
An Architecture for Coordinating Multiple Self-Management Systems

Shang-Wen Cheng An-Cheng Huang David Garlan Bradley Schmerl Peter Steenkiste
School of Computer Science, Carnegie Mellon University

�zensoul, pach, garlan, schmerl, prs�@cs.cmu.edu

Abstract

A common approach to adding self-management capa-
bilities to a system is to provide one or more external con-
trol modules, whose responsibility is to monitor system be-
havior, and adapt the system at run time to achieve various
goals (configure the system, improve performance, recover
from faults, etc.). An important problem arises when there is
more than one such self-management module: how can one
make sure that they are composed to provide consistent and
complementary benefits? In this paper we describe a so-
lution that introduces a self-management coordination ar-
chitecture and infrastructure to support such composition.
We focus on the problem of coordinating self-configuring
and self-healing capabilities, particularly with respect to
global configuration and incremental repair. We illustrate
the approach in the context of a self-managing video tele-
conference system that composes two pre-existing adapta-
tion modules to achieve synergistic benefits of both.

1 Introduction

Software-based systems today increasingly operate in
changing environments with variable user needs, resulting
in a continued rise of administrative overhead for managing
these systems. Thus, systems are increasingly expected to
dynamically self-adapt to accommodate resource variabil-
ity, changing user needs, and system faults. A common ap-
proach to adding self-management capabilities to a system
is to provide one or more external control modules, whose
responsibility is to monitor system behavior, and adapt the
system at run time to achieve various goals.

Self-management entails many different aspects, result-
ing in distinct dimensions of control. For instance, IBM’s
autonomic computing initiative views self-managing sys-
tems as typically exhibiting a subset of four capabilities:
self-configuring (adapt automatically to dynamically chang-
ing environments), self-healing (discover, diagnose, and re-
act to disruptions), self-optimizing (monitor and tune re-
sources automatically), and self-protecting (anticipate, de-
tect, identify, and protect themselves from any attacks) [9].

As another important dimension, system adaptation typi-
cally spans two scopes: large-scale global configuration,
and incremental repair in response to local failures. Finally,
different quality dimensions such as performance, security,
and reliability may require management as well.

For many application domains, managing a system re-
quires managing multiple dimensions. For example, con-
sider a video conferencing system with different user ap-
plications in a heterogeneous network environment, where
the aim is to provide the best service at the lowest cost. At
once, several potential dimensions of control exist, includ-
ing composition, change, performance, and cost of service,
each corresponding to different domain expertise, and thus,
modules of control. Many self-management modules (SMs)
are available today, each typically capable of addressing a
distinct aspect of self-management. The challenge is to al-
low developers to coordinate multiple distinct management
modules together in a coherent and consistent fashion to
manage a system.

A simple approach to do this is to let the different SMs
run independently. This can potentially lead to conflict, in-
consistencies, and modules working at cross purposes. An-
other approach is to reimplement all of the combined self-
management capabilities into one monolithic control mod-
ule, with the obvious problem that it is ad hoc, not cost-
effective, prevents reuse, does not scale, and results in an
overly complex system.

A better approach is to combine multiple SMs in a coor-
dinated fashion. However, such an approach has the difficult
challenges of maintaining consistency in information acqui-
sition and internal models and ensuring coherent decisions.
In this paper, we propose a coordination architecture em-
bodying points of shared system access, model translation,
and decision control patterns to integrate multiple SMs. We
will highlight the challenges, describe our approach, and
present a case study to demonstrate the approach.

2 Related Work

Recently, considerable research has been done on self-
managing systems, including work from IBM’s autonomic
computing initiative. An important challenge in their work

Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04)
0-7695-2172-X/04 $ 20.00 © 2004 IEEE

is the coordination of multiple autonomic elements to form
a cooperative system, where an autonomic element embod-
ies a system element managed by an autonomic manager,
similar to what we term self-management module. Our
work shares a similar challenge in that we attempt to co-
ordinate multiple SMs to manage one system, which itself
contains multiple elements.

To the best of our knowledge, no one has explicitly ad-
dressed the problem of coordinating multiple SMs to man-
age a single system. A few approaches (e.g., [22]) show
promise of a comprehensive architecture to address multiple
aspects of self-management, but have not carried the results
through to implementation. In comparison, our work ad-
dresses this problem, with a focus on the aspects of global
configuration and incremental adaptation in the context of
self-configuring and self-healing capabilities. Various re-
searches address the dimensions of self-management men-
tioned before, including the areas of system composition,
smart components, and incremental adaptations.

