
Assessing the Robustness of Self-Managing Computer Systems under Highly
Variable Workloads

Mohamed N. Bennani and Daniel A. Menascé
Dept. of Computer Science, MS 4A5

George Mason University
4400 University Dr.
Fairfax, VA 22030

{mbennani,menasce}@cs.gmu.edu

Abstract

Computer systems are becoming extremely complex due
to the large number and heterogeneity of their hardware and
software components, the multi-layered architecture used in
their design, and the unpredictable nature of their work-
loads. Thus, performance management becomes difficult
and expensive when carried out by human beings. A new ap-
proach, called self-managing computer systems, is to build
into the systems the mechanisms required to self-adjust con-
figuration parameters so that the Quality of Service require-
ments of the system are constantly met. In this paper, we
evaluate the robustness of such methods when the workload
exhibits high variability in terms of the inter-arrival time
and service times of requests. Another contribution of this
paper is the assessment of the use of workload forecasting
techniques in the design of QoS controllers.

1. Introduction

Computer systems are becoming extremely complex.
Complexity stems from the large number and heterogeneity
of a system’s hardware and software components, from the
multi-layered architecture used in the system’s design, and
from the unpredictable nature of the workloads, especially
in Web-based systems [11]. Therefore, performance man-
agement of complex systems is difficult and expensive when
carried out by human beings. A new approach, called self-
managing computer systems, is to build into the systems the
mechanisms required to self-adjust configuration parame-
ters so that the Quality of Service (QoS) requirements of
the system are constantly met. There has been a growing in-
terest in self-managing systems as illustrated by the papers
in a recent workshop [3] and in [2, 4, 5, 6, 7, 9, 10, 14, 15].
In this paper, we evaluate the robustness of the QoS con-

troller we designed and described in [9] and expand its de-
sign. That approach combines analytic performance models
with combinatorial search techniques to design controllers
that run periodically (e.g., every few minutes) to determine
the best possible configuration for a system given its work-
load.

An evaluation of the robustness of this method when
the workload exhibits high variability in terms of the inter-
arrival time and service times of requests is presented. The
results indicate that the approach is robust for relatively high
values of the coefficients of variation of the inter-arrival
time and service time distributions.

As an extension of the controller described in [9], work-
load forecasting techniques were integrated into the con-
troller to make it react to the expected workload as op-
posed to recently observed workload intensity. The results
show that, at a 95% confidence level, the controller that uses
workload forecasting is able to maintain significantly higher
values of QoS at times when the workload intensity is ris-
ing towards its peak levels or reducing from its peak level.

The rest of this paper is organized as follows. As a back-
ground to the remaining sections, section two describes the
basic approach to the design of self-management systems.
Section three describes the QoS metric used by the con-
troller for optimization purposes. Section four presents the
experimental setting and the next section describes the ex-
periments and results used to illustrate the robustness of the
method with respect to highly varying inter-arrival times
and highly variable service times. Section six discusses how
the QoS controller uses workload forecasting. Finally, sec-
tion seven presents some concluding remarks.

2. Controller Approach

The controller, discussed in greater detail in [9], is based
on the notion that a computer system is enhanced with
a QoS controller that i) monitors system performance, ii)

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

monitors the resource utilization of the various resources
of the system, iii) executes, at regular intervals, called con-
troller intervals (CI), a controller algorithm to determine the
best configuration for the system (see Fig. 1). As a result
of running the controller algorithm, reconfiguration com-
mands are generated to instruct the system to change its
configuration.

i-th controller interval (i+1)-th controller interval

requests requests

Execution of the controller algorithm

Reconfiguration commands

Figure 1. Controller intervals.

The architecture of the QoS controller is best described
with the help of Fig. 2. The QoS controller has four main
components: Service Demand Computation (2), Workload
Analyzer (3), QoS Controller Algorithm (5), and Perfor-
mance Model Solver (4). The Service Demand Computa-
tion (2) component collects utilization data (1) on all sys-
tem resources (e.g., CPU and disks) as well as the count
of completed requests (7), which allows the component to
compute the throughput. The service demand of a request,
i.e., the total average service time of a request at a resource,
can be computed as the ratio between the resource utiliza-
tion and the system throughput [12]. The service demands
(8) computed by this component are used as input param-
eters to a Queuing Network (QN) model [12] of the com-
puter system solved by the Performance Model Solver com-
ponent.

