
Autonomic Resource Management for Extensible Control Planes

Bushar Yousef, Doan Hoang

University of Technology, Sydney

{byousef,dhoang}@it.uts.edu.au

Glynn Rogers

CSIRO ICT Centre

Glynn.Rogers@csiro.au

Abstract

A dynamically extensible control plane is a key

enabling feature of next generation intelligent self-

configuring networks. This extensibility can be
achieved by enabling service deployment into the

control plane of a network. These services consume

unpredictable amounts of resources at node with

unknown resource availability. This paper presents an

autonomic resource management model for extensible

control plane, called C-QoS. Under the C-QoS model,
services are classified into classes according to their

importance or QoS requirements. Resources are

allocated among classes according to a differentiated

per-class resource allocation scheme, while Services

within a class receive fair treatment. Due to the
difficulty of determining resource availability in

heterogenous infrastructure or service resource

requirements, this scheme is dynamically adaptive to

each resource according to its demand patterns.

1. Introduction

An ‘autonomic network’ requires evolving

intelligence to achieve self-configuring and self-

healing characteristics. This intelligence would

monitor and automatically reconfigure the network to

provide self resource-management, fault isolation and

recovery, and to provide new network services that are

best suited to the required connectivity. Automatic

mechanisms would upgrade the intelligence to evolve

the network under changing conditions. However,

current networks accommodate static infrastructure

where functionality cannot be extended to enable the

introduction of new intelligence into the network.

Various research efforts have been made to enable

intelligence to be introduced into networks.

Programmable Networks utilise programmable

forwarding plane components (such as Programmable

Network Processors, Programmable ASIC, or FPGA)

to enable third parties to dynamically deploy services

into the control plane of network nodes. A Service is a

collection of software components that executes in the

control plane to perform a specific role by monitoring

and reconfiguring forwarding-plane hardware

components. Such a dynamic service deployment

feature enables an extensible control plane that

accommodates ‘intelligent’ monitoring and action

components of an autonomic network.

Despite these added benefits, deploying a

Programmable Network introduces new management

issues. Services executing in the control plane require

resources to function, namely, CPU, memory, and

internal communication resources. These resources are

limited at network nodes and must be managed among

competing services. To date, no practical model exists

that allows multiple Services to execute with adequate

Quality of Service (QoS). We identify two models

employed in the resource management mechanisms of

all current programmable network nodes:

Explicit allocation, which is employed in [1, 2],

refers to a model where resources are allocated to a

domain (a collection of Services or an activated control

flow) according to a pre-determined fixed

specification. Systems adopting this model require the

specification of resource requirements for each domain

when executed on each different type of control plane

platform. This is not scalable to large heterogeneous

infrastructure. This model leads to inefficient resource

utilisation as domains are over allocated resources, and

unutilised resources are not reallocated among other

domains. More critically, however, this model hinges

on the difficult task of predetermining or estimating the

resource consumption of domains and therefore cannot

be utilised for evolving intelligence.

Flow throttling, which is employed in [3, 4], refers

to a model where the rate of packet input to Services is

throttled to control their resource consumption. Such a

model cannot control resources consumed without

packet input influence such as by monitoring Services.

This model also hinges on the difficult task of

predetermining or estimating resource consumption.

We identify a need for a simple, comprehensive,

and scalable resource management approach for the

extensible control planes of future networks. Due to the

Proceedings of the Sixth IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks (WoWMoM’05)

0-7695-2342-0/05 $20.00 © 2005 IEEE

heterogeneity and size of networks, the complex nature

Service deployment, any viable solution must adopt an

autonomic approach. Such a solution would

automatically adapt to varying resource availability

and consumption where the interaction with the

administrator is limited to simple high-level

classifications.

Figure 1 Serviter Hardware Base

This paper proposes a new scalable, adaptive, and

self-managing resource management model for

extensible control-planes, called Control plane–Quality

of Service (C-QoS). C-QoS automatically customises

resource allocations according to each Service’s

heterogeneous needs with minimal human interaction

and no internal detail of Service code. C-QoS adapts

to any platform regardless of its manufacturer, resource

capacity, or internal topology using dynamic allocation

ratios to provide differentiated treatment for Services

according to their role in the network. It is also capable

of guaranteeing a lower limit of resource availability to

each Service.

