
Autonomic Computing:
Emerging Trends and Open Problems

Mazeiar Salehie
mazeiar@uwaterloo.ca

Ladan Tahvildari
ltahvild@uwaterloo.ca

Dept. of Elect. and Comp. Eng.
University of Waterloo

Waterloo, Ontario
Canada N2L 3G1

ABSTRACT
The increasing heterogeneity, dynamism and interconnec-
tivity in software applications, services and networks led to
complex, unmanageable and insecure systems. Coping with
such a complexity necessitates to investigate a new paradigm
namely Autonomic Computing. Although academic and in-
dustry efforts are beginning to proliferate in this research
area, there are still a lots of open issues that remain to be
solved. This paper proposes a categorization of complexity
in I/T systems and presents an overview of autonomic com-
puting research area. The paper also discusses a summary
of the major autonomic computing systems that have been
already developed both in academia and industry, and fi-
nally outlines the underlying research issues and challenges
from a practical as well as a theoretical point of view.

Categories and Subject Descriptors
A.1 [General Literature]: Introductory and Survey; D.2.9
[Software Engineering]: Management

General Terms
Design, Management

Keywords
Autonomic Computing, Software Engineering, Software Man-
agement

1. INTRODUCTION
The advent and evolution of networks and Internet, which
has delivered ubiquitous services with extensive scalability
and flexibility, continues to make computing environments
more complex. On the other hand, as systems became much
more software-intensive, we can hear more about software
crisis. The root cause of the crisis has always been com-
plexity; complexity of business domains to be analyzed, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEAS 2005,May 21, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-59593-039-6/05/0005 ...$ 5.00.

target system to be designed, implemented, maintained and
managed, and the complexity of using systems in environ-
ments. As Robert Morris, director of IBM’s Almaden Re-
search Laboratory, said “There is no less than a crisis today
in three areas : cost, availability and user experience”.

Meanwhile, Information Technology (I/T) is called upon
to deliver business services at higher speed and minimum
cost. These services must be integrated into the existing
infrastructure which lead to increase the complexity. To-
day, I/T organizations face severe challenges in managing
complexity due to cost, time and relying on human experts.
The growing complexity of the I/T infrastructure threatens
to undermine the benefits information technology aims to
provide [12]. According to a study published in March 2002
by researchers from University of California at Berkeley [29],
the labor costs outstrip equipment by factors of 3 to 18, de-
pending on the type of system, and one third to one half
of the total budget is spent preventing or recovering from
crashes.

All these issues have necessitated the investigation of a
new paradigm, Autonomic Computing, to design, develop,
deploy and manage systems by inspiring from strategies used
by biological systems to cope with complexity, heterogeneity,
and uncertainty. An autonomic system has four major char-
acteristics - self-configure, self-heal, self-optimize, and self-
protect - which are often referred to as self-CHOP character-
istics. According to [30], there are two visions in Autonomic
Computing : “Vision in Administration” in which comput-
ing systems that can manage themselves given high-level
objectives from administrators, and “Vision in Software En-
gineering”, due to software intensiveness of I/T-based sys-
tems, in which autonomic functionality is standardized and
given system engineers concentrate on a new or improved
functionality. This survey paper identifies emerging trends
in autonomic computing research, and enumerates a list of
open questions.

Organization of this paper is as follows. Section 2 re-
views the concepts and categories of complexity in I/T. Sec-
tion 3 presents how the characteristics of autonomic com-
puting help to cope with such increasing complexities. Sec-
tion 4 presents the trends in the architecture and evaluation
criteria of autonomous systems. Section 5 addresses two
paradigms, agent-oriented and component-based, which can
help us to develop autonomous systems. Section 6 discusses
a summary of the autonomic computing systems that have
been already developed both in academia and industry. Sec-
tion 7 outlines a number of open questions from a fundamen-

82

1



tal as well as a practical perspective, and finally Section 8
concludes.

2. A CATEGORIZATION OF COMPLEX-
ITY IN I/T

After the economic stagnation in I/T industry at the end
of 1990’s, recent reports of International Data Corp. (IDC)
indicate that total spending in I/T gradually have been in-
creased especially in service and software sectors [19]. Such
increases can address i) how much organizations and indus-
try have become I/T-based, and ii) how much complex and
expensive is to develop I/T systems especially software prod-
ucts. A study shows 25% − 50% of I/T resources are spent
on problem determination. Across all industries, more than
40% of all investments in information technology are used
just trying to get technologies to work together. In other
words, half of the investment goes for issues that do not
directly drive business value [14].