The Workload Analyzer (3) component analyzes the
stream of arriving requests (6) and computes statistics for
the workload intensity, such as average arrival rate, and
uses statistical techniques [1] to forecast the intensity of the
workload in the next controller interval. The current or pre-
dicted workload intensity values (9) computed by this com-
ponent are also used as input parameters of the Queuing
Network model solved by the Performance Model Solver
component (4). This component receives requests (10) from
the QoS Controller Algorithm to solve the QN model cor-
responding to a specific configuration of the system. This
component takes as input parameters to the QN model the

Computer System

Service
Demand

Computation

Workload
Analyzer

Performance
Model
Solver

QoS
Controller
Algorithm

arriving
requests

completing
requests

QoS Controller

(2)

(1)

(3) (4)

(5)

(6) (7)

(8)

(9)

(10) (11)

(12)

QoS
goals

Figure 2. Architecture of the QoS Controller.

configuration parameter values (10), service demand val-
ues (8), and workload intensity values (9). The output of
the QN model is the resulting QoS value (11) for the con-
figuration used as input by the QoS Controller algorithm.
At the beginning of each controller interval (see Fig. 1),
the QoS Controller Algorithm (5) component runs the con-
troller algorithm. This algorithm takes into account the de-
sired QoS goals, the arrival and departure processes, and
performs a combinatorial search (e.g., beam search or hill-
climbing) [13] of the state space of possible configuration
points in order to find a close-to-optimal configuration. The
cost function associated to each point in the space of con-
figuration points is the QoS value of the configuration de-
scribed in section 3. This QoS value has to be computed
by the Performance Model Solver for each point in the
space of configuration points examined by the QoS con-
troller algorithm. Once the QoS controller determines the
best configuration for the workload intensity levels provided
by the Workload Analyzer, it sends reconfiguration com-
mands (12) to the computer system.

3. Computing QoS Values

The QoS metric, QoS, computed at the end of each con-
troller interval is defined as QoS = wR × ∆QoSR +
wX ×∆QoSX +wP ×∆QoSP , where ∆QoSR, ∆QoSX ,
and ∆QoSP are relative deviations of the average response
time, average throughput, and probability of rejection, with
respect to their desired goals, and wR, wX , and wP are the
relative weights of these deviations with respect to the QoS

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

value.
The relative deviation ∆QoSR is defined as

∆QoSR =
Rmax − Rmeasured

max(Rmax, Rmeasured)
(1)

where Rmax is the maximum average response time toler-
ated and Rmeasured is the measured response time.

The relative deviation ∆QoSX is defined as

∆QoSX =
Xmeasured − X∗

min

max(Xmeasured, X∗
min)

(2)

where X∗
min = min(λ, Xmin) is the minimum value be-

tween the arrival rate λ and the minimum required through-
put Xmin. X∗

min is used as the Service Level Agreement
(SLA) instead of Xmin in Eq. (2) because it would not
make sense to expect a system to meet a given minimum
throughput requirement if the workload intensity is not large
enough to drive the system to that throughput level.

The relative deviation ∆QoSP is defined as

∆QoSP =
Pmax − Pmeasured

max(Pmax, Pmeasured)
(3)

where Pmax is the maximum probability of rejection toler-
ated and Pmeasured is the measured probability of rejection.

The deviations in Eqs. (1)-(3) are defined in such a way
that i) the deviation is a dimensionless number in the inter-
val (-1,1), ii) the deviation is zero when the SLA is exactly
met, negative when the SLA is violated, and positive when
the SLA is exceeded.

4. The Experimental Setting

Our experiments simulate a computer system that con-
sists of a multi-threaded server. The server has m threads
and a maximum system size (i.e., total number of requests
in the system, waiting or using a thread) equal to n(n > m).
Arriving requests that find n requests in the system are re-
jected. When a thread is serving a request it will use physi-
cal resources (e.g., CPU and disk). Therefore, the response
time of a request can be broken down into the waiting time
for a thread (software contention), waiting times for physi-
cal resources, and service times at physical resources. The
configurable parameters n and m are adjusted dynamically
at the end of every controller interval (2 minutes), so that
the QoS is maximized. The SLA values used for all experi-
ments, except for those on SLA sensitivity, are: Rmax = 1.2
seconds, Xmin = 5 requests/sec, and Pmax = 0.05.

