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Abstract 

A dynamically extensible control plane is a key 

enabling feature of next generation intelligent self-

configuring networks. This extensibility can be 
achieved by enabling service deployment into the 

control plane of a network. These services consume 

unpredictable amounts of resources at node with 

unknown resource availability. This paper presents an 

autonomic resource management model for extensible 

control plane, called C-QoS.  Under the C-QoS model, 
services are classified into classes according to their 

importance or QoS requirements. Resources are 

allocated among classes according to a differentiated 

per-class resource allocation scheme, while Services 

within a class receive fair treatment. Due to the 
difficulty of determining resource availability in 

heterogenous infrastructure or service resource 

requirements, this scheme is dynamically adaptive to 

each resource according to its demand patterns.  

1. Introduction 

An ‘autonomic network’ requires evolving 

intelligence to achieve self-configuring and self-

healing characteristics. This intelligence would 

monitor and automatically reconfigure the network to 

provide self resource-management, fault isolation and 

recovery, and to provide new network services that are 

best suited to the required connectivity. Automatic 

mechanisms would upgrade the intelligence to evolve 

the network under changing conditions. However, 

current networks accommodate static infrastructure 

where functionality cannot be extended to enable the 

introduction of new intelligence into the network. 

Various research efforts have been made to enable 

intelligence to be introduced into networks. 

Programmable Networks utilise programmable 

forwarding plane components (such as Programmable 

Network Processors, Programmable ASIC, or FPGA) 

to enable third parties to dynamically deploy services 

into the control plane of network nodes. A Service is a 

collection of software components that executes in the 

control plane to perform a specific role by monitoring 

and reconfiguring forwarding-plane hardware 

components. Such a dynamic service deployment 

feature enables an extensible control plane that 

accommodates ‘intelligent’ monitoring and action 

components of an autonomic network.  

Despite these added benefits, deploying a 

Programmable Network introduces new management 

issues. Services executing in the control plane require 

resources to function, namely, CPU, memory, and 

internal communication resources. These resources are 

limited at network nodes and must be managed among 

competing services. To date, no practical model exists 

that allows multiple Services to execute with adequate 

Quality of Service (QoS). We identify two models 

employed in the resource management mechanisms of 

all current programmable network nodes:  

Explicit allocation, which is employed in [1, 2], 

refers to a model where resources are allocated to a 

domain (a collection of Services or an activated control 

flow) according to a pre-determined fixed 

specification. Systems adopting this model require the 

specification of resource requirements for each domain 

when executed on each different type of control plane 

platform. This is not scalable to large heterogeneous 

infrastructure. This model leads to inefficient resource 

utilisation as domains are over allocated resources, and 

unutilised resources are not reallocated among other 

domains. More critically, however, this model hinges 

on the difficult task of predetermining or estimating the 

resource consumption of domains and therefore cannot 

be utilised for evolving intelligence. 

Flow throttling, which is employed in [3, 4], refers 

to a model where the rate of packet input to Services is 

throttled to control their resource consumption. Such a 

model cannot control resources consumed without 

packet input influence such as by monitoring Services. 

This model also hinges on the difficult task of 

predetermining or estimating resource consumption. 

We identify a need for a simple, comprehensive, 

and scalable resource management approach for the 

extensible control planes of future networks. Due to the 
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heterogeneity and size of networks, the complex nature 

Service deployment, any viable solution must adopt an 

autonomic approach. Such a solution would 

automatically adapt to varying resource availability 

and consumption where the interaction with the 

administrator is limited to simple high-level 

classifications. 

Figure 1 Serviter Hardware Base 

This paper proposes a new scalable, adaptive, and 

self-managing resource management model for 

extensible control-planes, called Control plane–Quality 

of Service (C-QoS).  C-QoS automatically customises 

resource allocations according to each Service’s 

heterogeneous needs with minimal human interaction 

and no internal detail of Service code.  C-QoS adapts 

to any platform regardless of its manufacturer, resource 

capacity, or internal topology using dynamic allocation 

ratios to provide differentiated treatment for Services 

according to their role in the network. It is also capable 

of guaranteeing a lower limit of resource availability to 

each Service. 

The rest of the paper is structured as follows. 

Section 2 presents the underlying architecture for an 

extensible control plane. Section 3 introduces the C-

QoS model, and describes its components. The paper 

concludes in section 4.  

2. The Extensible Control Plane 

In previous work [5, 6], we designed and implemented 

a service-oriented programmable network platform 

called Serviter (previously called SXD-PNP). Serviter 

hosts a scalable, extensible control plane where 

Services are deployed on-demand. Serviter also 

employs various security mechanisms to isolate 

Service risks to separate and secure partitions. 

