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Abstract

An autonomic system is essentially characterized by quality re-
quirements that specify that the system should be able to adapt
itself (configure, optimize, heal, etc.) under varying circumstances
and situations. These quality requirements call for an architec-
ture centric software engineering approach. In this paper, we dis-
cuss and illustrate the architectural design of a complex real-world
distributed application with autonomic quality requirements. In
particular, we present an architecture with autonomous entities
(agents) for managing warehouse logistics. We illustrate how the
subsequent architectural decisions are guided by a reference ar-
chitecture for situated multi-agent systems on the one hand, and
by functional and quality requirements of the application on the
other hand.

1. Introduction

Software architectureis generally acknowledged as a crucial
part of the design of a software system. During architectural de-
sign, the architect “shapes” the structures of the software system.
The software architecture is the backbone of the designed solu-
tion, it meets the functional requirements of the system and aims
to satisfy the essential quality requirements.

The software architecture of a systems comprises different struc-
tures, reflected in differentarchitectural views[1]. Most common
is the module view that provides modules as containers for holding
responsibilities and data flow relationships among the modules.
Other views are the concurrency view that focuses on dynamic as-
pects of the system such as parallelism and synchronization, or
the deployment view that describes the allocation of the available
processors in the system.

Software systems are built to perform particular functionality.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEAS 2005May 21, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-59593-039-6/05/0005 ...$5.00.

However, various stakeholders interested in the software system
(project managers, developers, end users, customers, maintainers,
etc.) will have additional requirements regarding thequality of
the software system such as performance, scalability, adaptability,
maintainability, etc. Today, software engineers generally recog-
nize that quality requirements of a system are primarily achieved
through its software architecture. Manyarchitectural patterns[13]
have been developed to realize particular quality requirements. A
couple of well-known patterns are client-server, pipe-and-filter,
layers, or blackboard. Reference architectures [1] go one step
further in reuse of best practices in architectural design. A ref-
erence architecture defines an abstract architecture that serves as
a blueprint to develop software architectures for a family of ap-
plications that are characterized by specific functional and quality
requirements.

Autonomic systems and quality requirements.Autonomic comput-
ing is recognized as a viable solution to challenge the increasing
complexity of managing software systems. To be autonomic, a
system must be able to adapt itself under varying circumstances.
Examples of autonomic capabilities are self-configuration, self-
optimization, or self-healing [8]. Since autonomic systems are es-
sentially characterized by quality requirements that specify that
the system should be able to adapt itself in changing situations,
the design and development of autonomic systems call for an ar-
chitecture centric software engineering approach. The importance
of architecture for autonomic systems is emphasized by many re-
searchers, see e.g. [8, 6, 4].

In our research, we study the engineering of complex distributed
applications with autonomic quality requirements. Example do-
mains are self-managing networks or decentralized control of lo-
gistic machines in a warehouse. Flexibility, adaptability and open-
ness are important quality properties for systems to be able to
adapt autonomously. We put forward situated multiagent systems
(situated MASs) as an approach to build such complex applica-
tions. We have developed a reference architecture for situated
MASs to guide the development of applications with autonomic
quality requirements. In this paper, we discuss and illustrate the
architectural design of a complex real-world application with au-
tonomic properties. We show how the subsequent architectural de-
cisions are guided by the reference architecture for situated MASs
on the one hand, and by functional and quality requirements of the
application on the other hand.
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Overview of the paper.The remainder of this paper is structured as
follows. Section 2 elaborates on situated MASs and the reference
architecture we have developed for situated MASs. In section 3,
we discuss the architectural design of a transportation system for
managing warehouse logistics, and illustrate how we have applied
the reference architecture to the design of this real-word applica-
tion. Finally, we draw conclusions in section 4.

2. A reference architecture for situated mul-
tiagent systems

In this section we briefly introduce situated MASs and motivate
the use of situated MASs for the design of autonomic applications.
Next, we give a high-level overview of the reference architecture
we have developed for situated MASs.

2.1 Situated multiagent systems

A situated MAS1 consists of a (distributed) environment pop-
ulated with a set of autonomous entities (agents) that cooperate to
solve a complex problem in a decentralized way. Situated agents
have local access to the environment, i.e. each agent is placed in
a local context which it can perceive and in which it can act and
interact with other agents. A situated agent does not use long-term
planning to decide what action sequence should be executed, but
selects actions on the basis of its current position, the state of the
world it perceives and limited internal state. Intelligence in a sit-
uated MAS originates from the interactions between the agents,
rather than from their individual capabilities.