The initial values for n and m are n = 7 and m = 2 for
the experiments reported in section 5, and n = 30 and m =
10 for the experiments of section 6. Different initial config-
urations were used in these sections because different work-
loads were used. For the same reason, different weights for

the SLAs were used for the experiments reported in sec-
tion 5 (wR = 0.25, wX = 0.30, and wP = 0.45) and
for the experiments of section 6 (wR = 0.35, wX = 0.25,
wP = 0.40). In this case, we wanted to give a higher and a
smaller importance to the response time and the throughput,
respectively, as the workload intensity exceeds, at times, the
maximum theoretical value of 20 req/sec.

Also, in section 6, we only used beam search as the
heuristic search technique because the curves in sec-
tion 5 indicate that there is no statistically significant dif-
ference at the 95% level between using beam search and
hill climbing. CSIM’s library (www.mesquite.com) was
used for simulating the multithreaded server and IMSL’s li-
brary (www.vni.com) was used for the polynomial regres-
sion models needed for the forecasting experiments.

5. Highly Variable Interrarival and Service
Times

Many real workloads exhibit some sort of high variabil-
ity in their intensity and/or service demands at the different
resources. Therefore, it is very important to investigate the
behavior of the proposed technique for self-managing com-
puter systems in such environments. To this end, we con-
ducted a set of experiments to study the impact of the vari-
ability in the request inter-arrival and service times distribu-
tions at both system resources (i.e., cpu and disk). The vari-
ability of these distributions is represented by their respec-
tive coefficients of variation (COV) (i.e., the standard devi-
ation divided by the mean): Ca and Cs. We used the values
1.0, 2.0, and 4.0 for Ca and Cs for a total of 9 combina-
tions of the values of these two coefficients of variation.

5.1. Generating Distributions with Varying Coeffi-
cients of Variation

We used the exponential distribution for a COV equal to
1. To synthesize a distribution with a given mean, µ, and
a COV > 1, we used a 2-stage Coxian distribution [8],
where each stage is exponentially distributed with an av-
erage equal to µi for i = 1, 2 (see Fig. 3). As shown in the
figure, one moves from stage 1 to 2 with probability (1 -
q). One can exit the server right from stage 1 with probabil-
ity q (0 < q < 1). The average time spent in this server is
equal to

µ = µ1 + (1 − q)µ2. (4)

The variance is given by

σ2 = µ2
1 + (1 − q2)µ2

2. (5)

Therefore, the COV is given by:

COV =
σ

µ
=

√
µ2

1 + (1 − q2)µ2
2

µ1 + (1 − q)µ2
. (6)

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

µ1 µ2
(1-q)

q

Figure 3. Two-phase Coxian distribution.

The question becomes, then, how to choose µ1, µ2, and q
to obtain a distribution with given values µ and COV for the
mean and coefficient of variation. We start by using Eq. (4)
to write µ1 in terms of µ2 and q: µ1 = µ− (1− q)×µ2. By
replacing this expression for µ1 in Eq. (6) one obtains the
following quadratic equation on the unknown µ2:

2(1 − q)µ2
2 − 2µ(1 − q)µ2 + (1 − COV 2)µ2 = 0. (7)

We can now solve Eq. (7) for q varying from 0.1 to 0.95 in
increments of 0.05 and choose one of the values of q that
results in a positive value for µ1 and µ2.

5.2. Results

Figure 4 depicts the variation of the workload intensity,
measured in requests/sec, as a function of time, measured
in controller interval units for the experiments related to the
variability of the workload. The duration of each experi-
ment was 30 CIs (i.e., 60 minutes since each CI was set to 2
minutes). The mean service demands at the cpu and the disk
were 0.03 seconds and 0.05 seconds, respectively. Thus, the
maximum theoretical arrival rate supported by the system is
20 req/sec (i.e., 1 / max [0.03, 0.05]) [12].