The Serviter structure is depicted in figure 1. A 

Serviter is composed of an expandable control plane 

composed of Computational Elements (CEs), a 

forwarding plane composed of programmable Network 

Interface modules (NIs), and a Control-Computational 

Element. 

Services are hosted in a single CE or across 

multiple CEs to achieve a scalable extensible control 

plane. Services are modules written by trusted third 

parties that are distributed using a specific deployment 

structure. Services typically monitor and reconfigure 

programmable forwarding plane modules, and may 

capture control traffic for customised processing.  A 

CE, depicted in figure 2, is composed of Partition 

Virtual Machines, a number of communication 

dispatchers, an interface to the OS resource 

management mechanisms, and a Load Manager. 

Figure 2 Computational Element 

A Partition VM is a coarse management unit used in 

resource management and load balancing. A Partition 

VM hosts a number of Runtime Environments (REs) 

which execute and manage collections of Services.  

Each RE manages a number of threads and schedules 

Services onto thread slots. Serviter provides three RE 

types, each with a different scheduling model to cater 

for variations in Service response time and allocation 

size requirements. Forwarding plane configurations of 

a certain Partition VM are restricted to the flows that 

are relevant for the Services it hosts. For example, a 

partition that hosts Services that manage web services 

may only redirect HTTP traffic from certain servers to 

SSL accelerators.  

The selection of an appropriate Partition VM and 

RE configuration for Service place must take into 

account a number of factors. Firstly, Services requiring 

access to the different flows should be placed in 

different partitions to minimise the permitted range of 

forwarding plane access to each partition and isolate 

security risks to minimal set of flows. Secondly, 

Services requiring different QoS on internal resources 

should be placed in the different partitions.  Finally, 

Services are then placed in an RE with the appropriate 

thread scheduling algorithm to meet response time and 

allocation size requirements.  

Services communicate through a number of 

dispatchers organised in a hierarchy as depicted in 

figure 3. The OS ensures that Partition VMs only 

communicate through the dispatcher hierarchy. 

However, an exception to this rule can be made for 

captured traffic as traversing the hierarchy would add 

delay. Tunnels can be created by Services to bypass 

dispatchers within the CE and reduce delay. 
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A Service executes unknown code that consumes 

unpredictable amounts of control plane computational 

resources, namely CPU, Memory, and I/O resources. 

Service must often perform intensive communication 

tasks.  These tasks include interacting with other 

Services within the same CE or at a different CE. 

However, the most important Service communication 

tasks are NI monitoring, reconfiguring, and flow 

capture tasks.  Such tasks consume internal node 

communication resources for storing, routing, 

verifying, and forwarding messages - namely CPU, 

memory, and switching fabric bandwidth. These 

resources are consumed outside of the Service in the 

Serviter dispatcher hierarchy or by the tunnels. 

Figure 3 Dispatcher Hierarchy 

C-QoS was developed and is currently employed to 

manage all internal resources of a Serviter among its 

competing partitions and Services even when Service 

internal details or node capacity are not known. The 

model and mechanisms of C-QoS could easily be 

adapted to manage the resources of any extensible 

control plane. 

3. Control plane-QoS 

C-QoS is a scalable, adaptive, and self-managing 

model for the division, allocation, and quality 

assurance of control plane and bus resources among 

competing Services and partitions. It is also used to 

optimise the utilisation of control plane resources. 

Unlike the flow throttling models of [3, 4], C-QoS 

is not coupled with network QoS. This decoupling 

allows the management of control plane and bus 

resources without any impact on network SLAs. C-

QoS employs a class based differentiation resource 

allocation model. This model does not involve fine 

grained control or explicit resources allocation  

essential to the resource management models of [1, 2].  

Partitions, Runtime Environments, and Services are 

classified into a defined set of classes according to 

their importance and QoS requirements. Classes can be 

created on-demand, using only a class name and a 

simple class allocation ratio. A class allocation ratio 

defines the priority of resource allocation for each class 

(e.g. for Gold:Silver:Bronze:BestEffort classes, a ratio 

could be 20:10:5:0). Units within the same class are 

treated fairly.  

Due to the unpredictable nature of resource 

consumption patterns and availability, resources are 

shifted from lower classes to a higher one as the load 

of the higher-class increases. This is achieved through 

three different allocation ratios: a fluctuating current 

ratio, an adaptable limit ratio, and a fixed ideal ratio.

A separate current ratio is maintained for each 

resource type (e.g. CPU, memory, internal 

communication), while the limit and ideal ratios 

always apply to all resources.  