Previous work on service composition frameworks have
attempted to automate the generation of global system
configuration given certain constraints and/or optimiza-
tion criteria. Most of these efforts explore a path-based
(e.g., Panda [28] and Ninja [13]) or graph-based (e.g.,
SWORD [27]) service composition model to transform the
given input(s) to the desired output using a series of format
adaptors. The Libra framework [19] aims to automate the
optimal composition of services across the wide-area net-
work using service-specific knowledge.

Research on smart components (e.g., smart servers,
smart databases) that adapt to changes in the environ-
ment provide building blocks for self-management sys-
tems [21, 23]. Some of these have the ability to form a self-
organizing system (e.g., [12]). Finally, several researchers
take the approach of using externalized mechanisms to dy-
namically adapt a running system [5, 7, 8, 14, 26]. Due to
the nature of dynamic, run-time adaptation, their work have
focused on incremental adaptation.

Depending on application domains, different self-
management decisions might be based on different quality
attributes such as performance, security, and reliability. In
more complex cases, a combination of attributes may need
to be considered by using utility models. For example, some
of the work on dynamic adaptation applied their SMs to sys-
tems with primarily a performance concern [5, 7, 14].

3 Coordinating Self-Management Modules
To harness multiple self-management capabilities for a sys-
tem, we propose to use more than one existing SM in a co-
ordinated fashion. However, the question is, how can one
make sure that the modules work together to provide con-
sistent and complementary benefits?

Adopting IBM’s autonomic computing control loop

point of view, we can identify three phases of interaction:

Sense The SM first senses and aggregates information from
the system and updates its model(s) of the system.

Evaluate Sensed information is analyzed, based on certain
metrics, to decide on the course of corrective action.

Act The planned course of action is carried out on the sys-
tem to improve or correct the state of the system.

Central to all three of these are internal models to make
the overall control work. When multiple SMs have to be co-
ordinated, each of these phases introduces a potential point
of conflict and inconsistency. As a result, there are three
technical challenges to address.

(1) Consistent system access. Each SM needs to ob-
tain some information of the managed system for decision-
making. Each SM also needs to change the managed sys-
tem. For instance, SMs for a video conferencing system
might need to know the connection latency or component
cost. If the the same information is collected from multiple,
different sources—e.g., one source reports a cost of $10,
and another a cost of $100—the SMs may arrive at differ-
ent conclusions about the system, and thus potentially make
conflicting decisions. A different issue arises when a single
observation such as latency may require multiple sources
of information. In such a case, consistent interpretation in
the sensors themselves is important. Likewise, when two
SMs want to change the same components, their actions
may need to be synchronized to ensure consistent outcome.
Thus we need to ensure the consistency of sensed informa-
tion from the environment and of actions on the system.

(2) Non-conflicting decision. The SMs must evaluate or
interpret the sensed information to make decisions. To do
so each SM needs to base its interpretation and evaluation
on certain metrics, possibly in the form of utility models, to
make decisions. These metrics might include performance,
reliability, security, or cost, and, as mentioned before, the
SMs might focus on different metrics. In the video con-
ferencing example, a composition SM might evaluate met-
rics of overall service requirement, while a service-change
SM might evaluate metrics on adding a user to the confer-
ence. Because of the different focus, the SMs can poten-
tially make conflicting decisions. For example, given the
same component cost of $100, the composition SM might
consider it a low cost, while the service-change SM might
consider it high. In a different scenario, the service-change
SM might need to join a new user to the video conference,
while the composition SM might instead want to recom-
pose the entire conferencing session. If each works in-
dependently, the resulting changes could conflict with one
another, and possibly leave the system in a broken state.
Therefore, we need to ensure non-conflicting and comple-
mentary decisions.

Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04)
0-7695-2172-X/04 $ 20.00 © 2004 IEEE

(3) Consistent model. Each SM has an internal model of
the system, which will most likely focus on different as-
pects and reveal different level of details of the system. For
example, the service-change SM might maintain an archi-
tectural model of the video conferencing system, while the
composition SM might keep a detailed structure of all of
the conference elements. Because the models are the basis
of self-management decisions, the coordinated SMs must
have a consistent view to achieve synergy. Consequently,
we need to ensure consistency across the models.