The average arrival rate starts at a low value of 5 req/sec
and reaches a peak of 19 req/sec, close to the theoretical
maximum, at CI = 19. The workload intensity stays at this
level for three CIs and then starts to decreases towards 14
req/sec. Ten experiments were run for each combination of
Ca and Cs and 95% confidence intervals for the average of
the QoS value were computed at the end of each CI. Re-
sults were obtained for three scenarios: one in which the
controller is disabled and two others with the QoS con-
troller active. The two results in which the controller is ac-
tive differ in the combinatorial optimization technique used
by the controller: beam search and hill-climbing. Figure 5
shows results obtained in our previous study [9] for the case
of exponentially distributed inter-arrival and service times
(Ca = Cs = 1.0). The controlled system maintains much

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Controller Interval

L
am

b
d

a(
re

q
/s

ec
)

Figure 4. Workload intensity variation for the
high variability experiments.

higher QoS values than the non-controlled system even at
high peak loads.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Controller Interval

A
ve

ra
g

e
Q

o
S

No Controller Beam Search Hill Climbing

Figure 5. QoS Controller Performance for
Ca = Cs = 1.0.

Figures 6 shows the results for all the scenarios in which
either the inter-arrival time or the service time or both are
not exponentially distributed. First, it should be noted that
the controlled system always exhibits higher QoS values
than the non-controlled (NC) system. Also, as expected,
confidence intervals become wider as either or both COV
increase. But, confidence intervals for the controlled sys-
tem tend to be wider than those for the non-controlled sys-
tem (NC) because the system itself is varying due to dy-

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Controller Interval

A
ve

ra
g

e
Q

o
S

No Controller Beam Search Hill Climbing

-0.2

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Controller Interval

A
ve

ra
g

e
Q

o
S

No Controller Beam Search Hill Climbing

(a) Ca = 1.0 and Cs = 2.0 (b) Ca = 1.0 and Cs = 4.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Controller Interval

A
ve

ra
g

e
Q

o
S

No Controller Beam Search Hill Climbing

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Controller Interval

A
ve

ra
g

e
Q

o
S

No Controller Beam Search Hill Climbing

(c) Ca = 2.0 and Cs = 1.0 (d) Ca = 2.0 and Cs = 2.0

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Controller Interval

A
ve

ra
g

e
Q

o
S

No Controller Beam Search Hill Climbing

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Controller Interval

A
ve

ra
g

e
Q

o
S

No Controller Beam Search Hill Climbing

(e) Ca = 2.0 and Cs = 4.0 (f) Ca = 4.0 and Cs = 1.0

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Controller Interval

A
ve

ra
g

e
Q

o
S

No Controller Beam Search Hill Climbing

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Controller Interval

A
ve

ra
g

e
Q

o
S

No Controller Beam Search Hill Climbing

(g) Ca = 4.0 and Cs = 2.0 (h) Ca = 4.0 and Cs = 4.0
Figure 6 - QoS Controller Performance vs. Ca and Cs

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

namic adjustment of parameters. Another clear observation
is that as the variability increases, the performance of the
NC system starts to deviate from that of the controlled sys-
tems at an earlier stage. For example, when Ca = 1.0 and
Cs = 1.0 (Fig. 5), the difference in QoS starts at CI = 7
(λ = 11) req/sec. As Cs increases for the same value of Ca,
the difference between the two cases becomes apparent at
CI = 4 (λ = 8), and CI = 2 (λ = 5) (see Figs. 6 (a)-(b)).

Let us now examine the effect of the variation of Cs for
a fixed value of Ca. For Ca = 1.0 and Cs = 1.0 (Fig. 5),
the controlled system keeps the QoS value higher than 0.7
throughout the experiments while the NC system exhibits
a marked drop in QoS (to about 0.1) when λ reaches its
peak value. For this value of Cs the QoS for the NC case
is still positive. When Cs increases to 2.0 (Fig. 6 (a)), the
QoS for the controlled case drops to about 0.45 at the peak
value of λ and the QoS for the non-controlled case goes
to zero for most of the experiment (13 ≤ CI ≤ 27). For
Cs = 4.0 (Fig. 6 (b)), a high value of the service time COV,
the NC case exhibits a negative QoS for most of the exper-
iment while the controlled system only gets slightly lower
than zero at peak load and then recovers. The NC system re-
mains in negative territory.

