say that the arc (A, D) is a verified arc if verified adaptation
from A to D exists. Further, as shown in the Figure 1, there
exists a path from component A to component B, which
implies that there exists a sequence of adaptations through
which A can be replaced by B, namely, A to D, D to C,
and C to B.

� �

��

�

Figure 1: An Example of a Component Family

2

2.1 Component Structure
As discussed earlier in this section, in order to keep a graph
of component family strongly connected, we need at least
two adaptations associated with each component, such that
one adaptation is to the component and one adaptation is
from the component. For each adaptation, the component
may perform some state-transfer and synchronization re-
lated actions, that are specific to that adaptation. In other
words, a component has different state-transfer and synchro-
nization related actions corresponding to different adapta-
tions that it is involved in. However, the part of the com-
ponent that performs the actual functionality remains the
same irrespective of the adaptations.

Reckoning the adaptation requirements, each component
in a component family is designed to consist of two parts: (i)
a functional part, and (ii) an adapt-active part. The adapt-
active part is involved in state-transfer and synchronization
related actions that are needed only during adaptation. In
other words, the functions of the adapt-active part are in-
voked only during adaptation.

Each component in a family consists of exactly one func-
tional part. A component may have zero or more adapt-
active parts. The adapt-active part of a component corre-
sponds to a particular adaptation the component is involved
in. A component may not have an adapt-active part (in
other words, have an empty adapt-active part), if the com-
ponent does not perform any state-transfer or synchroniza-
tion related actions during adaptation. Also, a component
may have an adapt-active part that is shared with multiple
adaptations that it is associated with. From an implemen-
tation perspective, depending on the adaptation that the
component is involved in, the appropriate adapt-active part
corresponding to that adaptation should be loaded before
adaptation. This can be triggered internally (by some mon-
itoring module) or externally (by an user).

����������	
���
��

����������������
��

����������	
���
��

����������������
��

����������	
���
��

����������������
�

���

�

� �

����������	
���
��

����������������
��

�

��� ��� ��� ��� ���

��� ������ ���

Figure 2: Structure of a Component in a Family

For example, consider the components A, B, C, and D in
a component family as shown in Figure 2. The component
B has two adapt-active parts, Bbd and Bcb. The part Bbd

is used during adaptation from B to D, and the part Bcb is
used during adaptation from C to B.

2.2 Advantages of Component Family
1. Simplifying adaptation between components and
enabling independent development of new compo-
nents. Consider the case where an application is using a
component from a component family F consisting of n com-
ponents. In this case, to provide adaptation between any
two components of a family F , we need a minimum of only
n adaptations (in this case, the graph consists of a directed
cycle). When a new component is developed that will be
a part of F , it suffices to have only two more adaptations

while still keeping the graph strongly connected. For exam-
ple, if a new component E is added to the component family
shown in Figure 1, only two adaptations, say from C to E

and from E to B, are enough to keep the graph strongly
connected.
2. Simplifying verification of adaptation. To verify
that the adaptation between components is correct (e.g., by
using the approach in [4]), it is required that after adapta-
tion the component continues to correctly perform its func-
tionality, and specification during adaptation is satisfied.
The separation of adapt-active parts from component func-
tionality simplifies the task of specifying and verifying adap-
tation. Further, if the number of such adaptations is low,
then less verification needs to be performed.
3. Reusability of components and adaptations. The
design of component family not only enhances the reuse of
components but also promotes the reuse of adaptations be-
tween components. For example, consider two components
X and Y and that the adaptation from X to Y exists. Now,
consider a component Z and the adaptation from Z to Y .
In this case, by providing the adaptation from Z to X, the
adaptation from Z to Y can be done in two steps while
reusing the adaptation that already exists from X to Y . We
note that if the direct adaptation from Z to Y were to ex-
ist, it would not necessarily be fast or simple. In fact, there
are cases, as discussed in next point, where a two (or more)
step adaptation is simpler than a direct adaptation between
components.
4. Simplifying adaptation in case of an enhanced-

primitive relationship among components. The state-
transfer and synchronization during adaptation is in gen-
eral difficult between arbitrary components. However, if
one component is an enhancement of another component,
then the issue of state-transfer and synchronization can be
simplified in adaptation between those two components (cf.
Section 4 for an example). To take advantage of this, we
define the enhanced-primitive relationship between compo-
nents. We say that a component A is an enhanced compo-
nent of component B (respectively, component B is a prim-
itive component of A) iff A is syntactically and semantically
compatible with B, i.e., it extends the interface of B, and it
provides all services that B provides.

