
I I 9

Approaches to Building Self Healing
Systems using Dependency Analysis

J. Gao
Department of Cornpurer Scieiice
Stailford Universiy Hawrhorne. NY 10532
Stailford. CA 94305 USA
USA [gkar, parviz)@ris. ibrn.com

jgao@cs.srarlford.edu

G. Kar, P. Kemarii
IBM T. J. Warsoii Research Center

Abstract
Typical distributed transaction environments are a heterogeneous collection of
hardware and software resources. An example of such an environment is an
electronic store front where users can launch a number of different transactions to
complete one or more interactions with the system. One of the challenges in
managing such an environment is to figure out the root cause of a performance or
throughput problem that manifests itself at a user access point and take appropriate
action, preferably in an automated way. Our paper addresses this problem by
analyzing the dependency relationship among various software components. We
also provide theoretical insight into how a set of transactions can be generated to
pinpoint the root cause of a performance problem that is manifested at the user
access point.

Keywords
Self healing. problem determination, dependency analysis. transaction performance
management, root cause analysis

1 Introduction
Typical e-business environments, such as distributed transaction processing systems,
are a collection of heterogeneous hardware and software components that interact in
very complex ways to support end user transactions. Customers of such systems
expect high availability, rapid response time and guaranteed throughput. Such
customer expectations are usually captured in Service Level Agreements (SLA) with
the provider. When a situation arises such that one or more elements of the SLA is
violated, for example a user transaction experiences degraded response time, the root
cause of the problem needs to be found rapidly and corrective actions need to be
taken to minimize the impact of the fault. This paper details an approach for doing
this based on dependency analysis. This work builds on previous effort [10][4].
Consider any two resources, say A and B. which are pan of a distributed system. ” A
might, for example. be a servlet within a web application server, which implements
part of the logic for a business transaction. “ B might be an SQL processing agent,
such as an UB, which provides database access to servlet “A for completing the
business transaction. These resources are typically monitored by management agents

0 - 7 ~ n 3 - 8 ~ 3 n - 7 1 ~ 1 $ z o . n ~ ~ 0 2004 IEEE.

http://ibrn.com
mailto:jgao@cs.srarlford.edu

[19J[20J. which supply information about their status through a set of observable
metrics. In the, general case, A is said to he dependent on B, if B s services are
required for A to complete its own service. We may represent this fact by directed
graph with A and B as nodes and an edge drawn from A to B. A weight may also be
attached to the directed edge fromA to B, which may he interpreted in various ways.
such as a quantitative measure for the extent to which A depends on B or how much
A may be affected by the non-availability or poor performance of B, etc. In this paper
we are interested primarily in designing and analyzing algorithms for managing end-
user transactions and, therefore, are interested in their dependency on all. i.e. the
complete set of monitored resources in the distributed system that suppons these
transactions. In such a case. a useful representation of the dependency knowledge
could he in the form of a matrix, where the rows are the different transactions and the
columns are the monitored resources. In a simple representation the fact that
transaction f depends on the services of resource s can he represented by a 0 or 1.
The starting point of this is such a 0/1 dependency matrix that is computed using
algorithms described in [3][4][10]. A more complete approach would look at a non-
binary set of values to encode the degree (or strength) of dependency. This paper
looks at how one can use the dependency matrix to address two important questions
that arise in the management of distributed transaction processing systems:
I) When an alen or fault indication is received by the management system that a

particular transaction type is experiencing degraded performance, e.g.
unacceptahly long response time, how can the root cause of the problem he
rapidly determined?

2) Provided that we have found the root cause(s), what steps can be taken to correct
the problem?

,The paper is organized as follows: In section 2 we given an overview of related work
and describe in short a way of computing the dependency matrix. In section 3. we
provide a conceptual afchitecture of the system that we are in the process of building,
using the algorithms reponed in this paper. ln section 4, we provide a formal
definition of the problem. In sections 5 and 6 we describe our algorithms for the root
cause analysis. In section 7 we conclude the paper by listing a number of problems
for future research.