We now examine the variation of the QoS as Ca varies
for a fixed value of Cs. For Cs = 1.0 and Ca = 1.0 and
2.0 (Figs. 5 and 6 (a), respectively), the NC system exhibits
marked drops in the QoS value as soon as λ starts to in-
crease but still remains in positive territory. The controlled
system maintains a high QoS value at peak load even for
Ca = 2.0. For example, in this case, the average QoS value
at peak load is 0.45 for the controlled system while it is
very close to zero for the NC system. When Cs = 1.0 and
Ca = 4.0 (Fig. 6 (b)), the NC system displays a negative
QoS throughout most of the experiment (from CI = 4 on-
wards). The controlled system only gets slightly lower than
zero at peak load.

At extreme cases, where both Ca and Cs are very high
(i.e., equal to 4.0 as shown in Fig. 6 (h)), the NC system has
a negative QoS value throughout the entire experiment. The
controlled system reaches some negative points at peak load
but recovers when the load decreases.

In order to explore the sensitivity of the controller to the
space of SLA values, we ran experiments for Ca = Cs =
2.0 for stricter and more relaxed SLA values than the ones
used in Fig. 6. Figure 7 illustrates the relative variation ϕ of
the QoS with respect to the base value QoSbase shown in
Fig. 6. The value of ϕ was defined as

ϕ =
QoS − QoSbase

| QoSbase | . (8)

The values for the more relaxed and stricter SLAs are:
Rmax = 1.5 seconds, Xmin = 4 requests/sec, Pmax = 0.1;
and Rmax = 1.0 seconds, Xmin = 7 requests/sec, Pmax =

-40

-30

-20

-10

0

10

20

30

40

50

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Controller Interval

A
ve

ra
g

e
Q

o
S

 R
el

at
iv

e
V

ar
ia

ti
o

n

No Controller Relaxed SLA No Controller Strict SLA
Beam Search Relaxed SLA Beam Search Strict SLA

Figure 7. Effect of stricter and more relaxed
SLAs on the controller performance.

0.03, respectively. As the figure indicates, the controlled
system is much less sensitive to variations in the SLA val-
ues than the NC system.

6. The Workload Forecasting Algorithm

In the self-managing computer systems that we proposed
in [9], the QoS optimizer module uses the average arrival
rate of requests obtained in the previous controller inter-
val, CI, as an estimate of the expected workload intensity
for the next CI. This value is then used by the performance
model to compute the QoS value for a given set of config-
uration parameters. The drawback of such an approach is
that it overlooks any increasing or decreasing trends in the
workload for the past CI. This could result, consequently, in
a very inaccurate estimate of the next expected arrival rate
and an inappropriate choice of configuration values.

To overcome this shortcoming, we added a module re-
sponsible for short-term workload forecasting. This module
keeps a sliding window of N values for the last average ar-
rival rates observed for the last N small sub-intervals. Each
of these sub-intervals is of length ∆ seconds. N and ∆ are
chosen so that N × ∆ does not exceed the length of a con-
troller interval (2 minutes in our case).

Many techniques can be used for short-term forecasting.
However, no particular technique gives good forecasting re-
sults for all kind of data. Therefore, the forecasting mod-
ule uses three techniques: exponential smoothing, weighted
moving averages, and polynomial regression [11].

Exponential smoothing was included because it is known
to be good for making predictions from time series data
that exhibit upwards and/or downwards trends. Exponen-
tial smoothing computes a prediction as follows: Predicted-

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

Value = α× PreviousActualValue + (1− α)× PreviousPre-
dictedValue. We used α = 0.6.

There are times when the workload maintains an almost
constant intensity for quite a while before changing signif-
icantly. Weighted moving averages is an appropriate tech-
nique for these situations. In our experiments, we compute
the forecasted value based on the three most recent aver-
age arrival rates in the sliding window. The chosen weights
give more importance to the newest values. Hence, the fore-
casted value is given by: ForecastValue = (0.45 × LatestEn-
tryInSlidingWindow + 0.35 × SecondLatestEntryInSlid-
ingWindow + 0.25 × ThirdLatestEntryInSlidingWindow).

The third forecasting technique, polynomial regression,
was chosen as polynomials have the ability of approximat-
ing fairly well any continuous function. The higher the de-
gree of the polynomial the better is the fitting. However, in
order not to introduce a severe overhead on the controller
when computing the regression model, we used a moder-
ately high value for polynomial degree: six.