Figure 1 illustrates a synergy between three components
namely: i) an I/T-based business system including layers of
business, I/T-based and software systems, ii) a software qual-
ity model (based on ISO/IEC 9126-1 [15]) including internal,
external and in use quality factors, and iii) a complexity
model including attributes such as cost, time and size. A
business system consists of I/T-based systems (e.g. infor-
mation systems), people, machines, and other artifacts [5].
Generally an I/T-based system consists of software systems,
network and hardware resources.We categorize such a com-
plexity model into three following categories :

• Business Domain Complexity which embraces the com-
plexity of business processes, organizations and re-
sources in terms of cost, time, size, security and fault-
proneness. The most important aspect of this type
of complexity for I/T-based systems is how to trans-
late business policies to I/T policies. For instance, in
a banking system how security and assurance policies
could be translated and realized by the I/T-based sys-
tem.

• System Development Complexity which deals with de-
signing, implementing, testing, evolving, and refactor-
ing the system. Some aspects of complexity in this
category reflect the business domain complexity such
as computational complexity caused by massive busi-
ness processes. In a nutshell, methodologies, tools, and
resources play a key role in how easy we can develop
and maintain a system. For instance, development of
a system with object-oriented methodologies may have
less complexity.

• System Management Complexity which encompasses
installing, (re-)configuring, problem management (mon-
itoring, detecting, and recovering), resource manage-
ment, security management, and many other issues re-
lated to efficiency and service providing. For instance,
administration of a large-scale data center deals more
with this type of complexity.

We believe that the complexity model of I/T based sys-
tems are highly related to their quality model, because of
relationship between complexity attributes (e.g. structure)
and quality factors (e.g. functionality). In the following
sections we elaborate further on these relationships.

Figure 1: A Synergy Between Three Concerns in
I/T.

3. FUNDAMENTAL CONCEPTS
To cope with management complexity in I/T with a rea-
sonable cost, we need to have self-managing systems. Auto-
nomic Computing which was first introduced by IBM sup-
ports such self-managing systems [13]. Autonomic Comput-
ing facilitates to design, develop, and deploy self-managing
systems by inspiring from strategies used by biological sys-
tems. An autonomic system has four major characteris-
tics – self-configure, self-heal, self-optimize, and self-protect
– which are often referred to as self-CHOP characteristics,
and four minor characteristics namely : self-awareness, open,
context-aware, and anticipatory [4].

Table 1 shows which characteristic addresses one or more
categories of complexity depicted in Figure 1. A (

√
) in each

entry means that the characteristic in the corresponding row
supports coping with the complexity in the corresponding
column. While the following sections elaborate each of ma-
jor and minor characteristics further, Figure 2 depicts a po-
tential taxonomy to show potential relationships between
quality factors [15] and autonomic characteristics.

3.1 Major Characteristics
This section reviews the core concept of the four major char-
acteristics for an autonomic system and their relationships
with quality factors as depicted in Figure 2.

• Self-Configuring is the capability of adapting auto-
matically and dynamically to environmental changes.
This characteristic has two aspects as follows : i) in-
stalling, (re-)configuring, and integrating large, com-
plex network-intensive systems [18, 21], and ii) adapt-
ability in architecture or component level to re-configure
the system for achieving the desired quality factors
such as improving performance in response to envi-
ronmental changes [7]. The latter aspect is the reason
why it addresses development complexity in Table 1.
Self-configuring characteristic may have an impact on
the quality factors such as : maintainability, function-
ality , portability , and portability.

83

2



• Self-Healing is the capability of discovering, diagnos-
ing, and reacting to disruptions [18]. Such a system
must be able to recover by detecting a failed compo-
nent, taking it off-line to be fixed, and replacing the
fixed component into the system without any apparent
disruption. Such systems have to predict problems and
take actions to prevent a failure. The main objective
of self-healing is to maximize availability, survivabil-
ity, maintainability and reliability of the system [11].
There are some solutions available for this aspect, such
as Recovery-Oriented Computing (ROC) [29] which
proposes micro-rebooting of the faulty module or mod-
ules to control fault propagation to the whole sys-
tem. It requires that each module can be stopped
and restarted independently, and the operating sys-
tem can recognize faulty modules and automatically
restart them.