2 Related' Work
The dependency matrix of a l'arge distributed system can be obtained in a number of
ways by using direct or indirect methods [3]. Direct methods rely on a human or a
static analysis program to analyze system configuration. installation data, and
application code to compute'dependencies. Indirect methods operate at runtime and
may be intrusive [1][2][6]. semi-intrusive [4], or'non-intrusive [lo] with respect to
the.operational'system in the manner they extract dependencies. The non-intrusive
method proposed by Gupta er al. [lo] uses the activity periods to infer' the
dependency relationship. A depends on B with strength p . if the probability that the
activity period [hi, h,] of a resource B is contained in the activity period [al, a2] of a
resource A, i.e., al<h, and h2<a2. There are also methods using neural networks [7]
or belief networks [181 to automatically generate dynamic dependencies.
The self-healing problem, especially the problem of locating the root cause error as
quickly as possible. has attracted a lot of interest in the recent years due to difficulty

in managing very large distributed systems. There are three major approaches: rule-
based systems. codebook systems [13], and artificial intelligence systems based on
Bayesian networks or neural networks [l8][21]. Our solution falls in the codebook
approach which was firstly proposed by Kliger er. al. [13]. They proposed the
construction of a “codehook with distinguishable ability so that any single failure in
the system can he determined by matching the results of the transactions with the
entries in the codehook. While the running time of the codebook approach primarily
depends on the size of the codehook, Brodie cf. al. proved that finding the codebook
u,ith minimum size is NP-hard [5] . Several heuristics for finding a codehook have
been proposed [S][lO]. Notice that this is an “offline” version compared with the
online problem we study here. Specifically, in the above cited references, when there
is an error in the system, all the transactions of the codehook are run and the results
are compared with the columns in the dependency matrix to determine the root
cause. . In the present work, based on the current status of the system, we select a
transaction to run. the result of the transaction is collected and the system status is
update accordingly. We aim to find the root cause error as quickly as possible, i.e..
we want to minimize the numher of transactions that would need to he run to get our
result. A similar problem was also studied by Rish er. al. [17], who provide a general
framework using information theory.

3 System Architecture
The initial architecture of a self-healing system, using the results of our dependency
analysis. is illustrated in Figure 1. The components are briefly described below:

The Distributed System box denotes a typical. multi-tier e-Business system
consisting of a user or client layer, web access layer. web application services
layer and a hackend database layer. The system supports a predefined, fixed set
of user transactions types. In our experimental setup, we simulate such a system
using the TPC-W benchmark [221. which is a standard setup for building an
experimental electronic store-front.
The Monitoring System in this picture includes the various monitoring agents
that are typically deployed in a distributed environment to support the collection
and dissemination of performance and availability data to management
applications. In our setup. we use two important monitoring agents: I) an agent
that monitors the response time of the transactions, from a user perspective. 2)
an agent that monitors the various components wlithin an application server
environment. such as servlets. EJB’s, etc.[20]. Initially. the data collected by the
monitoring agents are fed into the Dependency Analysis engine for it to
calculate the dependency matrix. On a continual basis, when the monitoring
system detects an unacceptable response time for any of the transactions. it
invokes the Self-Healing Engine. so that the latter can orchestrate a set of steps
for problem resolution.

* The Dependency Analysis box incorporates our dependency extraction
algorithm [IO]. It is started when the distributed system becomes operational and
is allowed to run for a length of time dependent on the traffic load. It is assumed
that within this time period, a large majority of the various different types of
user transactions have had the opportunity to execute and, hence, provide the

0

necessary data to the Dependency Analysis box to compute the dependency

System

Monitoring Self-healing Root Cause
System Engine Set

f c
Distributed

Dependency Dependency
Analysis Matrix

Algorithms

Figure 1: Logical System Architecture

The Self Healing Engine is the focal point of this paper. It consists of two pans:
a problem determination component and a problem resolution component.
In this paper we repon on algorithms for the problem determination pan. The
problem resolution part is an area for future research. On being invoked by the
Monitoring System. as a result of a transaction that is experiencing degraded
response time. the Self Healing Engine runs one or more algorithms to quickly
narrow down the root cause, i.e.. the offending resource(s) that is (are)
contributing to the degraded response time. The algorithms used in the
implementation of the Self Healing Engine, operate in one or both of two ways.
It can observe the operations of other transactions in the system and based on
their performance narrow down the root cause. Additionally, it may invoke the
synthetic transaction composer to construct artificial transactions that can be
executed to further eliminate potential candidates for the root cause.
The Synthetic Transaction Composer consists of a set of pre-canned
transactions. one or more of which is selected to run, based on input from the
Self-Healing Engine.