The current ratio of each resource starts as being 

the same as the ideal ratio. Once a Load Monitor, 

located in CEs as depicted in figure 2, detects an 

increase in the load of higher classes for a certain 

resource, it gradually changes the current ratio of the 

resource to favour the higher classes. This process 

stops once the limit ratio is reached to guarantee an 

allocation level of resources to all classes. As the load 

of the upper class decreases, it periodically changes the 

current ratio to favour lower classes until the ideal 

ratio is reached.  

To provide a fair and consistent level of to all 

partitions, current ratios must be maintained across all 

CEs. It is not possible to predetermine a distribution of 

Partition VMs that give uniform current ratios as: (1) 

it is not possible to predetermine the resource needs of 

Services along their lifetime (2) the available resources 

of each CE cannot be easily discovered (3) partitions 

are dynamically created and removed. 

C-QoS provides mechanisms to ensure a uniform 

current ratio across CEs and to ensure CEs are not 

congested. The Control-CE contains a Load Balancing 

Service (LBS) that periodically polls each CE’s Load 

Manager for resource availability and its current ratio.

If a CE is congested, Best-Effort partitions are 

gradually paused and relocated to the least loaded CE. 

This relocation is restricted to Best-Effort partitions as 

it causes temporary Service outage. The LBS also 

ensures the uniform ratio is maintained by deploying a 

new partition at the CE with the least load for the class 

of the new partition. It is also used to verify that new 

partitions and/or Services can be accommodated 

without depleting resources. 

The only human input required by C-QoS is class 

names and the ideal ratio. The ideal ratio can be 

derived directly from the relative importance of 

Services. The ideal ratio, which operates in a non-

congestion state, does not require optimisation as any 

resources unutilised by a class are shared among others 

according to the current ratio of each resource. 
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The limit ratio must be adapted and dynamically 

optimised for each heterogenous CE to ensure 

resources are fully utilised. C-QoS uses a Congestion 
Optimisation algorithm. The basic concept behind this 

algorithm is that a good operating point is maintained 

by restricting the fluctuations of current ratios to the 

maximum range that does not cause congestion. To 

maintain differentiation, a separate fluctuation range 

must be maintained for each class in proportion to the 

ideal ratio. In other words, higher classes are permitted 

larger fluctuation ranges than lower classes. 

The Congestion Optimisation algorithm is invoked 

when a Load Manager has detected that the limit ratio 

has been reached by a non-best effort class and has 

already attempted load balancing operations to free 

resources but failed. This algorithm polls the Load 

Manager to check if the CE is ‘near’ congestion (true if 

the utilisation of any resource reaching 95% in the past 

‘Time Frame’). If the CE is near congestion then the 

algorithm terminates as any limit increase causes 

congestion. Otherwise, it determines whether to 

increase the limit ratio for the congested class. This 

decision is made based on whether its current 

fluctuation range (the difference between ideal and 

limit ratio) in less that the permitted range (i.e. < 

class_ideal_ratio x total_fluctuation_ranges). If it is, 

then the limit is increased for the congested class in 

proportion to the mean of its current ratios (which 

gives an indication of the ideal ratio and demand). This 

gradual increase continually finds a good operating 

point where higher classes invoke Congestion 

Optimisation less frequently than lower classes.  

A Resource Manager is provided for each resource. 

It divides the resource into equal sections or slices and 

allocates them to classes according to its current ratio 

and fairly to partitions within a class. This division is 

dependant on the underlying resource management 

method used by the operating system for CE resource 

and by the scheduling/channelling method used on the 

bus. C-QoS categorises resources as Computational or 

Internal Communication.  

3.1. Internal Communication Resources 

As all internal communication is handled through 

the dispatcher hierarchy, as depicted in figure 3, 

dispatchers and tunnels are used represents internal 

communication resources.   

Tunnels perform communication tasks between 

Services and pre-established NIs. They bypass most of 

the dispatcher hierarchy to reduce delays encountered 

by captured network traffic.  As tunnels also consume 

resource, modules running each tunnel consume 

resources allocated to the Partition VM as controlled 

by computational resource managers. Tunnels access 

the bus access through the System Dispatcher that 

enforces bus channel allocations.  

Figure 4 Dispatcher Structure 

Dispatchers are allocated the bus access time, CPU, 

and memory resources required to classify, schedule, 

verify, route, and forward communication messages. 

Allocation and scheduling mechanisms within 

dispatchers are used as the Communication Resource 

Manager to partition internal communication 

resources. Dispatchers share a common structure as 

depicted in figure 4. Dispatcher time is divided into 

slots that are scheduled among sources fairly for each 

class and according to a communication current ratio 

among classes.   