• Self-Optimizing is the capability to efficiently maxi-
mize resource allocation and utilization for satisfying
requirements of different users. Resource utilization
and workload management are two important aspects
necessitate for such a characteristic. One of the com-
mon models used in resource utilization is utility func-
tion [35]. Existing technologies in the workload man-
agement aspect, such as logical partitioning and dy-
namic server clustering, should be extensible to het-
erogeneous systems. In this way, a single collection of
computing resources will be provided which is man-
ageable by a “logical” workload manager across the
enterprise [11]. While in a short term, self-optimizing
can address the complexity of managing system perfor-
mance, in a long run its components will automatically
and proactively seek ways to tune their operation, and
make themselves more efficient in cost [18].

• Self-Protecting is the capability of reliably establish-
ing trust, and anticipating, detecting and recovering
from the effects of attacks with two aspects [18]: i) de-
fending the system against correlated problems arising
from malicious attacks or cascading failures that re-
main uncorrected by self-healing measures, and ii) an-
ticipating problems based on early reports from sen-
sors and taking steps to avoid or mitigate them. Two
existing solutions that exhibit such behavior are the
immune system inspired by biological systems, and se-
cure distributed storage (SDS) [8]. This characteristic
also addresses business domain complexities such as
fraud detection and prevention (as shown in Table 1).

3.2 Minor Characteristics
Beside of aforementioned characteristics, four additional sub-
characteristics can be enumerated for an autonomic sys-
tem, namely : i) self-awareness which means that an au-
tonomic system is aware of its state and its behaviors for
self-managing and also for collaborating with other systems,
ii) open which means that an autonomic system must op-
erate in an heterogeneous environment (to be interopera-
ble) and is portable across multiple platforms, iii) context-
awareness which means that an automatic system should
be aware of its execution environment and is able to re-
act to environmental changes such as new business policies,
iv) anticipatory which means that an autonomic system will

Figure 2: Relationships between Autonomic Char-
acteristics and Quality Factors.

anticipate the optimized resources needed while keeping its
complexity hidden. This characteristic adds proactiveness
to self-managing paradigm [28]. As shown in Figure 2, such
minor characteristics may have their impacts on quality fac-
tors such as maintainability, functionality, and portability.

4. EMERGING TRENDS
This section deals with the emerging trends in creating

autonomous systems at the architecture level and evalua-
tion criteria to determine the level of autonomicity of such
systems.

4.1 Autonomous System Architecture
As known in an autonomic component, the basic concept
is a control loop [18]. This acts as a manager to monitor,
analyze, and apply proper actions on a set of predefined
system policies [22]. McCann et al. [20] identified two cat-
egories of the approaches to autonomic computing systems:
tightly coupled and decoupled autonomic systems. The for-
mer is often built using intelligent agents with their own
goals, and the latter is the one in which the infrastructure
handles the autonomic behavior of the system. The two
approaches have common concepts and it is sometimes dif-
ficult to place a research project in one particular category.
In both approaches, there is a need to have two kinds of
elements [36] : i) to implement functionalities of the tar-
get system, and ii) to introduce some patterns for system
self-management. These sets of elements describes two lev-
els of system architecture namely : intra-element and inter-
element relations.

The higher level of the architecture deals with inter-element
relationships in a coordination/cooperation fashion. In this
level, global aspects of autonomicity are taken into account,
such as global configuration or incremental repair in re-
sponse to local failures [7]. Infrastructure elements may be
needed for this level to provide naming service (registry),
monitoring (sentinel), combination (aggregator), interaction
(broker) and negotiation (negotiator). Section 5 elaborates

84

3



Characteristic Business Domain Complexity System Development Complexity System Management Complexity
Self-Configuring -

√ √
Self-Healing - -

√
Self-Optimizing - -

√
Self-Protecting

√
-

√

Self-Awareness -
√ √

Open -
√ √

Context-Aware
√

-
√

Anticipatory - -
√

Table 1: Weaving Between I/T Domain Complexity and Autonomicity Characteristics.

two well-known paradigms for creating autonomous systems
in intra- and inter-element levels.