In situated MASs, agents and the environment are first-order
abstractions [17]. Situated agents exploit the environment to share
information and coordinate their actions. A digital pheromone, for
example, is a dynamic structure in the environment that aggregates
with additional pheromone that is dropped, diffuses in space and
evaporates over time. Agents can use pheromones to dynamically
form pheromone paths to locations of interest. Another example
is a gradient field that propagates through the environment and
changes in strength the further it is propagated. Agents can use
a gradient field as a guiding beacon. Situated MASs have been
applied with success in practical applications over a broad range of
domains. Some examples are manufacturing control [10], supply
chains systems [11], and network management [2].

Cooperating agents situated in an environment is a natural con-
cept to manage complexity in a decentralized manner. Agents en-
capsulate their own behavior and are able to adapt to changes in
their environment. Well known benefits of situated MASs are ef-
ficiency, robustness and flexibility [21]. These fundamental prop-
erties make situated MASs a suitable approach for building self-
managing applications.

2.2 Reference architecture in a nutshell

In the last three years, we have been developing a reference ar-
chitecture for situated MASs. This reference architecture embod-
ies the knowledge and experiences we have acquired during our
research. The reference architecture generalizes and extracts com-
mon functions and structures from various experimental applica-
1Alternative descriptions are behavior-based agents [3], adaptive
autonomous agents [9] or hysteretic agents [7][5].

tions we have studied, including a simple peer-to-peer file sharing
system2, a simulation of an automatic guided vehicle transporta-
tion system3, and several basic robot applications. Currently, the
reference architecture is applied in an AGV (Automatic Guided
Vehicle) transportation system. We elaborate on this complex real-
world application in section 3.

The goal of the reference architecture is to offer support to soft-
ware engineers for the architectural design of complex decentral-
ized applications with autonomic properties. In the first place, we
focus on systems that require self-managing behavior with respect
to dynamism and change. In particular, the system must be able to
cope autonomously with changing circumstances: new agents may
join the system, others may leave, or the environment may change,
e.g. its topology, or its characteristics such as throughput and ac-
cessibility. Self-configuration and self-protection as discussed in
[8] are not the first concerns we focus on. The table below lists the
properties of the problem domains we focus on, the corresponding
target quality properties of the reference architecture, and the basic
principles we apply to realize these quality properties. Flexibility,
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adaptability and openness are target quality properties for the ref-
erence architecture to cope with dynamism and change. Flexibility
enables a system to cope with different environmental situations,
adaptability refers to a system’s capability to adapt its behavior
over time with changing circumstances, and openness enables a
system to cope with expansion (new agents that join the system)
and reduction (agents that leave the system). The main software
engineering principles we apply to realize these quality properties
are decentralized control, collective behavior and adaptive behav-
ior. Manageability and unambiguity are target quality properties
of the reference architecture to cope with complexity. The main
software engineering principles we apply to realize these quality
properties are modularity, loose coupling, and separation of con-
cerns; and we provide a formal specification of the reference ar-
chitecture.

We now give a brief overview of the main modules of the ref-
erence architecture. Fig. 1 depicts a high-level module view of
the reference architecture for situated MAS. The architecture in-
tegrates three primary abstractions:agents, ongoing activitiesand
theenvironment. We successively look at the architecture of each
abstraction.

Agents. The agent architecture models different concerns of the
agent (perception, decision making and communication) as sep-

2http://trappie.studentenweb.org/andy/www/sitemai/main.php
3http://www.cs.kuleuven.ac.be/∼distrinet/taskforces/

agentwise/agvsimulator/
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Figure 1. High-level module view of the refer-
ence architecture.