The rest of the paper is structured as follows.

Section 2 presents the underlying architecture for an

extensible control plane. Section 3 introduces the C-

QoS model, and describes its components. The paper

concludes in section 4.

2. The Extensible Control Plane

In previous work [5, 6], we designed and implemented

a service-oriented programmable network platform

called Serviter (previously called SXD-PNP). Serviter

hosts a scalable, extensible control plane where

Services are deployed on-demand. Serviter also

employs various security mechanisms to isolate

Service risks to separate and secure partitions.

The Serviter structure is depicted in figure 1. A

Serviter is composed of an expandable control plane

composed of Computational Elements (CEs), a

forwarding plane composed of programmable Network

Interface modules (NIs), and a Control-Computational

Element.

Services are hosted in a single CE or across

multiple CEs to achieve a scalable extensible control

plane. Services are modules written by trusted third

parties that are distributed using a specific deployment

structure. Services typically monitor and reconfigure

programmable forwarding plane modules, and may

capture control traffic for customised processing. A

CE, depicted in figure 2, is composed of Partition

Virtual Machines, a number of communication

dispatchers, an interface to the OS resource

management mechanisms, and a Load Manager.

Figure 2 Computational Element

A Partition VM is a coarse management unit used in

resource management and load balancing. A Partition

VM hosts a number of Runtime Environments (REs)

which execute and manage collections of Services.

Each RE manages a number of threads and schedules

Services onto thread slots. Serviter provides three RE

types, each with a different scheduling model to cater

for variations in Service response time and allocation

size requirements. Forwarding plane configurations of

a certain Partition VM are restricted to the flows that

are relevant for the Services it hosts. For example, a

partition that hosts Services that manage web services

may only redirect HTTP traffic from certain servers to

SSL accelerators.

The selection of an appropriate Partition VM and

RE configuration for Service place must take into

account a number of factors. Firstly, Services requiring

access to the different flows should be placed in

different partitions to minimise the permitted range of

forwarding plane access to each partition and isolate

security risks to minimal set of flows. Secondly,

Services requiring different QoS on internal resources

should be placed in the different partitions. Finally,

Services are then placed in an RE with the appropriate

thread scheduling algorithm to meet response time and

allocation size requirements.

Services communicate through a number of

dispatchers organised in a hierarchy as depicted in

figure 3. The OS ensures that Partition VMs only

communicate through the dispatcher hierarchy.

However, an exception to this rule can be made for

captured traffic as traversing the hierarchy would add

delay. Tunnels can be created by Services to bypass

dispatchers within the CE and reduce delay.

CE

Control

CE

CE CE CE

NI NI NI NI

Switching Fabric/Bus

CE
 Partition VM#1

RE #1 RE #N

 RE Dispatcher

 …

Partition

VM#N
OS

Resource

Managers

C-QoS

Interface

 System Dispatcher

Srv Dispatcher

Services

 Management Process
Load

Manager

Tunnels

 …

Bus Channel

Allocation DB

Proceedings of the Sixth IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks (WoWMoM’05)

0-7695-2342-0/05 $20.00 © 2005 IEEE

A Service executes unknown code that consumes

unpredictable amounts of control plane computational

resources, namely CPU, Memory, and I/O resources.

Service must often perform intensive communication

tasks. These tasks include interacting with other

Services within the same CE or at a different CE.

However, the most important Service communication

tasks are NI monitoring, reconfiguring, and flow

capture tasks. Such tasks consume internal node

communication resources for storing, routing,

verifying, and forwarding messages - namely CPU,

memory, and switching fabric bandwidth. These

resources are consumed outside of the Service in the

Serviter dispatcher hierarchy or by the tunnels.

Figure 3 Dispatcher Hierarchy

C-QoS was developed and is currently employed to

manage all internal resources of a Serviter among its

competing partitions and Services even when Service

internal details or node capacity are not known. The

model and mechanisms of C-QoS could easily be

adapted to manage the resources of any extensible

control plane.

3. Control plane-QoS

C-QoS is a scalable, adaptive, and self-managing

model for the division, allocation, and quality

assurance of control plane and bus resources among

competing Services and partitions. It is also used to

optimise the utilisation of control plane resources.