In this paper we are going to focus mostly on algorithms that the self-healing engine
can use and provide some guidelines for designing the synthetic transaction
composer. We assume that the dependency analysis part has been executed and
therefore the dependency matrix. is available [1] [21 [3] [4] 161 [7] [IO] [12][1 81.

4 Problem statement
Given a large system with a set of resources S=(s,. s2 f) and a set of customer
transactions T=[rl. 12, f",]. the dependency of each transaction r j on the resource ,sj
is represented by a number I,+ The dependency matrix D is an m x ~ matrix with the (i.
j) entry being We also call the dimension I I vector V;=(V;, . \si?. ..., Y;,J the
dependency vector of transaction r,. One example of the dependency matrix is as
follows:

,SI ,S2 s3 s4 s5 S6 ", ,s8
i n n 1 I 1 I n
n i n n o n 1 1 '2
o o i n ~ o i o '3

f4 I n o I n n I I
fS I 1 . 0 I o I o I

(1)

When the execution of a transaction r; succeeds, all the resources that 1, depends on
are assumed to be working fine. Iff; fails, then a f leasr one of the resources that r,
depends, is assumed to have failed. One way to find the faulty resource(s) from S
which are responsible for causing the transaction to fail is to choose one of the other
transactions to run. and based on the result (failure or success), choose the next
transaction, etc., until the root cause is determined. Our objective is to minimize the
total number of transactions we will need to run to achieve this goal. Before we go
into the algorithms. we first look at several issues in the failure detection problem.
1. 0/1 matrix or non-0/1 matrix: the dependency matrix D can be a 011 matrix,

where vii =1 means that if si fails then transaction ti fails for sure, vu =O means
that f; doesn't depend on the state of resource .rj More generally, D could also
be a non-011 matrix. for example, each entry vu could denote the conditional
probability that transaction r; fails given that resource sj fails. The entries can
also represent quantities other than conditional probability. In this paper we
focus on the 011 dependency matrix case. Extension of our work to non-011
matrix will be reponed in the future.
Single failure or multiple failures: the number of resources that fail at the
same time can be one or more. In practice, there is little loss of generality if we
assume that only one resource fails at a time. If there could be more than one
resource failure. the resources could he either independent of each other,
meaning that i f s , and s1 by itself work5 fine. then the combination of s, and s 2 is
also working fine. A more realistic assumption is that the combination of two
resources may fail even if each of the resources is functioning properly. In this
paper. we concentrate on single failures, since in practical transaction processing
systems a single failure will typically invoke the problem determination system.
Fixed set of transactions or synthetic transactions: the set of transactions Tis
fixed ahead of time. meaning that the users have no freedom to compose new
transactions. If the users are given this extra power the problem becomes much
easier as we will show later. However, synthetic transactions require
programming and impose additional costs.
Zero knowledge or prior knowledge: if we have no prior knowledge about the
system state, we assume that every resource in the system has equal probability

2.

3.

4.

124 Serrhri Tlr,ec, h r l i Afmrogewwi

of failure. In many practical cases, we can get prior knowledge about the system
state by studying log files and management metric variables. i.e., we have a
probability distribution P=(p,,p!. p a] on the resources in the system. withpi
representing the failure likelihood of resource si.

The two most common scenarios that we focus on in this paper are as follows. They
naturally map to the Self Healing Engine and the Synthetic Transaction Composer in
Figure I
1. Single Failure Detection Problem w/ fixed transactions (SFDI): there is a

single failure in the system. The set of transactions one can use to test the system
is fixed, as is typical in a transaction system that implements a standard
electronic store front. We have zero-knowledge or partial knowledge about the
system status. The dependency matrix is O/l-matrix. The goal is to minimize the
number of kansactions that need to he run to identify the failed resource.
Single Failure Detection Problem wl synthetic transactions (SFDZ): we can
synthesize new transactions. This could he a transaction processing system, e.g..
a financial clearing house system, where application programmers have more
freedom in creating test transactions. The other assumptions are the same as
above.

I

2.

4.1 Our results
Our results are listed as follows.
1.

2 .