arate modules. ThePerception module maps the local state of
the environment onto a percept for the agent. We developed a
model for active perception that enables an agent to direct its per-
ception at the most relevant aspects in the environment according
to its current task [20]. TheConsumption module “consumes”
consumptions for the agent. A consumption is an effect of the re-
action of the environment for a particular agent. When an agent
consumes a consumption, the consumed effect can be absorbed
(e.g. the agent acquires energy), the agent may simply hold an
element (e.g. an object it has picked up) or the consumption may
affect the agent’s state (e.g. the arm of a robot is wrenched through
an external force). TheCurrentKnowledge module integrates
the percepts and consumptions to update the current knowledge of
the agent. TheDecision module is responsible for action selec-
tion [14]. We developed the decision module as a free-flow archi-
tecture. Free-flow architectures allow flexible and adaptive action
selection [15]. Since existing free-flow architectures lack explicit
support for social behavior, we introduced the concepts of arole
and asituated commitment. A role covers a logical functionality
of the agent, while a situated commitment allows an agent to ad-
just its behavior towards the role in its commitment. An agent can
commit to itself, e.g. when it has to fulfill a vital task. However, in
a collaboration agents commit relatively to one another via com-
munication. Roles and situated commitments are building blocks
for collective behavior. The operator selected by the decision mod-
ule is passed to theActionExecution module that invokes anin-
fluencein the environment. An influence is an attempt to modify
the course of events in the world. TheCommunication mod-
ule takes care for the communicative interactions. We developed
a communication module that processes incoming messages and
produces outgoing messages according to well-defined communi-
cation protocols [19]. Communication enables agents to exchange
information, and set up collaborations reflected in mutual situated
commitments.

Ongoing activities.Next to agents, we introduced the concept of
an ongoing activity to model other processes in the system. An
ongoing activity produces influences according to the state of the
environment. Examples of ongoing activities are a moving object
or an evaporating pheromone. Ongoing activities enable indirect
coordination between agents, and as such form a basis for collec-
tive behavior. [16] discusses ongoing activities in detail.

Environment.As for agents, the architecture of the environment
models different concerns (communication, perception generation
and action handling) as separate modules. TheMessageDeliver−
ing module of the environment handles message transport. The
PerceptGenerator module generates representations of the lo-
cal state of the environment for the agents [20]. TheCollector
module collects the influences produced by agents and ongoing
activities and passes them to theReactor module. This latter
calculates, according to a set of domain specific laws, the reac-
tion, i.e. state changes in the environment and consumptions for
the agents. For a thorough discussion on influences and reactions
we refer to [16].

3. Architectural design of an automatic guided
vehicle transportation system

In this section we illustrate the architectural design of an AGV
transportation system. This application is investigated in an on-
going research project in close cooperation with Egemin, a manu-
facturer of automated warehouse systems4. First we introduce the
application and briefly discuss the existing centralized approach.
Next we discuss new autonomic quality requirements for the ap-
plication and illustrate how we have applied the reference archi-
tecture for situated MASs to design a new decentralized solution
that aims to meet these quality requirements.

3.1 AGV transportation system

An AGV transportation system uses unmanned vehicles (AGVs)
to transportloads through a warehouse. Typical applications are
repackaging and distributing incoming goods to various branches,
or distributing manufactured products to storage locations. An
AGV uses a battery as its energy source. AGVs can move through
a warehouse, following a physical path on the factory floor, guided
by a laser navigation system, or magnets or cables that are fixed in
the floor.

Functionalities. The main functionality the AGV transportation
system should perform is handlingtransports, i.e. moving loads
from one place to another. Transports are generated byclient
systems. Client systems are typically business management pro-
grams, but can also be particular machines, employees or service
operators. A transport is composed out of multiplejobs: a job is
a simple task that can be assigned to an AGV. A transport typi-
cally starts with a pick job, followed by a series of move jobs and
ends with a drop job. In order to execute transports, the main func-
tionalities the system has to perform are: (1) transport assignment:
transports have to be assigned to AGVs that can execute them;
(2) routing: AGVs must route efficiently through the layout of the
4http://www.egemin.com/home.html
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warehouse when executing their transports; the best route for the
AGVs in general is dynamic, and depends on the current condi-
tions in the system; (3) collision avoidance: obviously, AGVs may
not collide. AGVs can not cross the same intersection at the same
moment, however, safety measures are also necessary when AGVs
pass each other on closely located paths. And finally, (4) deadlock
prevention: the system must ensure that at least one of the neces-
sary conditions for deadlock can never hold.

When an AGV is idle it can park at a neighboring park location;
however, when the AGV runs out of energy, it has to charge its
battery at one of the charging stations.