Dispatchers create a socket for each source. These 

sockets are classified into the class of their originating 

source (i.e. Service, RE, Partition VM, Control-CE, or 

NI). Sockets are serviced by a flow scheduler for each 

class, which treats all sockets in its class fairly. The 

flow scheduler services sockets only when its class 

queue is not full. It chooses a socket according a Fair-

Round Robin (F-RR) [7] algorithm and moves the first 

message from the socket to the end of its class queue. 

To achieve fairness, the F-RR algorithm takes into 

account the number and size of messages. 

Source sockets maintain limited buffer space to 

restrict malicious or faulty Services from flooding the 

communication channels or affecting the resource 

allocation to other sockets.  Once a socket buffer is 

full, any new messages are dropped.

Class queues are serviced according to the 

communication resource current ratio. Once a class 

queue is full, an attempt is made to change the current 
ratio to favour that class by notifying the Load 

Manager of congestion. A Class Handler services each 

class queue spending a certain Service Time on each. 

The Service Time is specified by a Weighted-Round 

Robin (W-RR) [8] algorithm that is weighted by the 

communication current ratio. This time is spent 

verifying each message to ensure it is not a spoofed 

and forwarding the message to its next hop.  

Messages are selected from the head of each queue 

until its Service Time expires or the queue is empty. 

Any unused time is forfeited. However, as it is difficult 
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to predict the time to service a message, often the last 

message would cause the handler to exceed the Service 

Time. Any exceeded amount is decremented from the 

class’s Service Time of the next round(s). 

3.2. Computational Resources 

Computational resources are the traditional OS 

controlled resources of multi-user systems, namely 

CPU scheduling priorities, memory heap restrictions, 

I/O scheduling, and harddisk quotas. These resources 

are allocated by each CE’s OS amongst its Partition 

VMs according to their C-QoS class and the current 

ratio for each resource. The current ratio for each 

resource is specified by the Load Manager through the 

C-QoS interface to the OS Resource Managers. In our 

implementation, we build an interface to Class-base 

Kernel Resource Management (CKRM) [9] modules 

that enable dynamically configured class-based 

resource management on CPU, memory pages, and 

I/O. However, as CKRM does not manage harddisk 

quota we implemented a separate interface to allow the 

Load Manager to allocate free harddisk space among 

partitions. As it is difficult to reclaim harddisk space, 

this allocation is performed according to the ideal ratio. 

Further detail on OS Resource Managers is outside the 

scope of this paper.  

To provide differentiation of Services within 

partitions, Partition VM resources are divided among 

sub-classes into which REs (collections of Services) 

are classified. REs further differentiate between 

Services by placing Services into RE sub-classes. This 

structure permits N
3
 levels of differentiations between 

Services, where N is the specified number of classes. 

A Partition VM enforces Service prioritisation 

mechanisms. RE class differentiation is enforced by 

prioritising RE threads according to the RE’s class, and 

using the RE Dispatcher to differentiate 

communication resources. The differentiation of 

Services is enforced using specialised algorithms 

within REs to favour Services of upper classes to 

thread slots, and using the Service Dispatchers to 

differentiate communication resources. A DoS attack 

on the CPU from a malicious or faulty Service is 

catered for as REs control its threads and “pre-empts” 

between fixed time slices.  

4. Conclusion and Future Work 

This paper presented a scalable, adaptive, and self-

managing model for the division, allocation, and 

quality assurance of control plane and bus resources 

among competing Services and partitions. This model 

ensures efficient utilisation of resources without prior 

knowledge of resource requirement or node capacity. It 

handles fluctuations in resource consumption through 

dynamic allocation ratios and load balancing. 

We have implemented Serviter and C-QoS on a 

commercial grade platform with a number PCs for the 

control plane. CEs are implemented on PCs running 

the CKRM modules [9]. Several tests were conduction 

to study the C-QoS claims. These tests found our C-

QoS implementation provided good class 

differentiation and fairness within classes. Other tests 

were conducted to study the C-QoS claims of 

starvation prevention and limit optimisation. This test 

ran enough gold services to deplete the control plane of 

resource and then attempting to run several bronze 

services. It was found that the limit optimisation 

mechanism maintained consumption at ‘near’ 

congestion and bronze services received resource 

reflecting the allocation ratio. To improve limit 

optimisations, further investigation is needed to find 

more accurate ‘near’ congestion point measures on 

CEs. The C-QoS model is currently being modified to 

maintain a separate limit ratio for each resource to 

provide optimal resource utilisation across all CE 

resources.  
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