Unlike the flow throttling models of [3, 4], C-QoS

is not coupled with network QoS. This decoupling

allows the management of control plane and bus

resources without any impact on network SLAs. C-

QoS employs a class based differentiation resource

allocation model. This model does not involve fine

grained control or explicit resources allocation

essential to the resource management models of [1, 2].

Partitions, Runtime Environments, and Services are

classified into a defined set of classes according to

their importance and QoS requirements. Classes can be

created on-demand, using only a class name and a

simple class allocation ratio. A class allocation ratio

defines the priority of resource allocation for each class

(e.g. for Gold:Silver:Bronze:BestEffort classes, a ratio

could be 20:10:5:0). Units within the same class are

treated fairly.

Due to the unpredictable nature of resource

consumption patterns and availability, resources are

shifted from lower classes to a higher one as the load

of the higher-class increases. This is achieved through

three different allocation ratios: a fluctuating current

ratio, an adaptable limit ratio, and a fixed ideal ratio.

A separate current ratio is maintained for each

resource type (e.g. CPU, memory, internal

communication), while the limit and ideal ratios

always apply to all resources.

The current ratio of each resource starts as being

the same as the ideal ratio. Once a Load Monitor,

located in CEs as depicted in figure 2, detects an

increase in the load of higher classes for a certain

resource, it gradually changes the current ratio of the

resource to favour the higher classes. This process

stops once the limit ratio is reached to guarantee an

allocation level of resources to all classes. As the load

of the upper class decreases, it periodically changes the

current ratio to favour lower classes until the ideal

ratio is reached.

To provide a fair and consistent level of to all

partitions, current ratios must be maintained across all

CEs. It is not possible to predetermine a distribution of

Partition VMs that give uniform current ratios as: (1)

it is not possible to predetermine the resource needs of

Services along their lifetime (2) the available resources

of each CE cannot be easily discovered (3) partitions

are dynamically created and removed.

C-QoS provides mechanisms to ensure a uniform

current ratio across CEs and to ensure CEs are not

congested. The Control-CE contains a Load Balancing

Service (LBS) that periodically polls each CE’s Load

Manager for resource availability and its current ratio.

If a CE is congested, Best-Effort partitions are

gradually paused and relocated to the least loaded CE.

This relocation is restricted to Best-Effort partitions as

it causes temporary Service outage. The LBS also

ensures the uniform ratio is maintained by deploying a

new partition at the CE with the least load for the class

of the new partition. It is also used to verify that new

partitions and/or Services can be accommodated

without depleting resources.

The only human input required by C-QoS is class

names and the ideal ratio. The ideal ratio can be

derived directly from the relative importance of

Services. The ideal ratio, which operates in a non-

congestion state, does not require optimisation as any

resources unutilised by a class are shared among others

according to the current ratio of each resource.

External Node Dispatcher

Flow

Access

Restriction

System Dispatcher

Control CE

NI

Service Dispatcher

RE Dispatcher

Services

CE

NPU

Bus Channel Allocation DB

T

U

N

N

E

L

Proceedings of the Sixth IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks (WoWMoM’05)

0-7695-2342-0/05 $20.00 © 2005 IEEE

The limit ratio must be adapted and dynamically

optimised for each heterogenous CE to ensure

resources are fully utilised. C-QoS uses a Congestion
Optimisation algorithm. The basic concept behind this

algorithm is that a good operating point is maintained

by restricting the fluctuations of current ratios to the

maximum range that does not cause congestion. To

maintain differentiation, a separate fluctuation range

must be maintained for each class in proportion to the

ideal ratio. In other words, higher classes are permitted

larger fluctuation ranges than lower classes.

The Congestion Optimisation algorithm is invoked

when a Load Manager has detected that the limit ratio

has been reached by a non-best effort class and has

already attempted load balancing operations to free

resources but failed. This algorithm polls the Load

Manager to check if the CE is ‘near’ congestion (true if

the utilisation of any resource reaching 95% in the past

‘Time Frame’). If the CE is near congestion then the

algorithm terminates as any limit increase causes

congestion. Otherwise, it determines whether to

increase the limit ratio for the congested class. This

decision is made based on whether its current

fluctuation range (the difference between ideal and

limit ratio) in less that the permitted range (i.e. <

class_ideal_ratio x total_fluctuation_ranges). If it is,

then the limit is increased for the congested class in

proportion to the mean of its current ratios (which

gives an indication of the ideal ratio and demand). This

gradual increase continually finds a good operating

point where higher classes invoke Congestion

Optimisation less frequently than lower classes.