3.2 Traditional approach

Traditionally, vehicles are controlled by one central server, us-
ing wireless communication. This server has global knowledge of
the system. It plans routes for AGVs according to incoming trans-
ports and instructs AGVs to perform the jobs. The server continu-
ously polls the AGVs about their status. The low-level control of
the AGVs in terms of sensors and actuators (staying on track on
a segment, turning, and determining the current position, etc.), is
handled by the AGV control software called E’nsor5. To this end,
the layout of the factory is divided into logical elements:segments
andnodes. A logical segment typically corresponds to a physi-
cal part of a path of three to five meters. E’nsor can be instructed
to drive the AGV over a given segment; to drive the AGV over a
given segment and pick up –or drop– a load at the end of it; to
drive the AGV over a given segment to a battery charging station
and start charging; and finally to drive the AGV over a given seg-
ment and park at the end of it.

New quality requirements.The evolution of the market put for-
ward new requirements for AGV transportation systems. Cus-
tomers request for flexibility of the transportation systems, AGVs
should adapt their behavior with changing circumstances. Cus-
tomers have various requests with respect to flexibility and adapt-
ability, we discuss briefly a number of desired properties. AGVs
should be able to exploit opportunities, e.g., when an AGV is as-
signed a transport and moves toward the load, is should be possi-
ble for this AGV to switch tasks on its way if a more interesting
transport pops up. AGVs should also be able to anticipate possi-
ble difficulties, e.g., when the battery level of an AGV decreases,
the AGV should anticipate this and prefer a zone near to a charge
station. Another desired property is that AGVs should be able to
cope with exceptional situations, e.g., when a segment is blocked,
the AGVs should avoid that segment.

In summary, flexibility and adaptability are high-ranking qual-
ity requirements for today AGV transportation systems.

3.3 A decentralized approach with situated MAS

We now present a decentralized solution of the AGV trans-
portation system that aims to meet the quality requirements of flex-
ibility and adaptability. Vehicles then become autonomous agents
which make decisions based on their current knowledge, and who
coordinate with other agents to ensure the system as a whole pro-
cesses transports in time.

5E’nsor R© is an acronym for Egemin Navigation System On
Robot.

In this section we follow a trace in the architectural design of
the situated MAS. We focus mainly on the module view of the
architecture. In each step we refine one particular module of the
architecture and motivate the main architectural decisions.

STEP 1: System decomposition as a situated MAS.At the top-
level, the AGV transportation system is modelled as a situated
MAS.

Motivation. Since decision making in a situated MAS is decen-
tralized (the agents decide for themselves, locally), situated agents
are able to react flexibly to different situations and adapt their be-
havior to changing circumstances. These properties make situated
MAS a valuable candidate to cope with the target quality require-
ments. On the other hand, decentralization of control introduces
additional complexity. In the MAS approach there is no repository
of global knowledge available to resolve conflicts, AGVs have to
coordinate among themselves. To avoid a communication bottle-
neck, communication must be localized as much as possible. And
last but not least, a decentralized setup is harder to debug. The
challenge in this project was (and is) to guarantee existing func-
tionality, while aiming to realize the listed advantages by using a
MAS based approach.

Fig. 2 depicts a high-level model view of the architecture of the
MAS solution. The situated MAS consists of an environment and
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Figure 2. Module view of the architecture.

two kinds of agents,transport agentsandAGV agents. A transport
agent represents a transport in the system, it is responsible to de-
termine the priority of the transport, to assign the transport to an
AGV and to ensure that the transport is completed correctly. The
priority of a transport depends on the kind of transport, the pend-
ing time since its creation, and the nature of other transports in
the system. Therefore, transport agents interact with other related
transport agents to determine the correct priority over time. AGV
agents are responsible for executing the assigned transports. The
environment provides communication infrastructure that enables
agents to exchange information and to coordinate their behavior.
The physical infrastructure, i.e., the AGVs equipped with sensors
and actuators, the floor infrastructure to guide AGVs through the
factory, and the loads that AGVs have to transport are also part of
the environment. In the next step, we look at the architecture of
the environment, in the following steps we elaborate on the archi-
tecture of the AGV agents.
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STEP 2: Environment architecture. We first zoom in on the
architecture of the environment that is set up as a layered architec-
ture.