A solution should address all parts of the coordination
problem by ensuring consistency in the sensed information
and action, by coordinating metrics and decision, and by
ensuring model consistency. In this paper, as a first step,
we focus on addressing the first and third challenges. We
briefly discuss the issues of decision coordination, but re-
serve a comprehensive solution of the second challenge for
future work.

4 Our Approach

Figure 1. Coordination Architecture

Our approach to address the core issues of consistency
and coherence identified in the previous section can be sum-
marized in three conceptual parts. First, we identify three
commonly recurring mechanisms for system access, and
propose an infrastructure that shares these mechanisms to
eliminate redundancy and conflicts due to system changes,
and to ensure that all models across the various SMs reflect
the system changes.

Second, in order for the SMs to cooperate on a decision,
they need to exchange model information. Furthermore, the
sharing of the system access requires a common representa-
tion of system information, which may differ from the SMs’
internal models. Hence, we propose a translation infrastruc-
ture to enable model exchange and system access.

Third, in order to reach a single, coherent decision
among multiple SMs, coordination of the decision process

is crucial. Therefore, we propose to coordinate evaluation
metrics among the SMs and to enforce a control pattern that
allows the SMs to cooperatively make decisions.

These three results are embodied in a coordination ar-
chitecture, shown in Figure 1. Self-management module 1
(���) interacts with ��� via the model translator in the
translation infrastructure. ��� corresponds to the general
case. Each ��� accesses the system and its surrounding
environment using the system access infrastructure, also by
way of translation. The system access components send no-
tifications to the SMs via translation. Finally, each of the
translation components uses the translation repository. In
the following subsections, we describe in detail the roles of
each part, and how they work together.

This approach provides common infrastructures to co-
ordinate SMs and produce consistent and coherent self-
management systems. The common infrastructure further
hides lower-level system access details from the SMs, al-
lowing developers of self-management modules to concen-
trate on the more abstract management logics. Our ap-
proach thus reuses common mechanisms, reduces the cost
of composing multiple SMs, and potentially promotes the
development of more SMs for others to reuse and compose
self-management systems down the road.

4.1 System Access

Most SMs use these three mechanisms to get information
into and out of the managed system:

Environment measurement. This mechanism supports
the observation and measurement of various states of the
system and the system environment, including component
properties such as load and liveness, and connection proper-
ties such as latency and bandwidth. The sensing mechanism
supports two ways to acquire environment information—
monitoring, where information is pushed from the system,
and querying, where information is pulled from the system

Resource discovery. This mechanism facilitates the dis-
covery of available resources in the environment that are not
part of the existing system, based on resource type and other
criteria. For example, an SM for a video conferencing sys-
tem might need to discover a new conferencing gateway to
replace a failed gateway. Furthermore, the discovery might
be based on proximity to existing users, load requirement,
and cost.

Action component. This mechanism enables the SM to
modify the configuration of the system. In the above ex-
ample, after the discovery of the replacement gateway, the
SM might use the action component to remove the old gate-
way from the system and put the replacement gateway into
service with certain configuration settings.

Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04)
0-7695-2172-X/04 $ 20.00 © 2004 IEEE

Because of the importance and recurrence of these three
mechanisms across SMs, when coordinating multiple SMs,
we can eliminate redundancy by sharing these mechanisms
among the SMs. Furthermore, since system access poten-
tially changes the system, all models need to reflect the
changes. Thus, our approach provides a shared system ac-
cess infrastructure responsible for keeping the models in
the various SMs updated through a notification mechanism
when any one of the SMs accesses the system. This helps
address the third challenge to ensure consistent models.
Since not all changes affect all models, only the SMs whose
models are affected need to be notified.

Consider an example where ��� removes an existing
element from the system using the action component. The
action component would notify the other SMs of this new
change to the system. Next, ��� might want to find a re-
placement element, which it does through resource discov-
ery. The resource discovery component would notify the
other SMs about the newly discovered resources. As a third
example, ��� might want to know some property of one
of the new resources. It queries this property through the
environment measurement component, which would then
inform the other SMs of the queried property.