Now, consider a scenario where A is an enhanced compo-
nent of B and that B is being replaced by A. In this sce-
nario, fractions of B can be replaced in an arbitrary order by
fractions of component A, as each fraction of A can provide
the required service to the remaining fractions of B. More-
over, the fractions of A can communicate with the remaining
fractions of B using a protocol that the latter understands.
Thus, in this case, the synchronization requirement among
component fractions is relaxed, and also transferring state
to/from primitive component is easy.

In a case where two enhanced components, say C and D,
are derived from the same primitive component, say Z, the
adaptation from C to D can be done in two steps; by first
replacing C by Z and then replacing Z by D. Since the
adaptation for enhanced-primitive relationship is relatively
easy, the direct adaptation from C to D may not necessarily
be fast or easy. We note that the idea of an enhanced-
primitive relationship can be extended to have a multi-level
hierarchy of components, where components at a higher level
are enhanced version of components at lower level.

3. MODELING ADAPTATION
In this section, we describe how we model the distributed

3

programs, components, and adaptations. Though, our im-
plementation of component family is in Java, for brevity, we
choose an abstract model based on guarded commands for
modeling. This modeling is based on the work in [12].
Program and Process. A program P is specified by a
set of global constants, a set of global variables, and a set of
processes. A process p is specified by a set of local constants,
a set of local variables, and a finite set of actions (defined
later in this section). Variables declared in P can be read
and written by the actions of all processes. The processes in
a program communicate with one another by sending and
receiving messages.
Component and its fractions. A component is a set of
global constants, a set of global variables, and a finite set
of fractions that are involved in providing a common func-
tionality. A component fraction is a set of local constants, a
set of local variables, and a finite set of actions that are as-
sociated with a single process. A component and a fraction
also has input parameters, which are values of the variables
supplied by the program; and output parameters, which are
values returned to the program.
Action. An action of process p is uniquely identified by a
name, and is of the form

〈name〉 : 〈guard〉 → 〈statement〉

A guard is a combination of one or more of the following:
a state predicate of p, a receiving guard of p, or a timeout
guard. A state predicate of p is a boolean expression over
the constants and variables of p. A receiving guard of p is of
the form rcv 〈message〉 from 〈q〉. A timeout guard is of the
form timeout 〈state predicate of P〉. The statement of an
action updates zero or more variables and/or sends one or
more messages. An action can be executed only if its guard
evaluates to true. To execute an action, the statement of
that action is executed atomically. A sending statement of
p is of the form send 〈message〉 to 〈q1, ..., qn〉, which sends
a message to one or more processes . We say that an action
of p is enabled in a state of P iff its guard evaluates to true
in that state.
Atomic adaptation. As discussed in Section 1, to add
a component to a program, each fraction of the component
needs to be added at processes of the program. Similarly, to
remove a component, each fraction of the component needs
to be removed from the process of the program. In other
words, adaptation in distributed programs involves multiple
steps. We divide this multi-step adaptation into multiple
atomic adaptations, such that each atomic adaptation in-
volves only one process (fraction). In this work, we consider
the following types of atomic adaptations: (i) block - block
a fraction, (ii) add - add a fraction, (iii) sadd - add a frac-
tion while initializing its state (to a previous state of the
old component), (iv) remove - remove a fraction, and (v)
sremove - remove a fraction while storing its state informa-
tion. Thus, an adaptation consists of sequence of atomic
adaptations. Each atomic adaptation is represented by a
name and has a guard. An atomic adaptation is performed
when the guard corresponding to it becomes true.

Remark on notation. When defining an atomic adapta-
tion or an action, we use the bold font. And, when using
them as a part of a predicate, we use sens serif (cf. Figures
4−7).