Motivation. To cope with the complexity of the environment, we
have selected layers as architectural pattern for the architecture.
Layers separate functionality, and support reuse.

Fig. 3 depicts the model view of the architecture of the environ-
ment. AGV agents and transport agents are situated in a virtual
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Figure 3. Architecture of the environment.

environment that is located at the top of the layered architecture.
The virtual environment uses the middleware layer, that is com-
posed of a message transfer system that enables agents to com-
municate with each other, the ObjectPlaces middleware [12] and
E’nsor. The bottom layer of the environment consists of the in-
frastructure for communication and the physical infrastructure of
the AGV transportation system. We now motivate and clarify the
use of a virtual environment. The goal of the ObjectPlaces mid-
dleware is discussed in the next paragraph. For a detailed study of
the virtual environment, we refer to [18].

Since the physical environment of a factory is very constrained,
it restricts how agents can use their environment. We introduced a
virtual environment for the agents to live in. This virtual environ-
ment offers a medium that agents can use to exchange information
and coordinate their behavior. The use of the virtual environment
is illustrated in Fig. 4. For clarity, we have simplified the expla-
nation, for details see [18]. First we look how AGV agents coor-
dinate through the virtual environment to avoid collisions. AGV
agents mark the path they are going to drive in their environment
usinghulls. The hull of an AGV is the physical area the AGV oc-
cupies. A series of hulls then describes the physical area an AGV
occupies along a certain path, see Fig. 4. If the area is not marked
by other hulls (the AGV’s own hulls do not intersect with others),
the AGV can move along and actually drive over the reserved path.
Afterwards, the AGV removes the markings in the virtual environ-
ment. Another use of the virtual environment are road signs. At
each node in the layout, a sign in the virtual environment repre-
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Figure 4. A virtual environment for AGV
agents.

sents the cost to a given destination for each outgoing segment,
see Fig. 4. The cost per segment is based on the average time it
takes for an AGV to drive over the segment. The agent perceives
the signs in their environment, and uses them to determine which
segment it will take next. Transport agents use the virtual environ-
ment to find AGV agents to assign the transports, and to follow
the progress of the assigned transports. To assign the transport,
the transport agent negotiates with AGV agents of idle AGVs near
to the location of the load. Once the transport is assigned, the
awarded AGV handles the transport.

Besides a medium for coordination, the virtual environment
also serves as a suitable abstraction that shields the AGV agents
from low-level issues, such as the physical control of the AGV. As
part of the middleware, we fully reused the E’nsor software that
deals with the low-level control of the AGVs. As such, the AGV
agents control the movement and actions on a fairly high level.

Deployment view of the environment.We now explain how the
virtual environment is deployed in the system, and what the role is
of the ObjectPlaces middleware.

Fig. 5 depicts the deployment view of the AGV transportation
system. A deployment view shows how the software is assigned
to hardware processing and communication elements. Transport
agents are located attransport bases. AGV agents are located in
AGVs that are situated on the factory floor. Each AGV and each
transport base is equipped with a processor. Communication in-
frastructure provides a wired network that connects client systems
and transport bases, and a wireless network that enables mobile
AGVs to communicate with each other and with transport agents.
To avoid overload of this network, agents typically communicate
only with other agents in their neighborhood.

Since the only physical infrastructure available to the AGVs
is a wireless network to communicate, the virtual environment is
necessarily distributed. In effect, each agent in the system main-
tains alocal virtual environment, which is a local manifestation of
the virtual environment. Synchronization of the state of the local
virtual environment with neighboring neighboring agents is sup-
ported by the ObjectPlaces middleware. The local virtual environ-
ment uses the middleware by sharing objects in a tuplespace-like
container, called anobjectplace. Every AGV has one objectplace
locally available. Objects in objectplaces on remote AGVs can be
gathered using aview. A view specifies (1) which AGVs’ object-
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Figure 5. Deployment view of the system ar-
chitecture.

places need to be included in the view (e.g. the objectplaces of all
AGVs within a specific range), and (2) what objects need to be
included in the view (e.g. hull objects). Fig. 6 depicts the archi-
tecture of the software that is deployed on each AGV. The AGV
agent is shown in the top layer of the model. The two other layers
correspond to the two top layers of the architecture of the environ-
ment, see Fig. 3.