This shared system access infrastructure addresses the
first challenge to ensure the consistency of sensed infor-
mation from the environment, since all the SMs obtain
their information from a single source. In addition, shar-
ing environment measurement and resource discovery has
the benefit of enabling performance optimization such as
measurement caching. Sharing the action component fa-
cilitates synchronization of system changes to ensure con-
sistent outcome in the system. In contrast, synchronizing
multiple action components requires more complex organi-
zation scheme, protocols, and algorithms.

4.2 Translation Infrastructure

The second part of our coordination architecture is the trans-
lation infrastructure to enable the shared system access,
which requires a common representation of system infor-
mation, and the exchange of model information. To fulfill
the two purposes, the translation infrastructure consists of
separate translator components for exchange of model in-
formation and for each of the three system access functions.
All of the translator components share a translation repos-
itory to maintain the necessary mapping information. To-
gether with the notification mechanisms of the system ac-
cess infrastructure, the translation infrastructure addresses
the third challenge to ensure consistent models.

Note that there are potentially many different kinds of
models that might need translation. However, we are most
interested in models that reflect a run-time architecture of
the system, such as a component-connector view. Our de-
sign of the translation infrastructure, in particular the dif-

ferent kinds of mapping knowledge, is thus based on this
assumption.

Translation knowledge. The translation repository stores
four kinds of mappings used by the translator components,
namely type, element, operation, and error mappings. The
use of a repository enables the translators to share the map-
ping knowledge.

Type mapping. The “type” refers to the class or cate-
gory of an element and defines a set of properties that the
element can have. The type mapping between two types ��
and �� consists of a simple relation of their names, plus the
relations of each of the properties of �� to the correspond-
ing property of ��. Each property is represented as a pair of
property type and property name. Type mapping must ex-
ist between different models, and between each model and
the system. For example, in a self-managed video confer-
encing system with two coordinated SMs, we might see the
following type mapping for a gateway element.

��� ��� Sys
type GatewayT GW Type ServiceGW
prop1 N/A (String, location) (InetAddr, ip)
prop2 (float, cost) (float, cost) (float, cost)

This table shows a mapping of a single type among���,
���, and the system. The mapping provides a relation of
the type names GatewayT, GW Type, and ServiceGW, and a
set of relations between the properties of the types. Notice
that not all properties have a correspondence in the other
models and the system (e.g., location). In addition, some
properties, like location and ip require transformation.

Element mapping. The “element” refers to an entity
in a model or the system, and is a tuple of the entity’s type
and its properties. Given an element in a particular model,
the element mapping allows us to obtain the corresponding
element in another model, or the system. Thus, the element
mapping is a simple relation between two elements. Con-
tinuing the previous example, we might see the following
element map for a gateway element.

��� ��� Sys
(type, (GatewayT, (GW Type, (ServiceGW,
props..) cost=1.3) location=“PA”, ip=10.1.2.3,

cost=1.3) cost=1.3)

Operation mapping. The “operation” refers to a unit
of action that the SM can issue to the action component,
which then carries it out on the system. Unlike the type and
element mappings, operation mapping only exists between
each of the SMs and the system. The operation mapping
between two operations ��� and ��� consists of a simple
relation of the operation names, plus the relations of each
of the parameters of ��� to the corresponding parameters

Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04)
0-7695-2172-X/04 $ 20.00 © 2004 IEEE

of ���. Each parameter is represented as a pair of param-
eter type and parameter name. For example, in the same
self-managed video conferencing system, we might see the
following operation map from ��� to the system:

��� Sys
op start start
param1 (GatewayT, src) (ServiceGW, src)
param2 (float, timeout) (float, timeout)

This table shows a mapping of an operation for starting
a gateway element, in which the gateway parameter needs
to be translated using the element mapping, but the timeout
parameter does not. Notice, however, that a more generic
parameter type can be specified to allow the operation to
accommodate more cases.

Error mapping. The “error” refers to a problem that
occurred during an operation. Like operation mapping, er-
ror mapping only exists between the system and each of the
SMs. The error mapping between two errors ��� and ���
consists of a simple relation of the error identifiers, plus
possible relations of the sources of error of ��� to the cor-
responding sources of ���. For example, consider the same
video conferencing system, where we might have the fol-
lowing error map from the system to ���:

��� Sys
error GatewayNotFound GatewayHostNotFoundEx

Among the four types of mappings above, the type, oper-
ation, and error mappings are provided a priori to the trans-
lation infrastructure, and populated in the translation repos-
itory, before the system is deployed.