4.2 Evaluation Criteria
Autonomic computing has become inevitable and therefore
become more prevalent, hence its evaluation is becoming in-
creasingly more important. There are two aspects that need
proper attention : i) evaluation of an autonomic system, and
ii) assessment the autonomicity of an I/T environment.

McCann et al. [20] list a set of metrics by which the au-
tonomic systems can be evaluated and compared, namely :
Quality of Service (QOS), cost, granularity/flexibility, ro-
bustness, degree of autonomy, adaptivity, reaction time, sen-
sitivity, and stabilization. IBM has created an autonomic
assessment software tool to measure the level of autonomic
function against each of the following six operational areas
within any I/T environment : security management, user
and resource provisioning, performance and capacity man-
agement, solution deployment, availability, and problem man-
agement. This tool analyzes an environment to determine
its level of autonomic maturity. Such levels of maturity can
be categorized as: Basic, Managed, Predictive, Adaptive
and finally Autonomic levels [22].

5. AUTONOMIC COMPUTING TECH-
NIQUES AND FORMALISMS

As described in [13, 18], research areas like agent-based com-
puting, grid computing, software engineering methodologies,
and control theory can help us to achieve the objectives of
autonomic computing. Due to space limitation, we discuss
two of them which are addressed more in the literature.

5.1 Agent-Oriented Paradigm
Autonomy, proactivity, and goal-directed approach to prob-
lem solving and planning are major characteristics of agents
[17]. Agents are capable of initiating action independent of
any other entity. Software agents have their own thread of
control, by localizing not only their code and states but also
their invocation. Such agents can also have individual rules
and goals, making them appear like “active objects with
initiatives” [26].

While traditional approaches to computer systems man-
agement are often centralized and hierarchical, today’s large-
scale computing systems are highly distributed with com-
plex connectivity and interactions, led to centralized man-
agement schemes be infeasible. Viewing autonomic elements
as agents and autonomic systems as multi-agent systems
makes it clear that agent-oriented architectural concepts
seem to be substantially important [18]. Agent-oriented ar-
chitecture can help self-managing approach of autonomic

systems, for instance the system could encapsulate the local
optimization of resource usage from the global allocation of
resources. In [33], authors present an agent-based architec-
ture, called Unity in which every component is an autonomic
element and includes : computing resources (e.g., databases,
storage systems, and servers), higher-level elements with
some management authority (e.g. workload managers and
provisioner), and elements that assist other elements in do-
ing their tasks (e.g. policy repositories, sentinels, brokers,
registries).

5.2 Component-Based Development
Component-based development is another research area that
addresses encapsulation and self-sufficiency at the level of
frameworks and middlewares. In addition to the interfaces
exported by traditional components, autonomic components
provide enhanced profiles or contracts that encapsulate their
functional, operational, and control aspects. These aspects
enhance the interfaces to export information and policies
about their behavior, resource requirements, performance,
interactivity and adaptability to dynamic systems. Several
noteworthy research themes and industrial solutions address
these aspects as follows :

• Composition Formalisms can help to automate genera-
tion of global configuration by considering certain con-
straints and/or optimization criteria (like path-based
and graph-based methods) [7].

• Smart Components can help to adapt to environmental
changes for providing building blocks in self manage-
ment systems (like smart servers) [16].

• Hot swapping can help to develop self-management
system either by code inter-positioning or code replace-
ment. Inter-positioning involves inserting a new com-
ponent between two existing ones. This allows us to
enable monitoring in a more fashionable manner when
problems occur by minimizing performance at mini-
mum cost [2].

6. A LANDSCAPE OF AUTONOMIC SYS-
TEMS

This section reviews the research works have been done so
far for autonomic computing (not merely under this name)
in both academia and industry sectors. Our objective is to
figure out how and in what extent available solutions have
addressed goals presented in the autonomic computing vi-
sion [18]. Results of this section may help researchers to out-
line deficiencies of current research works and confronting
challenges in the future.

85

4



Project /
Character-
istic

SMART Oceano Optimal
Grid

Auto
Admin

N1 Adaptive
Enter-
prise

Ocean
Store

AntHill ROC Autonomia eBiquity Software
Rejuv.