SFDl is NP-hard. even in the offline version where we assume the all the
transactions are known a priori.
Any online algorithm to solve SFDI, in the worst case. runs a factor of R(n)
transactions more compared with the optimal (smallest) set of transactions in the
static setting.

3. The worst case happens when the dependency matrix has specific
characteristics. In practice. the dependency matrix is much better than the one
corresponding to the worst case scenario. Therefore, we propose heuristic
algorithms for both Sf'Dl and SFD2.

5 Single Failure Detection Problem w/ fixed transactions (SFD1)
We assume that there is only one failed resource in the system and the resources are
independent of each other., We first look at the offline version of the SFDl problem.
We are given a set of transactions T and we need to conclude from their performance
(for example, response time) which resource in the system is faulty. First we should
ohserve that there aren't always solutions to this problem? For example, if the
dependency matrix D is I everywhere. we have no information to pin down the root
cause of the error. To guarantee a unique solution to the failure detection problem.
no two column vectors of the matrix D can be the same. This condition is sufficient
and necessary as we will show later. (Note that the case of D being 1 everywhere is a
special case of the non-identical columns case.)
Since one transaction failed before the Self Healing Engine is invoked, the resources
in the system that the failed transaction depends on must contain an error. Denote the
set of suspicious resources as S. The problem is to pin down the root cause in S, in
other words. identify the resource that is the cause of the problem. The algorithm
works as follows. We take the set of transactions 7 and run all of them. Only a

Al,l""od,e.s 1" I~, , ; l , / i , ,~ sel/t /<~di, ,g * . s ,ms rrrir,$! n<~,2'Wienl?. /I !lt,I?Si\ I25

subset of transactions fails. Take transactions from 7 one by one, if 1; succeeds. we
update S as S-(sjl bsu.=l 1, or, alternatively. set S lo Sn(sj l v,=0); if f i fails, we update
S as Sn(sj I L', = I). When S contains only one resource, we have pinpointed the
faulty one. If S contains more than one resource after we run out of transactions, then
there is not enough information to narrow down the root cause. One should either
consider more transactions or use synthetic transactions. The running time of the
algorithm is linear to the number of resources in the system. We now prove the
correctness of the algorithm. i.e.. by the time we try all the transactions from T. there
is only one resource left in S if no two column vectors of the matrix D are the same.
Assume otherwise. i.e.. we have two resources sj. si in the set S. Then by the
algorithm we know that for any transaction f; that succeeds, vu and \;rare both 0; for
any transaction r; that fails. U, and ij, are both 1. Then in the dependency matrix D
we should have the columns corresponding to the resource s, and s k identical. This
contradicts our starting assumption.

5.1 SFDl is NP-hard
In this section. we show that the failure detection problem, i.e., minimizing the set of
transactions to run in order to pin down the root cause. is NP-hard. In fact, we prove
a stronger result than OUT original setup: even in the offline version where we assume
the results of the transactions are known. selecting the minimum number of
transactions to pin down the error is NP-hard.
Assume we have run all the transactions and know which of them succeed/faiI. We
want to pick up a subset U of transactions which uniquely determines the failed
resource. The goal is to minimize the number of transactions in U. For each
transaction 0. in the set of all transactions, we define Si to he [sj I vu.=O) if t; succeeds,
and (si I P ~ = I) if 1; fails. Then the failed resource sj is the common intersection of all
the S;s. Now the problem becomes: for a set of I I resources S and m sets n=(S,,
S?, ..., S,,,), with S;L S . find a minimum subset n' G n so that n Si = (s j] . Then

U=(fi I S, E n']. The problem can he further reduced. Assume resource s i , I < j5 11,

is the failed resource. We take out sj from each set Si. now we want to find a
minimum subset n' c Il so that I n S, k 0 .

Theorem: Finding the minimum number of transactions which uniquely
determine the failed resource is NP-hard.
Pro03 This is shown by reducing this problem to the Set Cover problem which is
known to he NP-hard [9]. The Set Cover problem assumes a set of elements S and nt
sets n=[S,. S?, . . . ~ S,,,]. with S i c S, find the minimum subsets n' i n so that
U S, = s . For each subset S;, we define its inverse Si = S - Si, then.we want to

s,trt
find a minimum subsets n ' c n=(T ,... ~ , , ,] S O thatJ-S, =$.This is exactly the

problem of finding the minimum number of transactions that uniquely decide the
failed resource.