Types of translators. As mentioned before, there are four
kinds of translator components. The model translator en-
ables SMs to exchange model information with each other
and to maintain consistency with the system. It uses the
type mapping to transform individual elements of the source
model to elements in the target model, generating element
mappings in the process. For example, consider translat-
ing ���’s model, which contains a gateway element (��)
as shown in element mapping table, to ���’s model. The
model translator would search for GW Type in the type
mapping, find the target type GatewayT, create the target
element (��) of that type, then use the property mapping to
fill in the properties. Finally, it stores the resulting element
mapping ��� � ��� in the repository.

The system access translators work similarly to the
model translator to enable the SMs to communicate with
the system access infrastructure. When an SM interacts
with the system, it refers to system entities and types us-
ing the vocabulary of its internal model. It is the respon-
sibility of these translators to transform those references to
specific system entities that the system access infrastructure

can understand and manipulate. Responses from the system
access infrastructure also needs to be translated back into
the vocabulary of the accessing module.

The environment measurement translator uses the ele-
ment mapping to translate the elements in queries from the
SMs. The resource discovery translator uses the type map-
ping to translate the resource type of the request, and the
element mapping to translate the discovered resource ele-
ments. The action translator uses the operation mapping to
translate the actions specified by the SMs, then the element
mapping to translate the individual parameters as necessary,
and finally the error mapping to translate any resulting error.

4.3 Decision Coordination
The third part of our coordination architecture is the coor-
dination of the decision process as the SMs use sensed in-
formation provided by the system access infrastructure to
evaluate and act on a solution. Although we are currently
still researching this problem, we believe that decision co-
ordination can be achieved through coordinating evaluation
metrics and enforcing a control pattern.

Evaluation depends on application-specific metrics,
which may differ for different SMs. The problem is that
the various metrics may be quite independent, or even con-
flicting, for example performance versus security. In such
cases, the prioritization of the metrics is mostly a policy is-
sue, so cannot be derived automatically. Consequently, our
approach defers the coordination of metrics to the domain
experts who are integrating the SMs. The domain experts
must provide a compatible set of utility criteria to our coor-
dination architecture to ensure that the SMs apply compati-
ble metrics.

Compatible metrics for the SMs is only the first step,
the next step is to ensure that when a problem arises, the
SMs can cooperatively arrive at a coherent decision through
some protocol of negotiation. In other words a control pat-
tern must be established, and a few examples include:

Single-active Only one active at any time, with explicit
yielding of control.

Balance of power Any module can veto the others.
Master-slave The master assigns tasks to the slave.
Agent-based Agent-like, peer-to-peer negotiations.
Democracy Modules use different metrics to decide on a

solution, then majority voting determines an outcome.

One important factor that affects the choice of control pat-
tern is the number of SMs coordinated. For any control pat-
tern, the complexity of the interaction grows with the num-
ber of SMs coordinated. The more complex control patterns
would be less practical for a large number of SMs. Relative
priority of the self-management dimensions is another fac-
tor. Ultimately, the application domain and the stakeholders
determine the best control pattern to enforce.

Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04)
0-7695-2172-X/04 $ 20.00 © 2004 IEEE

In summary, we expect to address the second challenge
to ensure non-conflicting and complementary decisions by
(1) determining a set of compatible evaluation metrics for
all the SMs based on domain-specific knowledge, and (2)
establishing a control pattern suitable to the application do-
main that will ensure a single coherent decision.

5 Case Study

To evaluate our approach, we performed a case study where
we coordinated two existing SMs—Libra and Rainbow—
to manage a single system. To test the resulting self-
management coordination, we chose a video conferencing
system as an example target system. The video conferenc-
ing system used did not dynamically adapt. It was therefore
a good candidate for applying multiple dynamic adaptation
techniques without being concerned with interfering adap-
tations from the system.

5.1 Overview

The Libra framework. The goal of the Libra framework
is to dynamically compose a “service instance” (consisting
of various components) that is optimized for the require-
ments and preferences specified in a particular user request,
taking into consideration the global environment character-
istics at the time of the request. In other words, Libra aims
to provide the global configuration capability. To achieve
this efficiently, Libra separates the domain-specific knowl-
edge of composition from the generic actions involved in
the actual composition. A service provider that wants to
use the Libra framework to provide a service would trans-
late its domain-specific knowledge into a “service recipe”
that specifies what components are needed given certain re-
quirements, what environment information should be ob-
tained for optimization, and so on. The central element in
Libra is the synthesizer, which interprets the recipe given
by the provider and carries out the actions accordingly, e.g.,
finding the necessary components, querying for the needed
environment information, calculating the optimal composi-
tion, and starting and connecting the components [19].