4. CASE STUDY
In this Section, we discuss the component family consisting
of components that provide reliable communication. There

are various components available for providing reliable com-
munication. We consider three components in this family
(cf. Figure 3), namely, (i) forward error correction (fec)
component, (ii) acknowledgment (ack) component, and (iii)
forward error correction with acknowledgment (fecAck) com-
ponent. For simplicity, we discuss only one sender and one
receiver; however, the case study can be easily extended for
multiple sender and multiple receivers.

������

������

�
�

	

Figure 3: Reliable Communication Component
Family

Forward Error Correction (fec) Component. The
fec component is used to deal with message loss by sending
extra packets. The receiver can recover the lost packets
without requesting retransmission of lost packets. The fec

component consists of two types of fractions: encoder and
decoder. The encoder fraction is added at the sender process
and the decoder fraction is added at the receiver process.
The encoder takes (n−k) data packets and encodes them to
add k parity packets. It then sends the group of n (data and
parity) packets. The decoder needs to receive at least (n−k)
packets of a group to decode all the data packets. Thus, if
less than k packets in a group are lost then the receiver can
recover the lost packets by using the extra packets from that
group.

Component fec

Constants n, k, w

Fraction s fec

Input parameters sQ, r
Variables g, p, u, eQ

encode : eQ[u, 0..n − 1] = Empty ∧ count(sQ) ≥ n − k
→ eQ[u, 0..n − 1] := fec_encode(head(sQ,n − k));

u := (u + 1) mod w;

send : eQ[g, p] 6= Empty
→ send eQ[g, p] to r;

eQ[g, p] := Empty;
p := (p + 1) mod n;
if p = 0

g := (g + 1) mod w;

Fraction r fec

Input parameters rQ
Variables gd, rbuf, wait, discard, undel grp

receive : rcv data(g, p, x) from s
→ while (wait = false);

if discard(g) = false
rbuf [g, p] := x;
undel grp[g] := true;
if discard[(g + 1) mod w] = true

discard[(g + 1) mod w] := false;

decode : count(undel grp[0..w − 1] 6= Empty) > 0
→ if count(rbuf [gd, 0..n − 1] 6= Empty) ≥ n − k

wait := true;
rQ := rQ ◦ fec_decode(rbuf [gd, 0..n − 1]);
if count(rbuf [gd, 0..n − 1] 6= Empty) < n

discard[gd] := true;
rbuf [gd, 0..n − 1] := Empty;
undel grp[gd] := false;
gd := (gd + 1) mod w;
wait := false;

Figure 4: Forward Error Correction Component

The abstract version of the fec component is shown in
Figure 4, which consists of the encoder fraction s fec at the

4

Component ack

Constants n, w

Fraction s ack

Input parameters sQ, r
Variables p, g, snt

send : sQ 6= Empty ∧ snt[g, p] 6= Empty
→ snt[g, p] := data(g, p, head(sQ));

send snt[g, p] to r;
p := (p + 1) mod n;
if p = 0

g := (g + 1) mod w;

send again : rcv nack(gna, pna) from r
→ if snt[gna, pna] 6= Empty

send snt[gna, pna] to r;

ack rcv : rcv ack(ga) from r
→ snt[ga, 0..n − 1] := Empty;

Fraction r ack

Input parameters rQ, s
Variables i, gd, rbuf, undel grp

receive : rcv data(g, p, x) from s
→ rbuf [g, p] := x;

undel grp[g] := true;

deliver : count(undel grp[0..w − 1] 6= Empty) > 0
→ if count(rbuf [gd, 0..n − 1] 6= Empty) = n

rQ := rQ ◦ rbuf [gd, 0..n − 1];
rbuf [gd, 0..n − 1] := Empty;
send ack(gd) to s;
undel grp[gd] := false;
gd := (gd + 1) mod w;

send nack : count(undel grp[0..w − 1] 6= Empty) > 2
→ for i = 0 to n − 1

if rbuf [gd, i] = Empty ∧
undel grp[gd] = true

send nack(gd, i) to s;

Figure 5: Acknowledgment Component

sender process s and the decoder fraction r fec at the re-
ceiver process r. The encoder fraction takes sQ and r as the
input parameters; sQ being the sequence of messages that
the sender process needs to send to the receiver process r.
The decoder fraction takes rQ as the input parameter, which
stores the messages received from the sender. The func-
tion fec_encode encodes the data packets, and the function
fec_decode decodes the encoded data packets. The func-
tion head(sQ) returns the message at the front of sQ, and
head(sQ, m) returns m messages from the front of sQ. The
count function is used to count the number of entries in the
list (array). The notation sQ ◦ d denotes the concatenation
of sQ and 〈d〉.

