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Abstract

Denial of service attacks, viruses and worms are com-
mon tools for malicious adversarial behaviour in networks.
In this paper we propose the use of our autonomic routing
protocol, the Cognitive Packet Network (CPN), as a means
to defend nodes from Distributed Denial of Service Attacks
(DDoS), where one or more attackers generate flooding
traffic from multiple sources towards selected nodes or IP
addresses. We use both analytical and simulation mod-
elling, and experiments on our CPN testbed, to evaluate the
advantages and disadvantages of our approach in the pres-
ence of imperfect detection of DDoS attacks, and of false
alarms.

1 Introduction

A network security attack may be launched at any time
by a teenager, an insider, a criminal, an industrial spy, or
even a foreign government [1]. In February, 2000 a teenager
caused billions of dollars in damage to some of the lead-
ing Internet organisations, including Yahoo.com, eBay.com,
Amazon.com, Buy.com and CNN.com. Many of these are
Denial of Service (DoS) attacks, which are sometimes com-
bined with worms and viruses, whose main purpose is to
render a network’s resources unavailable to legitimate users.
Today such attacks are typically distributed (DDoS), where
the attacker uses a large number of compromised comput-
ers to attack one or more targets simultaneously, with the
problem worsening when “reflection” is used [2].

Complicating defence is the difficulty involved in deduc-
ing the true location of the source injecting traffic into the
network because of source address spoofing. In his 1985 pa-
per on TCP/IP weaknesses [3], Morris writes: “The weak-
ness in this scheme [the Internet Protocol] is that the source
host itself fills in the IP source host id, and there is no pro-
vision in TCP/IP to discover the true origin of a packet”.
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The difficulties involved in tracing and shutting off the large
numbers of DoS flows participating in attacks make them
both dangerous, and complicated to defend against.

Due to inadequacies in the original IP protocol, addi-
tional measures have been suggested after the fact to combat
the problem of source address spoofing. Ingress Filtering
[4] configures routers to drop arriving packets that have ille-
gitimate source addresses (i.e., IP addresses outside an “ac-
ceptable” range). It has also been suggested that the real IP
address can be inferred with a technique called IP traceback
[5], which uses probabilistic packet marking to allow the
victim to identify the network path traversed by attack traf-
fic without requiring interactive operational support from
Internet Service Providers (ISPs). Another scheme is hop-
count filtering [6], which exploits the fact that, although the
attacker can forge any field in the IP header, he/she can-
not falsify the number of hops a packet needs to reach its
destination starting from its source address. This hop-count
information can be used in attack detection and defence.
Aggregate Congestion Control with Pushback [7] attempts
to consider aggregates of traffic flows for purposes of clas-
sification and defence, using pushback messages to signal
upstream nodes to

Another area of DoS mitigation is the use of overlay
networks to control different flows of traffic. Secure Over-
lay Services (SOS) [8], which is geared toward supporting
Emergency Services or similar types of communication, re-
duces the probability of successful attacks by (i) performing
filtering near protected network edges, pushing the attack
point perimeter into the core of the network, where high-
speed routers can handle the volume of the attack traffic,
and (ii) introducing randomness and anonymity into the ar-
chitecture, thus making it difficult for an attacker to target
nodes along the path to a specific SOS-protected destina-
tion. Another recent approach is a distributed framework
called DEFCOM [9], which enables the exchange of in-
formation and services between defence nodes. These ap-
proaches provide ways to mitigate DoS attacks, yet an ob-
vious shortcoming is the fact that a compromised overlay
node could damage the operation of a large part of the net-

Proceedings of the Sixth IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks (WoWMoM’05) 

0-7695-2342-0/05 $20.00 © 2005 IEEE



work.

1.1 CPN-based DDoS Defence

We consider a DDoS defence scheme based on the fol-
lowing principles. An attacked node may be informed
by a local or distributed detection scheme about the on-
going assault. All nodes upstream from that node, up to
the source(s) of the attack, will be informed and will take
agreed upon precautions. However, the detection scheme is
imperfect so that both false alarms and detection failures are
possible. Such imperfections concern both the attack as a
whole, and also the identification of specific packets which
may or may not play a role in the assault. Thus the prob-
ability of correct detection is less than one, and the proba-
bility of a false alarm is larger than zero. The reaction of
the targeted node, and of the nodes that are upstream from
it towards the source(s) of the attack(s), is to drop packets
which are thought to be part of that attack.