Since our problem is equivalent to the Set Cover problem, we can adapt the
approximation algorithm for the Set Cover problem. The greedy algorithm works as

5;cn

S ; d I

-

- - - -

I26 S ~ ~ . ~ . ~ k X 7lwr Fotrlt Mm7ge,,,e,,r

-
follows: we initialize n' as an empty set. Define V = U Si . If V=S. then we are

 done with a set of transactions II'. If V f S . select the set S; so that I V UT I - I V I
is the maximum among all the remaining S;. The greedy algorithm has an
approximation factor of I+lnii (111. And it's all we can hope for because getting a
better approximation factor is also NP-hard [161. In plain English, the algorithm is,
1. Choose that transaction from the set of all transactions such that the set of

possibly failed resource is the smallest.
2. Choose the next transaction in a way such that the above set can he reduced by

the maximum number of resources.
3. Repeat step 2 until the set of possibly failed resources cannot he reduced further.

5.2 On-line SFDl Problem

Assume the status of the transactions is not known. so we want to choose the
rransactione and run'them one by one until we can determine the failed resource. The
goal is to minimize the number of transactions we need to run, so that the root cause
i f the failure can he determined rapidly. We compare the performance with the
optimal off-line solution in terms of competitive ratio, which is defined as the
number of transactions obtained by our solution compared with the best offline
solution. The first observation is discouraging (in terms of competitive ratio).
Compared with the optimum offline solution. any online algorithm (deterministic or
randomized) can have a competitive ratio n(n) in the worst case, where n is the
number of resources. Assume we have an mxii dependency matrix as following,
where 1n=n+1 in this special case.

,,sn

f2 I 0 0 ..' 0
D = r , 0 1 0 ..(0

.

Transaction f l depends on all the resources and the other I I transactions depend on
one resource each. Assume that transaction r1 has failed; we want to then run some
other transactions to help us decide which resource has failed. Therefore in the worst
case one has to run (n) transactions to determine the root cause: all the fnst 11-1

transactions return "successful" answers and the last transactinn fails. Then any
online algorithm has to run 11-1 transactions before it can discover the failed
resource. However, the offline algorithm has all the results of the transactions and
can choose the, single transaction which uniquely determines the failed resource. So
the competitive ratio is Wn). Notice that here randomization doesn't help either. The
above analysis is based on the worst case scenario. But even for average-case
scenario. for example, if the resources fail with equal probability, then the
competitive ratio of any online algorithm is still n(n): the average number of
transactions we need torunis (l '+2+ ...+ i z - I + n) I i i = (n + 1) 1 2 .

5.3
Despite the pessimistic results. the dependency matrices in real e-business systems
are not like the worst case examples most of time. There is, typically, a lot of overlap
between the resources that the transactions depend on. So the worst case as described
in the previous section may happen very rarely. We, therefore, propose the following
heuristic. We first make the zero-knowledge assumption, i.e. each resource is equally
likely to have failed. Assume S contains the possible failed resources. where each
resource in S has probability l l lSl to be the failed one. Suppose a transaction ri
depends on .r resouces out of the k resources in S. Then the probability that r; fails is
.xIk and in that case we narrow down the set of possibly wrong resources to a set of
x resources that r; depends on. Similarly, the probability that r; succeeds is (k-x)lk.
and then only k-x can possibly go wrong. Therefore. the expected number of
resources left after we run r; is

Greedy on-line algorithm for SFDl

.Y. r I k + (k -I). (k - x) l k = (2x' - 21u- + k ') I k , (3)

which has a minimum value of k/2 when z k I 2 . Therefore, when we choose the next
transaction, we always choose one which depends on as near to half of the resources
from S as possible. The intuition is that irrespective of whether the transaction fails
or not, we are going to rule out half of the possibilities. In other words, we are trying
to get as much information as we can from the result of the transactions. Another
observation on the performance of this algorithm is that if we can always find a
transaction which depends on a fraction of the resources in S at each step, we can
always eliminate a fraction of the resources by running each transaction. So the final
running time is going to he O(log 1 1) .