Self-
Configuring

√ √ √
-

√ √ √ √
-

√ √
-

Self-Healing - - - - - -
√

-
√ √

-
√

Self-
Optimizing

√ √ √ √ √ √ √ √
-

√ √
-

Self-
Protecting

- - - - - -
√

-
√ √

-
√

Self-
Awareness

√ √
- - - - - -

√
-

√ √

Context-
Aware

√
- - - - - - - - -

√
-

Open - -
√

-
√ √ √ √ √ √ √

-
Anticipatory

√ √ √
- -

√ √
- - - - -

Table 2: A Comparison Between Academic and Industrial Projects in Autonomic Computing

6.1 Industry-Oriented Projects
The essence of simplifying management and operations of
I/T-based systems led to many vendors who had no doubt
enter the market of autonomic computing. Large enterprise-
wide vendors such as IBM, Sun Microsystems, HP, Microsoft,
Intel, Cisco, and several other vendors have developed vari-
ety of systems and solutions for this area of research. For
this section, due to the space limitation, we focus on only
four major vendors whose products are leading the market
of autonomic systems, namely: IBM, Sun, HP and Microsoft
with their major projects as follows:

• SMART, IBM : reduces complexity and improves qual-
ity of service through the advancement of self-managing
capabilities within a database environment [31].

• Oceano, IBM : designs and develops a pilot prototype
of a scalable, manageable infrastructure for a large
scale computing utility powerplant [24].

• Optimal Grid, IBM : aims to simplify the creation and
management of large-scale, connected, parallel grid ap-
plications by optimizing performance and includes au-
tonomic grid functionality as a prototype middleware
[27].

• AutoAdmin, Microsoft: makes database systems self-
tuning and self-administering by enabling them to track
the usage of their systems and to gracefully to adapt
to application requirements [3].

• N1, Sun : manages data centers by including resource
virtualization, service provisioning, and policy automa-
tion techniques [23].

• The Adaptive Enterprise, HP : helps customers to build
a system in three levels namely business (e.g., custom-
ary relation management), service (e.g., security), and
resource (e.g., storage) [22].

As shown in Table 2, the least focused autonomic charac-
teristics in industrial projects are self-healing, self-protecting
and context-awareness, and the most focused ones are self-
configuring and self-optimizing.

6.2 Academic-Oriented Projects
As autonomic computing is a multi-disciplinary research
area, a remarkable number of projects in computer science,
software engineering, artificial intelligence are related to it.
Because of space constraint, we are only able to address a
part of these projects in this survey paper (mostly supported
by IBM). This section provides a comparison among auto-
nomic computing academic projects based on eight charac-
teristics as discussed Section 3 to compare them in terms of
accordance with the designated vision. While Table 2 de-
picts such a comparison, each project is elaborated further
as follow :

• OceanStore, UC Berkeley : designs a global persistent
data store for scaling to billions of users [25].

• AntHill, University of Bologna : supports the design,
implementation and evaluation of P2P applications
based on multi-agent and evolutionary programming
borrowed from complex adaptive systems (CAS) [1].

• Recovery-Oriented Computing, UC Berkeley/Stanford :
investigates novel techniques for building highly-
dependable Internet services, recovery from failures
rather than failure-avoidance [29].

• Autonomia, University of Arizona : provides the appli-
cation developers with all the tools required to specify
the appropriate control and management schemes to
maintain any quality of service requirements [9].

• eBiquity, University of Baltimore County : explores
the interactions between mobile, pervasive computing,
multi-agent systems and artificial intelligence tech-
niques [10].

• Software Rejuvenation, Duke University : develops fault
management techniques aimed at cleaning up the sys-
tem internal state to prevent the occurrence of more
severe crash failures in the future [34].

As shown in Table 2, the least focused autonomic char-
acteristics in academic projects are context-awareness and
anticipatory, and the most focused ones are open and all
major characteristics.

86

5



7. OPEN PROBLEMS
Although academic and industrial projects realized remark-
able parts of the autonomic computing vision, there are still
open problems to deal with in this promising research area.
This section points out some future directions in the form
of open questions that we believe have not been addressed
yet or partially covered.