Acknowledgment (ack) Component. The ack com-
ponent deals with message loss by retransmitting the lost
packets. It uses acknowledgment to confirm the receipt of
message sent by the sender, and negative acknowledgment
to confirm the loss of message sent by the sender. It consists
of an encoder fraction at the sender and a decoder fraction
at the receiver. The encoder fraction adds a group and a
packet number in each packet. It maintains a window of
size w and sends all packets in that window to the receiver.
It waits for acknowledgment of receipt of a group before
moving the window one group forward. If it receives a neg-
ative acknowledgment for any packet, it sends that packet
again to the decoder. When the decoder receives a packet
out of order, it waits for few more packets before sending a
negative acknowledgment to the encoder fraction. When all
packets in a group are received, it sends an acknowledgment
for that group to the encoder.

The abstract version of the ack component is shown in
Figure 5, which consists of the encoder fraction s ack at the

Component fecAck

Constants n, k, w

Variables ack mode

Fraction s fecAck

Input parameters sQ, r
Variables u, g, p, eQ, snt

encode : eQ[u,0..n − 1] = Empty ∧ count(sQ) ≥ n − k
→ eQ[u,0..n − 1] := fec_encode(head(sQ,n − k);

u := (u + 1) mod w;

send : eQ[g, p] 6= Empty ∧
(snt[g, p] = Empty ∨ ack mode = false)

→ snt[g, p] := data(g, p, eQ[g, p]);
send eQ[g, p] to r;
eQ[g, p] := Empty;
p := (p + 1) mod n;
if p = 0

g := (g + 1) mod w;

send again : rcv nack(gna, pna) from r
→ if snt[gna, pna] 6= Empty

send snt[gna, pna] to r;

ack rcv : rcv ack(ga) from r
→ snt[ga, 0..n − 1] := Empty;

Fraction r fecAck

Input parameters rQ, s
Variables i, gd, rbuf, wait, discard, undel grp

receive : rcv data(g, p, x) from s
→ while (wait = false);

if discard(g) = false
rbuf [g, p] := x;
undel grp[g] := true;
if discard[(g + 1) mod w] = true

discard[(g + 1) mod w] := false;

decode : count(undel grp[0..w − 1] 6= Empty) > 0
→ if count(rbuf [gd, 0..n − 1] 6= Empty) ≥ n − k

wait := true;
rQ := rQ ◦ fec_decode(rbuf [gd, 0..n − 1]);
if count(rbuf [gd, 0..n − 1] 6= Empty) < n

discard[gd] := true;
rbuf [gd, 0..n − 1] := Empty;
if ack mode = true
send ack(gd) to s;

undel grp[gd] := false;
gd := (gd + 1) mod w;
wait := false;

send nack : ack mode = true ∧
count(undel grp[0..w − 1] 6= Empty) > 2

→ for i = 0 to n − 1
if rbuf [gd, i] = Empty ∧undel grp[gd] = true;
send nack(gd, i) to s;

Figure 6: Forward Error Correction with Acknowl-
edgment Component

sender process s and the decoder fraction r ack at the re-
ceiver process r. Similar to the fec component, the encoder
has sQ and r as the input parameters. The decoder has rQ

and s as the input parameters.

Forward Error Correction with Acknowledgment
(fecAck) Component. The fecAck component uses both
forward error correction and acknowledgments. If the rate
of message loss is high and more than k packets are lost
in a group, then negative acknowledgments can be used for
retransmission of the lost packets. If the rate of message
loss is low and less than k packets are lost in a group, then
the receiver can recover the lost packets without requesting
any retransmission.

The abstract version of the fecAck component is shown
in Figure 6, which consists of the fraction s fecAck at the
sender process and the fraction r fecAck at the receiver pro-
cess.