However. in the real world we usually have or can acquire, through the monitoring
system, additional information about the state of the resources. This information will
enable us to associate a probability of failure with each of the suspected resources.
Assume we have pi associated with each resource sj E. S which represents the
probability of .sj being the failed one, c p , = I . Assume a transaction r; depends on

.r resources in S with the summation of their probabilities as d,, by the intuition
shown in the algorithm with zero-knowledge, the criterion of choosing the next
transaction is to choose the one with d, as close as 112 as possible. After we are done
with one transaction. we then rule out those in S that cannot be wrong and re-
normalize the probability pi for those that are left. This process is continued until
either S contains only one resource, or we've run out of the transactions. In the later
case, where there is more than one resource left in S. we don't have enough
information from the dependency matrix to make further distinction. By some
derivation we can show that the intuition is also explained by the entropy method in
information theory [14]. See [XI for details. To summarize, the algorithm to SFDl is,
1. The set S of possible failed resources is initialized to he the set of resources that

the firsi failed transaction depends on. P is the probability distribution on S. p;
representing the failure likelihood of resource si E S.

u,'s

2. Choose the transaction 1; so that the summation of the probabilities of the
resources that ti depends on is the closest to 112 among all the remaining un-
tested transactions.
Run I;. If it succeeds. then the resources that 1; depends on are all working fine.
We then change their probabilities of failure to be zero. Otherwise, if 1; fails. the
resources that I, depends on must contain the failed resource. We change the
probabilities of the resources that I; doesn't depend on to zero.
Renormalize the probabilities P so that Z p, = I for the remaining resources.
Repeat step 2 until S has only one resource or we've run out all customer
transactions. S is the minimal faulty resource set.

3.

4.
S.

Given: a set of possible faulty resources S = (s , . s2, s , ~) and a probability
distribution P=(p, . p!, . ._, pD}, withp, representing the failure likelihood of
resource I, E S. A set of transactions 7=(rl. I?, tn,] is used to test the
resources.
while ISI>l and In>l do

d = C I , , . k = l :
, , , = I

for i=2 to In
~ . = C I I , 3

if I d; -1/21<1 d -1121 then d =dj , k = i;
/ , = I

Run tk; T=T-(tk) ;
if I~ succeeds

then for j=1 to I?

ifvli=l thenp, =O;S=S-(s,):
elsep,=p,/(l-d):

else for j = l to I?

ifv,, =O thenp, =O; S=S-(.q};
else pi = p; Id:

Figure 2: Greedy online algorithm for SFDl

Single Failure Detection Problem w/ synthetic transactions
(SFDZ)

6

6.1 Online SFDZ
In the case that the fixed set of customer transactions cannot pin point the root cause.
we need to compose synthetic transactions. Construction of synthetic transactions for
testing and fault diagnosis is a difficult task, since in a real customer environment.
they need to be constructed with care, such that they do not interfere adversely with
the operation of the real system. Also. construction of synthetic transactions that
involve the participation of any arbitrary subset of the total set of resources in the
distributed environment may be impossible to do, given the constraints of the
physical system. In our analysis below. we ignore such constraints and assume that
our Synthetic Transaction Composer component is able to construct any transaction

Appr-uuci~rs 10 Birilil!rrg S~~//iieoiir&! S ~ ~ . v w w s r r r ; ~ i ~ e i w d ~ ~ ~ ~ ~ A m i w i v I29

to exercise an arbitrary set of resources. In a subsequent repon we will address the
challenge of incorporating the constraints mentioned above.
The algorithms and analysis for the fixed transactions case work here, except that
when we choose the next transaction to run. we choose from among the set of
transactions that depend on all possible subset of resources. The zero-knowledge
algorithm is easy - we select the next transaction which depends on 111121
resotuces, where I I is the number of suspect resources. The algorithm with prior
probability distribution P. however. is not. The problem of finding the transaction f;

with d , =E/,, to be the closest to !h among all the possible transactions, is

equivalent to the Partition Problem (also called Subset-Sum Problem), which is one
ofthe first six problems known to he NP-complete [9].
Theorem: Finding the best transaction with respect to the current failure
probability distribution P is NP-hard.
Proof Omitted, see [8].
The Partition Problem, admits a pseudo-polynomial algorithm [9]. That is, if the
probability pi has finite precision, the problem can be solved by dynamic
programming with running time O(n) 1151. The hidden constant factor in the running
time, however, is very large (inverse of the precision). Instead, we use a simple
greedy algorithm that works in O(II log 11) time.

v n = ,

1.
2.
3. Inspect the probabilities one by one. if p, + c p j 5 112 , add pi to U

Son the probabilitiesp, in decreasing order, so thatpj>pj+,. for all IS i 6 11.