All three models are rebuilt each time a new average ar-
rival rate entry is inserted into the sliding window. At this
time, we compute what would be the forecasted value ac-
cording to each of the three models. We also compute the
R2 value, based on the method of least squares errors, for
each of these models to assess the quality of the fits. At this
stage, the forecasting module returns the forecasted value
provided by the model with the highest R2 value. There is
an exception to this rule, however. In the case of a down-
ward trend in the workload intensity, the polynomial regres-
sion model may forecast a negative value for the expected
arrival rate. In such a case, even though the polynomial re-
gression model might produce the highest R2 value, the
forecasting module returns the forecasted value that comes
from the model with the second highest R2 value, instead.

6.1. Results

Figure 8 compares the expected arrival rate at every
controller interval, when the forecasting module was en-
abled/disabled, to the actual measured arrival rate. Note that
in this figure we start from the 2nd controller interval as it
is only at this time that data is available in the sliding win-
dow so that forecasting can be carried out. The actual work-
load has two peaks at 30 req/sec at CI = 8 and CI = 24. The
curve for the expected arrival rate when forecasting is not
used is simply a one-time unit shift to the right of the curve
of the measured arrival rate. When the forecasting module
is enabled, the system succeeded in finding quite close esti-
mates of the arrival rate when that was possible at all. The
largest gaps between the forecasted and the measured ar-
rival rates happened at the 10-th and 11-th controller in-
tervals. At these points, the forecasted values were 41.27
req/sec and 43.28 req/sec, whereas the measured workload

intensities were 30 req/sec and 26.03 req/sec, respectively.
However, since for both of these cases, the measured ar-
rival rates for the immediate previous controller intervals (9
and 10) were 30 req/sec, these gaps did not significantly im-
pact the QoS. This is due to the fact that 30 req/sec exceeds
by far system’s maximum throughput (20 req/sec). There-
fore, the system configuration was already set at its mini-
mum size.

0

5

10

15

20

25

30

35

40

45

50

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Controller Interval

L
am

b
d

a
(r

eq
/s

ec
)

measured_lambda
expected_lambda_without_forecasting
expected_lambda_with_forecasting

Figure 8. Workload intensity variation for the
workload forecasting experiments.

From this figure, we also observe that at controller in-
tervals 6, 8, 20, and 22, the values for the measured arrival
rates were 25, 30, 24.92, and 29.74 req/sec, respectively.
The expected values for the arrival rates at these same CIs
when forecasting was not used were significantly smaller
(20, 25, 20, and 25 req/sec, respectively). Whereas the cor-
responding values, when forecasting was used, were 26.66,
32.96, 27.71, and 34.45 req/sec, respectively. As a result,
the QoS values, at these CIs, were significantly higher when
forecasting was used than when it was not. This is illustrated
in Fig. 9.

Figure 9 shows the results of the average QoS obtained
for 10 runs of the simulation when the forecasting mod-
ule was enabled and when it was disabled along with the
95% confidence intervals for the average QoS. We can see
from this figure that the average QoS obtained when fore-
casting is enabled is statistically better for exactly 8 out of
the 30 controller intervals. For the other controller inter-
vals the 95% confidence intervals overlap and therefore no
conclusion can be reached at. These eight controller inter-
vals are: CI = 6 (λ = 25 req/sec), CI = 7 (λ = 26 req/sec),
CI = 8 (λ = 30 req/sec), CI = 12 (λ = 20 req/sec), CI =
20 (λ = 24.92 req/sec), CI = 21 (λ = 25.2 req/sec), CI =

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Controller Interval

A
ve

ra
g

e
Q

o
S

No_Forecasting With_Forecasting

Figure 9. Impact of workload forecasting.

22 (λ = 29.74 req/sec), and CI = 26 (λ = 20 req/sec). For
most of these controller intervals, the QoS is negative. How-
ever, when forecasting is enabled, the QoS values are sig-
nificantly higher than otherwise. For example, at the 6-th
controller interval, the average QoS when forecasting is not
used is -0.36 whereas it is only -0.20 if forecasting is used.
This is an improvement of about 44%. The forecasting mod-
ule was able to notice that λ went up from 14.91 req/sec at
CI = 4 to 19.12 req/sec at CI =5 and therefore predicted a
value of 26.66 req/sec for CI = 6. The actual measured value
of λ was 25 req/sec.