Adaptations. We now consider the adaptations that exists
in this family as shown in Figure 3. There are four adap-

5

Adapt-active parts for adaptation 1 : fecAck to fec

Fraction : s fecAck

a11s : true → ack mode := false
a12s : a11s ∧ a11r → sremove s fecAck [n, k, w, u, g, p, eQ]

Fraction : r fecAck

a11r : true → ack mode := false
a12r : a11s ∧ a11r → sremove

r fecAck [n, k, w, gd, rbuf,undel grp, discard, wait]
Fraction : s fec

a12s : a12s(s fecAck) → sadd s fec [n, k, w, u, g, p, eQ]
Fraction : r fec

a12r : a12r(r fecAck) → sadd

r fec [n, k, w, gd, rbuf,undel grp, discard,wait]

Adapt-active parts for adaptation 2 : fec to fecAck

Fraction : s fec

a21s : true → sremove s fec [n, k, w, u, g, p, eQ]
Fraction : r fec

a21r : true → sremove

r fec [n, k, w, gd, rbuf,undel grp, discard,wait]
Fraction : s fecAck

a21s : a21s(s fec) → sadd s fecAck [n, k, w, u, g, p, eQ]
Fraction : r fecAck

a21r : a21r(r fec) → sadd

r fecAck [n, k, w, gd, rbuf,undel grp, discard, wait]
a22r : a21s → ack mode := true

Adapt-active parts for adaptation 3 : fecAck to ack

Fraction : s fecAck

a31s : true → block encode

a33s : a32r → remove s fecAck

Fraction : r fecAck

a32r : a31s ∧ snt = Empty ∧ undel grp = Empty
→ remove r fecAck

Fraction : s ack

a34s : a33s ∧ a33r → add s ack

Fraction : r ack

a33r : a32r → add r ack

Adapt-active parts for adaptation 4 : ack to fecAck

Fraction : s ack
a41s : true → block send

a43s : a42r → remove s ack

Fraction : r ack
a42r : a41s ∧ snt = Empty ∧ undel grp = Empty

→ remove r ack

Fraction : s fecAck

a44s : a43s ∧ a43r → add s fecAck

Fraction : r fecAck

a43r : a42r → add r fecAck

Figure 7: Adaptations in Reliable Communication
Component Family

tations that exist in this family, namely, (1) fecAck to fec,
(2) fec to fecAck, (3) fecAck to ack, and (4) ack to fecAck.
The arcs in the graph are labeled accordingly. (Note that
maximum possible adaptations in a family of three compo-
nents is six, and minimum required adaptations to keep the
graph strongly connected is three).

The adapt-active parts of each fractions that are involved
in adaptation are shown in Figure 7. The adapt-active parts
of the fractions contain the atomic adaptations that are asso-
ciated with them. The name of each atomic adaptation has
three subscripts (e.g., a13s). The first subscript denotes the
adaptation (cf. label of the arc in Figure 3). The second sub-
script denotes the order in the sequence of atomic adapta-
tions. If two atomic adaptations have the same second sub-
script, it means that they can be executed in any order. The
third subscript denotes the process that the atomic adapta-
tion is associated with. For example, the atomic adaptation
a13s denotes that in the adaptation 1 (fecAck to fec), it
is the third in the sequence of atomic adaptations and it
occurs at process s.

Adaptation 1: fecAck to fec having enhanced-primitive
relationship. Consider the fec and fecAck components
as shown in Figures 4 and 6. The fecAck component is syn-

tactically compatible with fec and it also provides all the
services that fec provides. In this case, fecAck is an en-
hanced component of fec, which is a primitive component.
During adaptation that replaces fecAck to fec, the fractions
can be changed arbitrarily, provided (i) fecAck component
is running in a primitive mode before the adaptation be-
gins, and (ii) state of fecAck component is transferred to
fec component. As shown in Figure 7, first the ack mode is
set to false (a11s and a11r); as a result the fecAck component
is now running in primitive mode, i.e., in a mode compati-
ble with fec. Now, the fractions can be changed arbitrarily
(a12s and a12r). There are two atomic adaptations named
a12s, one associated with fraction s fecAck and another as-
sociated with fraction s fec. This implies that sremove and
sadd needs to be done atomically, i.e., removal of s fecAck