The Cognitive Packet Network (CPN) [10, 13] is a Qual-
ity of Service (QoS)-driven routing protocol in which each
flow specifies the QoS metric (e.g. delay, loss, jitter, or other
composite metrics) that it wishes to optimise. Payload in
CPN is carried by dumb packets (DPs), while smart pack-
ets (SPs) and acknowledgement packets (ACKs) gather and
carry control information which is used for decision mak-
ing.

In CPN, each flow specifies its QoS requirements in the
form of a QoS “goal”. SPs associated with each flow con-
stantly explore the network, and obtain routing decisions
from network routers based on observed relevant QoS in-
formation. SPs store the identities of the nodes they visit,
and collect local measurements such as times and loss rates.
At each CPN node, the SP uses a local reinforcement learn-
ing algorithm based on measurements collected by previ-
ous SPs and ACKs, to elicit a decision from the node as
to the next hop to travel to. When an SP reaches the des-
tination node of the flow, an ACK packet is generated and
returned to the source according to the opposite (destina-
tion to source) path traversed by the SP, but from which all
node repetitions have been removed by using a right-to-left
deletion algorithm to delete the sub-paths between identi-
cal nodes. When the ACK reaches the source, the forward
route, which is the reverse of the route that it used, is stored
for subsequent payload or dumb packets (DPs) which will
be source-routed to the destination.

Our CPN-based DDoS defence technique exploits the
ability of CPN to trace traffic going both down- and up-
stream thanks to SPs and ACK packets, so as to facilitate
the stifling of malicious traffic. When a CPN node detects
a DoS attack, it will use the ACKs to ask all intermediate
nodes upstream to drop packets of the incoming flow. De-
tection is achieved by allowing any node to determine for

itself two parameters governing bandwidth allocation: the
maximum that it is able to receive (BTOT ), and the max-
imum that it is willing to allocate to any particular flow
that traverses it (BClient); both are dynamic parameters that
may change over time as a function of the conditions at the
node, and on the identity and QoS needs of the flows, and
they may also vary during the life of a particular flow or
connection. This idea can be extended to allowing a node
to specify different bandwidth restrictions for flows of dif-
ferent QoS classes.

When a CPN router receives an SP or DP from a flow
that it has not already seen before (e.g. with a new
source-destination pair, accompanied possibly by a new
QoS class), it will send a specific Flow-ACK packet back
to the source along the reverse path, and inform the source
of its (BClient) allocation. This may occur periodically for
each ongoing flow. The node will monitor all of the flows
that traverse it, and drop some or all of the packets of any
flow that exceeds this allocation. When the allocation is
exceeded, the node informs (using ACKs) upstream nodes
that packets of this flow should be dropped. Other possible
actions could include diverting the flow into a “honeypot”,
or into a special overlay network used for protection, or it
may simply alert a network administrator.

To illustrate this approach, we performed a DDoS at-
tack in our CPN testbed shown in Figure 1 (top left). A
220KB/s MPEG1 video was streamed over UDP from node
3 to node 30. The video in the unattacked network is clear,
as shown in Figure 1 (top right). Then, a saturating DDoS
attack is launched from nodes 1 and 2 against node 30. This
attack corrupts the video stream, making it unintelligible
(Figure 1, bottom left). Then we enable our defence al-
gorithm, alleviating the impact of the attack, resulting in a
clear video stream shown in Figure 1 (bottom right). These
results are quite promising; they show that given a system
which is (even imperfectly) able to distinguish attack traffic
from valid traffic, a sensitive real-time data stream can be
protected.

In the next section we discuss a mathematical model,
measurements on the small testbed of Figure 2, and sim-
ulations of the testbed, under different conditions of detec-
tion. The results obtained show strong agreement between
all three methods: see Figure 3 for Webserver 0 without
(top) and with (bottom) attack. Further results are given in
the next section.