STEP 3: AGV agent architecture, a data repository pattern.
Now, we zoom in on the AGV agent. The AGV agent architecture
corresponds to the agent architecture of the reference architecture
and is basically modelled as a data repository pattern.

Motivation. The data repository pattern supports separation of
concerns and loose coupling.

Fig. 7 depicts the module view of the AGV agent. Different con-
cerns of the agent behavior, i.e., perception, communication, and
decision making, are modelled as a separate modules of the archi-
tecture. The current knowledge module serves as data repository
for the different modules.

STEP 4: Decision making, a combination of blackboard and
sequential processing.To conclude, we zoom in on the decision
making module. The decision making module is set up as a hybrid
architecture that combines a blackboard pattern with sequential
processing.

Motivation. This architecture combines complex interpretation of
data with decision making at subsequent levels of abstraction.

�����

��� �	��
 ��
���� �

�	�	� ��
���� � � ����
����	��� � � �	�����	�

������� �������

!#" $ $ %�&�"

!#" $ $ %�&�"(' " ) ' "�$ "�*�+ %�+ , - *
, *�. / 0�" *�1 "

$ + %�+ "
%�1 + , - *!#" $ $ %�&�"

$ " *�$ - '	2 %�+ %
%�1 + , - *

3 � �������	� � ��� � � �
4 �	5 � ��6�� � � � � ��� �

7�8	9�6�� � ��

4 �	5 � ��6�� � � � � �	� �

Figure 6. Software architecture deployed on
AGVs.
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Figure 7. The AGV agent architecture.

The architecture of the decision making module is depicted in
Fig. 8. The current knowledge module serves as blackboard data
structure, while the action controller coordinates the selection of
an appropriate operator. After job selection, the action selection
module selects an action at a fairly high level (move, pick, park
etc.). The action selection module is modelled as a free-flow ar-
chitecture. Free-flow architectures allow to model flexible ac-
tion selection. In [14], we have described a design process for
free-flow architectures in detail. The action generation module
transforms this action into a concrete preliminary operator (e.g.,
move(segment x)). The collision avoidance module is responsi-
ble to lock the trajectory associated with the selected operator. As
soon as the trajectory is locked, the collision avoidance module
passes the confirmed operator to the action execution module. If
during the subsequent phases the selected operator can not be ex-
ecuted (e.g., an obstacle is detected on the selected trajectory),
feedback is sent to the action controller that will inform the appro-
priate module to revise its decision. This feedback loop enables
flexible decision making.
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4. Conclusion

In this paper, we argued that autonomic systems are essentially
characterized by quality requirements that specify that the system
should be able to adapt itself under varying circumstances and
situations. We identified dynamism and change, and complexity,
as important properties of problem domains when building auto-
nomic systems. Target quality properties for an architecture to
cope with dynamism and change are flexibility, adaptability and
openness. Target quality properties to cope with complexity are
manageability and unambiguity.

We have put forward situated MASs as an approach to build de-
centralized applications with autonomic quality requirements. In
this paper, we discussed the architectural design of a self-managing
AGV transportation system. In this application, AGVs should be
able to exploit opportunities, anticipate possible difficulties, and
cope with exceptional situations. Primary quality requirements to
enable such self-managing behavior are flexibility and adaptabil-
ity. We illustrated how the architectural decisions are guided by
a reference architecture for situated MASs on the one hand, and
architectural patterns that aim to satisfy the system’s requirements
on the other hand.

So far, we have validated the solution in an industrial test setup
with two physical AGVs that execute predefined batches of jobs.
Important lessons we learned from this initial project phase are:
(1) the architecture is a great instrument for communication be-
tween different stakeholders; (2) in general, the reference architec-
ture for situated MASs turned out to be an excellent guide for the
architectural design; (3) the complexity of the application forced
us to further decompose several modules of the reference archi-
tecture; (4) the concurrency view and the deployment view are as
essential as the modular view to build quality software for a com-
plex problem such as the AGV transportation system.

As future work, we intend to formalize the initial framework
for interpreting autonomic quality requirements presented in this

paper. This formalization will: (1) allow us to rigorously de-
scribe the decomposition of the non-functional requirements, and
(2) serve as a reference for practical evaluation. The next chal-
lenges in the project are order assignment and deadlock avoidance,
and subsequently the validation of the integral solution in an ad-
vanced setup.
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