and addition of s fec needs to be done in an atomic manner.
Similarly, removal of r fec and addition of r fecAck needs
to be done in an atomic manner. Note that sremove and
sadd carry an extra argument, which represents the state
information that is transferred from the existing component
to the new component. In this case, the state of fecAck

component is transferred to the fec component.
Adaptation 2: fec to fecAck having primitive-enhanced

relationship. As discussed in the previous adaptation, in
this case, the fractions can be changed arbitrarily, as the
components share a primitive-enhanced relationship. We
need to ensure that (i) state of fec component is transferred
to fecAck component, and (ii) fecAck runs in a primitive
mode till the adaptation is complete. Initially, the ack mode
is set to false, so fecAck runs in a mode that is compatible
with fec. After the adaptation is complete, ack mode is set
to true. The adaptation from fec to fecAck is as shown in
Figure 7.

Adaptation 3: fecAck to ack. The adaptation that re-
places fecAck to ack is as shown in Figure 7. Unlike adap-
tations 1 and 2, the components fecAck and ack do not share
an enhanced-primitive relationship, because the fecAck com-
ponent is not designed to run in ack-only mode. Specifi-
cally, the send function in fecAck is not compatible with
that of ack. Hence, fecAck component does not provide
all the functionality that ack component does. Therefore,
the fractions cannot be changed arbitrarily. First the en-
coder fraction s fecAck at the sender s needs to be blocked
from encoding more packets (a31s). Once all the packets
that are already encoded are sent by s, and received by the
receiver r, then decoder fraction r fecAck can be removed
(a32r). After the r fecAck fraction is removed, the removal
of the s fecAck fraction (a33s) and the addition of the r ack

fraction (a33r) can be done in any order. Finally, after the
s fecAck fraction at s is removed and r ack fraction at r
is added, the encoder fraction s ack is added at s (a34s).
(Note that fecAck and ack could be modified so that they
satisfy the enhanced-primitive relationship. We have chosen
not to do so to illustrate the case where the components are
not related by an enhanced-primitive relationship.)

Adaptation 4: ack to fecAck. The adaptation that re-
places ack to fecAck is similar to the adaptation 3 discussed
above. Since the components do not share an enhanced-
primitive relationship, the fractions need to be changed in a
specific order as shown in Figure 7.

5. DISCUSSION
In this section, we answer some of the questions related to
our work on component family.

Can there be multiple adaptation paths between two compo-

6

nents? If yes, then which adaptation path should be chosen?
Yes. There can be multiple paths between two compo-

nents. In this case, additional factors could be taken into
account while deciding the appropriate path for adaptation.
To this end, for each arc, we could associate several factors,
e.g., the time or resources required for adaptation, types of
faults that could be tolerated in the adaptation. Based on
the factors associated with each arc, we can compute the
characteristics for different paths. These characteristics can
then be used to determine the suitable path.

How do we develop components that satisfy the enhanced-
primitive relationship?

One way to design such components is to use inheritance.
Inheritance provides syntactic compatibility between com-
ponents. To ensure semantic compatibility, we need to ex-
tend the inheritance relationship, such that, a derived com-
ponent provides all services that a parent component pro-
vides.
How does the component family design help when adaptation
involves components providing different functionalities, say
security and reliability?

In this case, there will be two separate component families,
namely, a family of components that provide reliability and a
family of components that provide security. The application
will have to perform separate adaptations for reliability and
security components.

There may exist a scenario, although undesirable as it
violates the principle of separation of concerns, where some
component, say C, provides reliability as well as security. In
this scenario, C will be present in both the families. Now,
if the application that is using C to provide security and
reliability decides to use only a security component, then
the application can perform adaptation to replace C with
a security component. Also, existence of such components
could be used in adaptations where one needs to trade off
between two desirable properties such as reliability and se-
curity. Specifically, if the application were to replace a relia-
bility component by a security component (may be because
of environment changes that require it to have security but
where reliability cannot be provided due to other constraints
such as energy management) then the application could first
replace the reliability component with C and then replace
C by the security component.