2 Performance evaluation

In this section we evaluate the performance of our de-
fence mechanism experimentally, as well as via simulations
and an analytical model. All three techniques are applied
to the small network shown in Figure 2. Nodes 3, 4 and 5
attack Webserver 0 with flows of 2500 packets/sec(pps)
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Figure 1. Experimental evaluation of our de-
fence scheme. The top-left figure shows
the CPN testbed used to conduct the exper-
iments. Top-right shows a frame of video in
the unattacked network. Bottom-left demon-
strates the corruption in the video stream due
to the attack. Bottom-right shows the re-
stored video sequence after defence is en-
abled.

each. Both webservers (nodes 0 and 13) receive requests
from all valid clients. We evaluate the impact of the at-
tack and the defence mechanism by considering the rate
of “valid” packets which make it safely to their destination
nodes (goodput), at each node under varying load levels and
different detection probabilities.

We first describe the analytical model we have con-
structed for a general packet network consisting of N nodes.
At any node i, the arriving traffic is the aggregate of sev-
eral “normal” (benign) flows, and possibly of several DoS
flows, where n = (n1, n2, ... , nj , ... , nL(n)) and d =
(d1, d2, ... , dj , ... , dL(d)) are the paths in a normal and a
DoS flow, respectively. L(n) is the path length of flow n,
and j is used to denote the position of a generic node inside
the path. The total traffic rate λi arriving externally to node
i is composed of two parts:

λi =
∑

n
λn

i,n +
∑

d
λd

i,d, (1)

where λn
i,n is the “normal” or benign incoming traffic rate

which belongs to normal flow n, and λd
i,d is the arrival rate

of DoS packets belonging to flow d.

Figure 2. A DDoS attack takes place against
Webserver 0; nodes 1, 2, 3, 4, 5, and 6 partic-
ipate in the defence

Figure 3. Packet loss at node 0: analysis, sim-
ulation and measurement without (top) and
with (bottom) DDoS attack for different load
levels

Node i will have the capability to recognise the DoS traf-
fic, though only in an imperfect manner; some DoS traf-
fic will be mistakenly taken to be normal traffic while the
remaining DoS traffic will be correctly recognised by the
node for what it is. Similarly, some normal traffic will be
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mistakenly thought to be DoS traffic. Any traffic that node
i takes to be DoS traffic is dropped at the entrance to the
node. Thus, a fraction fi,n of normal traffic (the probability
of false alarms) and a fraction of DoS traffic di,d (the prob-
ability of correct detection) will be dropped as it arrives to
the node. If the node’s DoS detection mechanism were per-
fect we would have fi,n = 0 and di,d = 1. Once a packet is
admitted into a node, it is queued and then forwarded based
on its destination address. We model each node by a sin-
gle server queue with service time si representing both the
time it takes to process the packet in the node and the actual
transmission time. The traffic intensity parameter ρi is then:

ρi = si(
∑

n
In
i,n(1 − fi,n) +

∑

d
Id
i,d(1 − di,d)), (2)

where for node i, In
i,n is the arriving traffic rate of the nor-

mal flow n, and Id
i,d is the arriving traffic rate of a DoS flow

d.
Since DoS attacks will tend to overwhelm the node’s

packet processing and transmission capability, packets will
be lost by the node with probability Li. We could use dif-
ferent formulas to relate traffic intensity to the buffer over-
flow probability, based on large deviation calculations or
based on empirical observations. However, for the sake of
simplicity, we use loss probability expressions for a finite
capacity queueing model [11].