A set Uis initialized as an empty set.

0,LU

otherwise, discard p,.
Stop when we inspect allp,. Output U. 1.

Given a probability distribution P=(p,,pl,p .) , find a subset U with
summation close to %.
Son the probabilities pi in decreasing order.

fori = I to I I
U =(): p=o;

if p j + p 5 112
then U = U + (pi) ; p =p, c p ;

Figure 3: Online algorithm for SFD2

The approximation ratio of the greedy algorithm is defined as the

ratio a = I f_ = p, I z p , , where U * is the optimum set.
Ii Y,'L'

Theorem: The greedy algorithm has an approximation ratio at most 2.
Pmof Omitted. see details in [SI.
Theorem: The number of transactions to narrow down the root cause is O(log
, I) , where I I is the number of suspicious resources initially.
Pmof Omitted. see details in [81.

.7 Conclusion and Future Work
In this paper we have discussed the failure detection problem in a large distributed
transaction processing system. In order to build a viable “self healing” transaction
processing system. one has to design algorithms that can rapidly determine the root
cause of a failed transaction. After the root cause is determined, depending on its
type. a variety of corrective measures can be taken. This combination of problem
detection and resolution steps. along with a high degree of automation in each, would
lead to a “self healing” system.
The starting point of the work reported here is a dependency matrix that captures,
for every transaction. the resources that it depends on. For simplicity. we consider
only binary dependencies. i.e.. a 0/1 matrix. We point out the possibility of using
dependency matrices with additional information, such as probability values.
Algorithms that utilize such information are being looked at as extensions of the
work reported in this paper. In typical transaction processing systems, usually when
a user transaction manifests degraded response time, there is generally one root cause
resource that lies at the heart of the problem. In such cases. if multiple resoiirce
failures are noted by the management system, it is usually because the other
resources are directly or indirectly dependenr on the failed resource. Based on this
observation. in this paper we have focused on the situation where transactions fail
because of single resource failures. This has allowed us to design and analyze our
problem determination algorithms in tractable way, without losing generality.
The root cause identification algorithm is based on a probabilistic approach. where
the final set of resources identified as the possible root cause candidates are the ones
wirh the highest probabilities of being so. It is possible. but unlikely, that none of the
resources in the set is the actual root cause. It is the authors’ belief if such a situation
arises. the dependency matrix can he modified to reduce the possibility of such an
occurrence in the future. We are basing our analysis on simplistic assumptions in
order to make progress and understand the effectiveness of our approach. We believe
that as we begin to validate these assumptions with experimental results. some
changes in the assumptions as well as in the algorithm will have to he made. The use
of dependency matrix in reducing the size of the possible root cause set is a novel
approach. Additionally. understanding how to construct synthetic transactions using
dependency matrix is a novel contribution.
As continuation of the work reported here, we are planning to consider the following
problems:

Find out the minimum faulty resources set if there are multiple failures at the
same time in the system.
Solve the failure detection problem when the dependency matrix is non-011.
Based on the information generated in the problem detection stage, design
appropriate problem resolution algorithms.

ACKNOWLEDGMENT
The authors wish to thank Manoj Agarwal. Sugata Ghosal. Manish Gupta and
Anindya Neogi, IBM India Research Lab., for providing valuable feedback on ideas
related to the results presented in this paper.

References

[I] J. Aman, C.K. Eilen, D. Emmes, P. Yocom and D. Dillenberger, “Adaptive
Algorithms for managing a distributed data processing workload, IBM Sysreiiis
Joirrrial. ~01.36. rro.2, 1997.

[Zl ”Systems Management: Application Response Measurement”, OpeiiGroiip
Tecechnical Smiidard C807. UK ISBN 1-85912-211-6, July 1998,
bttp://w~w.opengroup.or~products/piihlicationslcatalo~c8O7.htm.