How can we perform the adaptation where some component
is removed although not replaced by other component?

If such a scenario is desired for a particular component
family then that family should have a default component
which is equivalent to having no component at all. For ex-
ample, in the context of our case study in Section 4, the
default component would be one that provides no recovery
for lost messages. Thus, removal of a component is equiva-
lent to replacing that component by the default component.
This approach is similar to that in [2].

6. CONCLUSION
In this paper, we presented a design methodology for build-
ing a systematic repository of components from the per-
spective of dynamic adaptation. The component family
architecture helps in reducing the number of adaptations
among components of a family. The design also helps to
provide adaptation between components, even if details of
these components are not available to each other. In this
case, the adaptation between these two components is done
through a sequence of adaptations that involve other com-

ponents.
Moreover, the component family design helps in simplify-

ing the verification task, by separating the adaptation con-
cern from component functionality. Also, the reduced num-
ber of adaptations reduces the number of verifications that
need to be done. Furthermore, the adaptation and verifica-
tion is made simpler in case where the components share an
enhanced-primitive relationship.

We have implemented the component family of reliable
communication components in Java. Using the reset-based
framework that we developed in [2], we perform adaptations
between components of this family. In [3], we have also
discussed an example of tree correction components, which
share an enhanced-primitive relationship.

The separation of adaptation concern from component
functionality is important towards realizing the goal of mak-
ing the component-based systems autonomously and dy-
namically adapt to their changing environment and require-
ments, and to verify such adaptations. In Section 4, we pre-
sented an example of reliable communication components
family and showed how adaptation can be specified sepa-
rately from component functionality. As a part of future
work, we plan to automatically generate adaptation code
from adaptation specification.

As discussed in Section 5, in a component family, mul-
tiple adaptations may exist between two components. In
this case, the choice for the adaptation depends on various
factors such as time, speed, resource availability, and fault-
tolerance requirements. As a part of future work, we plan to
develop a heuristic to assign weights to arcs in the graph of
the family based on these factors. The weights assigned to
adaptations (arcs) can be used to find an optimal adaptation
between two components.

7. REFERENCES
[1] Jim Buckley, Tom Mens, Matthias Zenger, Awais Rashid, and

Gunter Kniesel. Towards a taxonomy of software change.
Software Maintenance and Evolution: Research and Practice,
2003.

[2] Sandeep S. Kulkarni, Karun N. Biyani, and Umamaheswaran
Arumugam. Composing distributed fault-tolerance components.
In Workshop on Principles of Dependable Systems, DSN,
June 2003.

[3] Karun Biyani. Dynamic composition of distributed
components. Master’s thesis, Michigan State University, 2003.

[4] Sandeep Kulkarni and Karun Biyani. Correctness of
component-based adaptation. In International Symposium on
Component-based Software Engineering, May 2004.

[5] Daniel M. Hoffman and David M. Weiss, editors. Software
Fundamentals - Collected Papers by David L. Parnas.
Addison-Wesley, 2001.

[6] Don Batory, Roberto Lopez Herrejon, and Jean-Phillipe
Martin. Generating product-lines of product families. In
Automated Software Engineering Conference, 2002.

[7] S. Masoud Sadjadi. Transparent Shaping of Existing Software
to Support Pervasive and Autonomic Computing. PhD thesis,
Michigan State University, 2004.

[8] W. K. Chen, M. Hiltunen, and R. Schlichting. Constructing
adaptive software in distributed systems. In 21st International
Conference on Distributed Computing Systems, pages
635–643, April 2001.

[9] J. Hallstrom, W. Leal, and A. Arora. Scalable evolution of
highly available systems. Transactions of the Institute for
Electronics, Information and Communication Engineers, To
appear.

[10] P. McKinley and U. Padmanabhan. Design of composable
proxy filters for mobile computing. In Workshop on Wireless
Networks and Mobile Computing, 2001.

[11] B. Redmond and V. Cahill. Supporting unanticipated dynamic
adaptation of application. In ECOOP, 2002.

[12] M. Gouda. Elements of Network Protocol Desgin. John Wiley
& Sons, 1998.

7