Since any traffic that is correctly or mistakenly thought
to be DoS traffic is dropped at the input of the node, and
since the traffic which effectively enters a node has been
filtered in this manner, the traffic equations for the system
become:

In
nj ,n = λn

n1,n

j−1∏

l=0

((1 − Lnl
)(1 − fnl,n))

Id
dj ,d = λd

d1,d

j−1∏

l=0

((1 − Ldl
)(1 − ddl,d)), (3)

where we set Ln0 = Ld0 = fn0,n = dd0,d = 0. These
equations express the fact that, at any node, an incoming
packet may be dropped due to correct or mistaken identifi-
cation as a DoS packet, or due to buffer overflow because
the node is overloaded, while all packets which enter the
buffer queue and are not dropped are eventually routed to
the next node on their path or absorbed at the current node
if it is itself the destination node. Equations (3) show the
dependence of the traffic rates to the buffer overflow or loss
probabilities, while ρi and consequently the buffer overflow
probabilities Li in turn depend on the traffic rates. The solu-
tion of (3) is obtained numerically via a non-linear iteration.

To evaluate the effectiveness of our scheme, we measure
the goodput at each node. This both establishes the effec-
tiveness of our DDoS protection scheme, and also of how

successful or unsuccessful the DDoS attack has been. The
goodput G(i) at each node is:

G(i) =
∑

n
In
i,n(1 − Li)(1 − fi,n) (4)

Let us illustrate the use of this model to evaluate the im-
pact of an attack in the network of Figure 2 when a DDoS
attack takes place against Webserver 0. The results are sum-
marised in Figure 4. They show that if we do not apply a
defence, a moderate attack could cause the network’s per-
formance to degrade drastically. For example, at high load
the victim (0) webserver’s goodput is less than 22%, com-
pared to 99% without the attack. If we apply a simplistic
defence in which half of the packets which are destined to
0 are dropped, we see that the overall goodput is improved,
although the “victim” webserver suffers. Results are pre-
sented for a small probability of false alarm f = 0.1 and for
two different levels of attack detection d = 0.6 and d = 0.9.
We observe a significant improvement of goodput for both
webservers at all load levels, especially with d = 0.9.

Figure 4. Analytical results for the impact of
DDoS on Webserver 0

We carried out simulations for the same network con-
figuration with the ns-2 tool [12] employing simple FIFO
scheduling, and drop-on-overflow buffer management at the
nodes. We first left the network undefended and then ap-
plied a simple defence mechanism based on packet drops.
We measured the percentage of legitimate packets which are
lost at each node. The results are shown in Figure 5, where
the x-axis is the network’s load level and the y-axis shows
the loss percentage of legitimate packets at each node for
each load level. Then we considered the network’s perfor-
mance under attack when it is protected. Nodes 1, 2, 3, 4, 5
and 6 are made aware of the DDoS attack against webserver
0 and apply the defence mechanism, while node 7 is not in
any of the DoS paths and will not participate in the defence.

The results both with and without defence in Figure 5
show significant improvement for each node at each load
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Figure 5. Simulation results for the effect of
DDoS on selected nodes’ goodput

level. Additionally, they highlight the usefulness of our ap-
proach in choosing a detection strategy. They show that if
webserver 0 is a decoy and the critical webserver that we
want to protect is 13, then at lower load levels a naı̈ve de-
fence, in which all nodes drop 50% of transiting packets
heading for webserver 0, will suffice. However, if our goal
is to minimise the impact of the DDoS attack on webserver
0 in a network with a high amount of legitimate traffic, then
according to these results, we need an accurate detection
scheme (e.g. f = 0.1, d = 0.9).

3 Conclusions and Further Work

In this paper, we have introduced a DDoS defence
scheme based on our autonomic routing protocol (CPN),
evaluating it on a testbed, via mathematical modelling and
with a discrete event simulation. Both the mathematical
analysis and simulations have measured the useful traffic
rate that the network provides in the presence of an attack
for various levels of attack detection accuracy. Our testbed
experiments have demonstrated the ability of our mecha-
nisms to protect real-time traffic from the effects of flood-
ing.

Some of the avenues for further experimentation that
we are exploring are the use of our algorithms in larger-
scale systems, and hardware implementation. Experiment-
ing with larger, more heterogeneous networks allows us to
examine how CPN responds to a much more dynamic en-

vironment, while designing a CPN-based approach at the
hardware level will allow us to take advantage of the per-
formance gains available due to parallelisation of packet
processing. Both of them hold promise for evaluating and
improving our DDoS defence method.
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