[3] S. Bagchi. G. Kar and J.L. Hellerstein, .‘Dependency Analysis in Distributed
Systems using Fault Injection: Application to Problem Determination in an e-
commerce Environment” 12rl1 Iiireriiorioiial Workshop on Distributed Sysrenis:
Oprrorioiis & Maiiagenieirr. 2001

[41 A. Brown. G. Kar. and A. Keller, “An Active Approach to Characterizing
Dynamic Dependencies for Problem Determination in Distributed
Environment”. IM 200 I

151 M. Brodie. 1. Rich. S . Ma. A. Beygelzimer and N. Odintsova. “Strategies for
Problem Determination Using Probing”. IBM Tecliiiicol Report. 2002.

161 MY. Chen. E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pinpoint: Problem
Determination in Large, Dynamic Internet Services”, Iiirentarionol Co,lfere,tce
oii Depeiidable Sysrrnis and Neh.ork.7 (DSNOZJ. June 2002.

171 Ensel. Christian. “New Approach for Automated Generation of Service
Dependency Models” Secorid Lari i i America!? Network Operarion arid
Maiiogemeiir Syniposiiim. LANOMS. 200 I

181 J . Gao. G. Kar. P. Kermani. M. Agarwal. S . Ghosal and A. Neogi. Approaches
to Building Self Healing Systems using Dependency Analysis, IBM Research
RepOrr. 2003.

[9] M. R. Carey and D. S. Johnson. Coiripurer.s aiid Inrracrahilin: A Giiide IO rlie
Them? of NP-Corri~~lereiiess, W. H. Freeman And Company, New York, 1979.

1101 M. Gupta and A. Neogi and M. K. Aganval and G. Kar. “Discovering Dynamic
Dependencies in Enterprise Environments for Problem Determination”.
IEEE/IFIP Iiireniarioiinl Workshop on Disrrihiired Sysrenis Operarioiir arid
Manageirirrir (DSOMJ.Heidelberg. Germany, 2003, in press.

1 1 I I D. S . Johnson. “Approximation Algorithms for Combinatorial Problems”, J.
Cniii~~irr. Sysreni Sci. 9, 256-278. 1974.

1121 A. Keller and G. Kar. “Classification and Computation of Dependencies for
Distributed Management”. 5’“ IEEE Syniposiimi mi Coiiipiifers aiid
Cor~iriiiriiicatioiis (ISCCJ, J ~ l p 2000.

1131 S . Kliger. S . Yemini. Y. Yemini. D. Ohsie and S . Stolfo. “A Coding Approach
to Event Correlation“, Pmc. 4rR Itireriiarional Synzposiirin 081 Inregrated
Neruork Maiiageriieiir (IFIP/IEEEJ. May 1995.

I141 D. J.C. MacKay. Iiiforinarioii Tlieon. liference, aiid Leariiiug Algorirhnis.
Cambridge University Press. 2003.

1151 D. Psinger, An O(n) Algorithm for the Subset Sum Problem, DIKU. Uiiiverrin
of Copeiihageii, Deuinark, Report 95/6. 1995.

1161 R. Raz and S. Safra. “A Sub-constant Error-probability Low-degree Test, and
Sub-constant Error-probability PCP Characterization of N P , Proc. 291h Ariri.
ACMSyiiip mi Theoq of Coiip., ACM press, 475.484. 1997.

1173 1. Rish. M. Brodie. N. Odintsova. S. Ma and G. Grabamik, ”Problem
Determination via Active Probing”. iiiaiiiiscripf, 2003.

1181 J. W. Sheppard and W. R. Simpson, "Improving the Accuracy of Diagnostics
Provided by Fault Dictionaries", Proceedings of rhe 14"' IEEE VLSI 7esr
Sympositoit. 1999.

1191 htrp:Nwww.tivoli.com.
1201 htrp:N~ww-3.ibm.co~software/wehservers~
I211 H. Wietgrefe. K-D Tuchs. K. Jobmann, G. Carls. P. Froelich, W. Nejdl and S.

Sreinfeld. "Using Neural Networks for Alarm Correlation in Cellular Phone
Networks". Iitreniariortal Workshop oft Applicarioiis of Neural Nernorks to
Teiecoirirrtiriiicarioii.~. 1997.

1221 TPCW Wisconsin wehsite. http:Nwww.ece.wisc.edu/-phardtpcw.shtmL

http://htrp:Nwww.tivoli.com
http:Nwww.ece.wisc.edu/-phardtpcw.shtmL