Another scenario that shows the importance of the added
forecasting module is the measured QoS at the 26-th con-
troller interval (λ = 20 req/sec). The measured QoS is 0.27
when forecasting is enabled and only 0.16 when it is dis-
abled. This is an improvement of about 69%. The forecast-
ing module noticed that λ went down from 30 req/sec at CI
= 24 to 26 req/sec at CI =25 and predicted a value of 20
req/sec for CI = 26. The actual measured value of λ for CI
= 26 is exactly 20 req/sec.

7. Concluding Remarks

The experiments reported in this paper clearly show the
robustness of analytic models when used for QoS control.
Even though these models assume exponential service and
inter-arrival times (i.e., Cs = 1.0 and Ca = 1.0), they do
a good job at predicting the trends of QoS metrics when
these assumptions are violated. In our case, it is more im-
portant to correctly compare, QoS-wise, two points in the
search space rather than knowing their absolute QoS val-
ues. The results in the paper also show that the use of work-
load forecasting can improve the QoS of a controlled sys-
tem especially when the workload intensity is getting close
to its saturation value. It was also shown that the controlled

system is much less sensitive to the values of the SLAs than
the non-controlled one.

References

[1] B. Abraham, J. Leodolter, and J. Ledolter, Statistical Meth-
ods for Forecasting, John Wiley & Sons, 1983.

[2] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal,
A. Veitch, “Hippodrome: running circles around system ad-
ministration,” Proc. Conf. File and Storage Technologies
(FAST’02), Monterey, CA, Jan. 2002

[3] J. Chase, M. Goldszmidt, and J. Kephart. eds., Proc. First
ACM Workshop on Algorithms and Architectures for Self-
Managing Systems, San Diego, CA, June 11, 2003.

[4] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle,
“Managing Energy and Server Resources in Hosting Cen-
ters,” Proc. 18th Symp. Operating Systems Principles, Oct.
2001.

[5] Y. Diao, N. Gandhi, J.L. Hellerstein, S. Parekh, and D.
M. Tilbury, “Using MIMO Feedback Control to Enforce
Policies for Interrelated Metrics With Application to the
Apache Web Server,” Proc. IEEE/IFIP Network Opera-
tions and Management Symp., Florence, Italy, April 15-19,
2002.

[6] R. Doyle, J. Chase, O. Asad, W. Jin, and A. Vahdat,
“Model-Based Resource Provisioning in a Web Service
Utility,” Proc. Fourth USENIX Symposium on Internet
Technologies and Systems, March 2003.

[7] D. Garlan, S. Cheng, and B. Schmerl, “Increasing System
Dependability through Architecture-based Self-repair,” Ar-
chitecting Dependable Systems, R. de Lemos, C. Gacek, A.
Romanovsky (eds.), Springer-Verlag, 2003.

[8] L. Kleinrock, Queuing Systems, Volume I: Theory, Wiley-
Interscience, NY, 1975.

[9] D.A. Menascé and M. Bennani, “On the Use of Perfor-
mance Models to Design Self-Managing Computer Sys-
tems,” Proc. 2003 Computer Measurement Group Conf.,
Dallas, TX, Dec. 7-12, 2003.

[10] D.A. Menascé, R. Dodge, and D. Barbará, “Preserving QoS
of E-commerce Sites through Self-Tuning: A Performance
Model Approach,” Proc. 2001 ACM Conf. E-commerce,
Tampa, FL, Oct. 14-17, 2001.

[11] D.A. Menascé and V.A.F. Almeida, Capacity Planning for
Web Services: metrics, models, and methods, Prentice Hall,
PTR, 2002.

[12] D.A. Menascé, V.A.F. Almeida, and L.W. Dowdy, Capac-
ity Planning and Performance Modeling: from mainframes
to client-server systems, Prentice Hall, 1994.

[13] V.J. Rayward-Smith, I.H. Osman, C.R. Reeves, eds., Mod-
ern Heuristic Search Methods, John Wiley & Sons, Dec.
1996.

[14] F. Schintke, T. Schutt, A. Reinefeld, “A Framework for
Self-Optimizing Grids Using P2P Components,” Proc. Intl.
Workshop on Autonomic Computing Systems, Sept. 2003.

[15] R. Wickremisinghe, J. Vitter, and J. Chase, “Distributed
Computing with Load-Managed Active Storage,” Proc.
IEEE Int. Symp. High Performance Distr. Computing, July
2002.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