A Resource Manager is provided for each resource.

It divides the resource into equal sections or slices and

allocates them to classes according to its current ratio

and fairly to partitions within a class. This division is

dependant on the underlying resource management

method used by the operating system for CE resource

and by the scheduling/channelling method used on the

bus. C-QoS categorises resources as Computational or

Internal Communication.

3.1. Internal Communication Resources

As all internal communication is handled through

the dispatcher hierarchy, as depicted in figure 3,

dispatchers and tunnels are used represents internal

communication resources.

Tunnels perform communication tasks between

Services and pre-established NIs. They bypass most of

the dispatcher hierarchy to reduce delays encountered

by captured network traffic. As tunnels also consume

resource, modules running each tunnel consume

resources allocated to the Partition VM as controlled

by computational resource managers. Tunnels access

the bus access through the System Dispatcher that

enforces bus channel allocations.

Figure 4 Dispatcher Structure

Dispatchers are allocated the bus access time, CPU,

and memory resources required to classify, schedule,

verify, route, and forward communication messages.

Allocation and scheduling mechanisms within

dispatchers are used as the Communication Resource

Manager to partition internal communication

resources. Dispatchers share a common structure as

depicted in figure 4. Dispatcher time is divided into

slots that are scheduled among sources fairly for each

class and according to a communication current ratio

among classes.

Dispatchers create a socket for each source. These

sockets are classified into the class of their originating

source (i.e. Service, RE, Partition VM, Control-CE, or

NI). Sockets are serviced by a flow scheduler for each

class, which treats all sockets in its class fairly. The

flow scheduler services sockets only when its class

queue is not full. It chooses a socket according a Fair-

Round Robin (F-RR) [7] algorithm and moves the first

message from the socket to the end of its class queue.

To achieve fairness, the F-RR algorithm takes into

account the number and size of messages.

Source sockets maintain limited buffer space to

restrict malicious or faulty Services from flooding the

communication channels or affecting the resource

allocation to other sockets. Once a socket buffer is

full, any new messages are dropped.

Class queues are serviced according to the

communication resource current ratio. Once a class

queue is full, an attempt is made to change the current
ratio to favour that class by notifying the Load

Manager of congestion. A Class Handler services each

class queue spending a certain Service Time on each.

The Service Time is specified by a Weighted-Round

Robin (W-RR) [8] algorithm that is weighted by the

communication current ratio. This time is spent

verifying each message to ensure it is not a spoofed

and forwarding the message to its next hop.

Messages are selected from the head of each queue

until its Service Time expires or the queue is empty.

Any unused time is forfeited. However, as it is difficult

 W1

 W2

 W3

 W4

Destination Service

Weighted Scheduler

GOLD

SILVER

BRONZE

B. E.

Next Dispatcher

BUS

…
.

Source 1
Source 2

 . . .

Fair Schedulers

SourceN

Proceedings of the Sixth IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks (WoWMoM’05)

0-7695-2342-0/05 $20.00 © 2005 IEEE

to predict the time to service a message, often the last

message would cause the handler to exceed the Service

Time. Any exceeded amount is decremented from the

class’s Service Time of the next round(s).

3.2. Computational Resources

Computational resources are the traditional OS

controlled resources of multi-user systems, namely

CPU scheduling priorities, memory heap restrictions,

I/O scheduling, and harddisk quotas. These resources

are allocated by each CE’s OS amongst its Partition

VMs according to their C-QoS class and the current

ratio for each resource. The current ratio for each

resource is specified by the Load Manager through the

C-QoS interface to the OS Resource Managers. In our

implementation, we build an interface to Class-base

Kernel Resource Management (CKRM) [9] modules

that enable dynamically configured class-based

resource management on CPU, memory pages, and

I/O. However, as CKRM does not manage harddisk

quota we implemented a separate interface to allow the

Load Manager to allocate free harddisk space among

partitions. As it is difficult to reclaim harddisk space,

this allocation is performed according to the ideal ratio.