• Which formalism and techniques are best suited for
which purpose? A wide range of formalisms and tech-
niques can be used to support designing, developing,
testing, and maintaining autonomic systems. Each one
has its own merits and weaknesses. Hence, we need to
identify which ones are most appropriate for which ac-
tivity, and how the different formalisms and techniques
can be combined.

• How can we inject autonomicity to non-autonomous
or semi-autonomous systems? The problem lies in sys-
tems where source code is not available or the coupling
between components are high, so it is virtually impos-
sible to include monitoring and actuating functions.
Is it possible to develop autonomic functionality sep-
arating from application/service functionality [30] or
use Aspect-Oriented programming technology [6]? We
believe that from software engineering point of view,
autonomic characteristics are highly related to qual-
ity and non-functional requirements (NFR) [32]. To
achieve this, we have to classify autonomic charac-
teristics in terms of their measurable effect on inter-
nal quality metrics, and relate these metrics to the
external quality factors to which they are correlated.
We also need case studies, empirical studies, and con-
trolled experiments to provide anecdotal or statistical
evidence about this correlation.

• How can we analyze and manage the dependencies be-
tween autonomous components to address business poli-
cies? One of the points in autonomic computing vi-
sion [18] is to design interfaces for translating business
policies into I/T policies. This feature is related to
usability and it is crucial to determine which compo-
nents are mutually independent. High-level communi-
cation languages and knowledge engineering methods
may help to address this question but to the best of
our knowledge much works still need to be done.

• How can we build more open/extensible autonomic tools?
Lack of open standards is another challenge for thriv-
ing autonomic components and systems in I/T indus-
try. Interpretability and applying global policies for
security and configuration are all depend on existence
of such standards.

• How can we measure major and minor characteris-
tics to evaluate autonomic systems? A novel evalu-
ation framework needs to be developed for bridging
the gaps between theses characteristics and the qual-
ity factors. Quality assurance in autonomic systems is
an area which is still in its infancy.

8. CONCLUSION
The research in autonomic computing continues to be very
active. Although commercial tools are beginning to be de-
veloped and released, there are still a lots of open issues that

remain to be solved. This paper briefly reviewed fundamen-
tals of autonomic computing, discussed three different types
of complexity that address characteristics of autonomous
systems mentioned in literature. We also reviewed major
research areas and techniques which can support autonomic
computing with its objectives.

Our study of existing projects in academia and industry
indicates that the current projects could be divided into :
i) systems which address autonomic characteristics such as
Smart, AutoAdmin, AntHill, and Software Rejuvenation,
and ii) systems which help to build systems that address
these characteristics such as eBiquity and Autonomia. In
this paper, we raised a number of open questions that can
be used as research agenda for future research within the
area of autonomic computing.

9. REFERENCES
[1] Anthill, university of bologna.

URL = http://www.cs.unibo.it/projects/anthill/.

[2] J. Appavoo and et al. Enabling autonomic behavior in
systems software with hot swapping. IBM Syst. J.,
42(1):60–76, 2003.

[3] Autoadmin, microsoft corporation.
URL = http//research.microsoft.com/dmx/autoadmin/.

[4] Autonomic computing, the 8 elements.
URL = http://www.research.ibm.com/autonomic/overview.

[5] M. Azuma. Applying iso/iec 9126-1 quality model to
quality requirements engineering on critical software.
In Proceedings of the 3rd IEEE Int. Workshop on
Requirements for High Assurance Systems (RHAS),
2004.

[6] H. Chan and T. C. Chieu. An approach to monitor
application states for self-managing (autonomic)
systems. In Proceedings of the 18th Conference on
Object-oriented programming, systems, languages, and
applications (OOPSLA), pages 312–313. ACM Press,
2003.

[7] S. W. Cheng and et al. An architecture for
coordinating multiple self-management systems. In
Proceedings of the 4th Working IEEE/IFIP
Conference on Software Architecture (WICSA), page
243. IEEE Computer Society, 2004.

[8] D. M. Chess, C. Palmer, and S. R. White. Security in
an autonomic computing environment. IBM System
Journal, 42(1):107–118, 2003.

[9] X. Dong and et al. Autonomia: an autonomic
computing environment. In Proceedings of IEEE Int.
Conference on Performance, Computing, and
Communications (IPCC), pages 61 – 68, April 2003.