Further detail on OS Resource Managers is outside the

scope of this paper.

To provide differentiation of Services within

partitions, Partition VM resources are divided among

sub-classes into which REs (collections of Services)

are classified. REs further differentiate between

Services by placing Services into RE sub-classes. This

structure permits N
3
 levels of differentiations between

Services, where N is the specified number of classes.

A Partition VM enforces Service prioritisation

mechanisms. RE class differentiation is enforced by

prioritising RE threads according to the RE’s class, and

using the RE Dispatcher to differentiate

communication resources. The differentiation of

Services is enforced using specialised algorithms

within REs to favour Services of upper classes to

thread slots, and using the Service Dispatchers to

differentiate communication resources. A DoS attack

on the CPU from a malicious or faulty Service is

catered for as REs control its threads and “pre-empts”

between fixed time slices.

4. Conclusion and Future Work

This paper presented a scalable, adaptive, and self-

managing model for the division, allocation, and

quality assurance of control plane and bus resources

among competing Services and partitions. This model

ensures efficient utilisation of resources without prior

knowledge of resource requirement or node capacity. It

handles fluctuations in resource consumption through

dynamic allocation ratios and load balancing.

We have implemented Serviter and C-QoS on a

commercial grade platform with a number PCs for the

control plane. CEs are implemented on PCs running

the CKRM modules [9]. Several tests were conduction

to study the C-QoS claims. These tests found our C-

QoS implementation provided good class

differentiation and fairness within classes. Other tests

were conducted to study the C-QoS claims of

starvation prevention and limit optimisation. This test

ran enough gold services to deplete the control plane of

resource and then attempting to run several bronze

services. It was found that the limit optimisation

mechanism maintained consumption at ‘near’

congestion and bronze services received resource

reflecting the allocation ratio. To improve limit

optimisations, further investigation is needed to find

more accurate ‘near’ congestion point measures on

CEs. The C-QoS model is currently being modified to

maintain a separate limit ratio for each resource to

provide optimal resource utilisation across all CE

resources.

5. References

1. Tullmann, P., M. Hibler, J. Lepreau, Janos: A

Java-Oriented OS for Active Network Nodes. Proceedings of

DARPA Active Networks Conference and Exposition, 2002.

2. Peterson, L., Y. Gottlieb, M. Hibler, P. Tullmann,

J. Lepreau, S. Schwab, H. Dandekar, A. Purrell, J. Hartman,

An OS Interface for Active Routers. IEEE Journal on Selected

Areas in Communications, 2001. 10(3): p. 473-487.

3. Qie, X., A. Bavier, L. Peterson, S. Karlin.

Scheduling Computations on a Software-Based Router. in

Proc. of ACM SIGMETRICS. 2001.

4. Pappu, P., T. Wolf. Scheduling Processing

Resources in Programmable Routers. in Proc. of the Twenty-

First IEEE Conference on Computer Communications

(INFOCOM). 2002. New York, NY.

5. Hoang, D., B. Yousef, G. Rogers. The Design of a

Secure, Extensible, and Deployable-Programmable Network

Platform. in Proc. of 11th IEEE International Conference on

Networks. 2003. Sydney.

6. Yousef, B., D. B. Hoang, G. Rogers. Network

Programmability for VPN Overlay Construction and

Bandwidth Management. in Proc. of the 6th International

Working Conference on Active Networking (IWAN'2004).

October, 2004. Lawrence, Kansas, USA.

7. Shreedhar, M., G. Varghese, Efficient Fair

Queueing Using Deficit Round Robin. ACM SIGCOMM

Computer Communications Review, August 1995.

8. Bennett, J.C.R., H. Zhang. WF2Q: Worst-case Fair

Weighted Fair Queueing. in IEEE INFOCOM. March 1996.

9. Class-based Kernel Resource Management

(CKRM), http://ckrm.sourceforge.net/.

Proceedings of the Sixth IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks (WoWMoM’05)

0-7695-2342-0/05 $20.00 © 2005 IEEE