[10] ebiquity, university of baltimore county.
URL = http://ebiquity.umbc.edu.

[11] A. G. Ganek and T. A. Corbi. The dawning of the
autonomic computing era. IBM Systems Journal,
Special Issue on Autonomic Computing, 42:5–18, 2003.

[12] S. Hariri. Autonomic computing: research challenges
and opportunities. In Proceedings of IEEE conference
on Pervasive Services (ICPS), page 7, 2004.

[13] P. Horn. Autonomic computing: Ibm’s perspective on
the state of information technology, 2001.
http://www-
1.ibm.com/industries/government/doc/ con-
tent/bin/auto.pdf.

87

6



[14] Ibm and cisco unveil innovative approach.
URL = http://www-
03.ibm.com/autonomic/press cisco.shtml.

[15] ISO/IEC 9126-1 Standard: Software engineering
-Product quality - Part 1: Quality model, Int.
Standard Organization, 2001.

[16] J. Jann, L. M. Browning, and R. S. Burugula.
Dynamic reconfiguration: Basic building blocks for
autonomic computing on ibm pseries servers. IBM
Sys. J., 42(1):29–37, 2003.

[17] N. R. Jennings. On agent-based software engineering.
Artifitial Intelligence, 117(2):277–296, 2000.

[18] J. O. Kephart and D. M. Chess. The vision of
autonomic computing. IEEE Computer, 36(1):41–50,
2003.

[19] A. Kluth. Make it simple, 2004. Economist magazine,
Survey of Information Technology.

[20] J. A. McCann and M. C. Huebscher. Evaluation issues
in autonomic computing. In Proceedings of Grid and
Cooperative Computing Workshops (GCC), pages
597–608, 2004.

[21] B. Melcher and B. Mitchell. Towards an autonomic
framework: Self-configuring network services and
developing autonomic applications. Intel Technical
Journal, 08:279–290, Nov. 2004.

[22] R. Murch. Autonomic Computing. Prentice Hall, 2004.

[23] N1, sun microsystems.
URL = http://www.sun.com/software/n1gridsystem/.

[24] Oceano, ibm.
URL = http://www.research.ibm.com/oceanoproject/.

[25] Oceanstore, uc berkeley.
URL = http://oceanstore.cs.berkeley.edu/.

[26] J. Odell. Objects and agents compared. Journal of
Object Technology, 1(1):41–53, May 2002.

[27] Optimal grid, ibm.
URL = http://www.alphaworks.ibm.com/tech/optimalgrid.

[28] M. Parashar and S. Hariri. Autonomic computing: An
overview. Hot Topics, Lecture Notes in Computer
Science, to appear,
www.caip.rutgers.edu/TASSL/Papers/automate-upp-
overview-05.pdf.

[29] D. Patterson and et al. Recovery oriented computing
(roc): Motivation, definition, techniques, and case
studies. UC Berkeley CS Tech. Rep.
UCB/CSD-02-1175, March 2002.

[30] M. Schanne, T. Gelhausen, and W. F. Tichy. Adding
autonomic functionality to object-oriented
applications. In Proceedings of 14th Int. Workshop on
Database and Expert Sys. App. (DEXA), pages
725–730, 2003.

[31] Smart, ibm.
URL = http://www.almaden.ibm.com/software/dm/SMART/.

[32] L. Tahvildari, K. Kontogiannis, and J. Mylopoulos.
Quality-driven software re-engineering. Journal of
Systems and Software, Special Issue on : Software
Architecture - Engineering Quality Attributes,
66(3):225–239, June 2003.

[33] G. Tesauro and et al. A multi-agent systems approach
to autonomic computing. In Proceedings of the 3rd

Int. Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 464–471. IEEE

Computer Society, 2004.

[34] K. S. Trivedi and et al. Modeling and analysis of
software aging and rejuvenation. In Proceedings of the
33rd Annual Simulation Symposium(SS), page 270.
IEEE Computer Society, 2000.

[35] W. Walsh and et al. Utility functions in autonomic
systems. In Proceedings of IEEE conference on
Autonomic Computing (ICAC), pages 70–77, 2004.

[36] S. White and et al. An architectural approach to
autonomic computing. In Proceedings Int. Conference
on Autonomic Computing, pages 2–9, NewYork, USA,
2004.

88

7