The Rainbow framework. Rainbow is an architecture-
based, dynamic self-adaptation framework that monitors
and incrementally adapts a target running system using the
system’s architectural model. The architectural model ex-
ternalizes the reasoning of system properties and conditions
for adaptation. The architectural model satisfies an architec-
tural style, which defines a family of architectures with a set
of types for components, connectors, interfaces, and prop-
erties together with a set of rules that govern how elements
of those types may be composed. The framework’s leverage
of architecture style enables analysis, system evolution, and
reuse of both adaptation expertise and infrastructure, thus
achieving cost-effectiveness [5, 10].

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

Vic/SDR
user

NetMeeting
user

Handheld
user

VGW

HHP

ESM
Overlay

ESMPESMP

ESMP

Figure 2. A video conferencing session exam-
ple

Video conferencing system. Our target system is a video
conferencing system that supports users with different con-
ferencing applications and hardware capabilities and in-
volves various components across heterogeneous network
environments. Specifically, three types of user are sup-
ported: (1) Vic/SDR users, who use a combination of
conferencing tools [2] designed for the MBone multicast
testbed [1], (2) NetMeeting users, who use the NetMeet-
ing application [24], and (3) Handheld users, who use a
handheld device with an application that only receives video
from a conferencing session.

To support these different users in a single video confer-
encing session, a number of service components are needed.
For example, Figure 2 shows a video conferencing scenario
that involves one Vic/SDR user, one NetMeeting user, and
a handheld user. First, since Vic/SDR uses the Session
Initiation Protocol (SIP) [16] for session setup while Net-
Meeting uses the H.323 protocol [20], a “video conferenc-
ing gateway” (VGW) must be used to translate the differ-
ent negotiation protocols. Secondly, the handheld applica-
tion does not have the capacity to perform the session ne-
gotiations. Therefore, a “handheld proxy” (HHP) is used
to negotiate on behalf of the handheld user. Finally, the
communication among the Vic/SDR user, the VGW, and
the HHP requires IP multicast, which is not available in
the wide-area network. Therefore, an “end system multi-
cast” (ESM) approach is used that uses a number of “ESM
proxies” (ESMPs) to provide the IP multicast functionality
across the wide-area network.

5.2 Coordinating Libra and Rainbow

The Libra self-management framework has the expertise in
global configuration, while Rainbow has strength in incre-
mental adaptations. For managing a system, these two ca-
pabilities serve complementary roles, so it is natural to con-
sider a synergistic composition of the two frameworks. Tak-
ing the approach outlined in Section 4, we coordinated the
Libra and Rainbow frameworks by sharing a system access
infrastructure, creating a translation infrastructure, and es-
tablishing a control pattern to coordinate decisions.

Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04)
0-7695-2172-X/04 $ 20.00 © 2004 IEEE

Figure 3. Rainbow-Libra Coordination

The resulting framework is shown in Figure 3, using
matching shapes with Figure 1 to help relate correspond-
ing parts. Synthesizer is one of the SMs. Tailor with the
model manager together form the other SM. Details on the
rest of the framework follow.

System access. As described earlier, the system access
infrastructure provides the mechanisms of environment
measurement, resource discovery, and action components,
which are needed by the SMs, Libra and Rainbow. Our
general approach to providing these capabilities has been
outlined in Section 4.1. One part that is specific to this par-
ticular case study is the use of gauges and probes to support
environment measurement.

Environment measurement involves two aspects: moni-
toring and querying. In other words, the gauges and probes
support both push-based and pull-based methods for acquir-
ing environment information. A probe is able to observe or
measure certain properties of system elements. In the moni-
toring mode, the information gathered by a probe is period-
ically published to interested gauges, which then report the
information to an SM.

On the other hand, when an SM wants to acquire the
up-to-date value of a property, it can query the appropriate
gauge, which asks the corresponding probe to get the cur-
rent value of the property. The distinction between probes
and gauges is that gauges serve the function of the translator
for environment measurement.

Translation infrastructure. The translation infrastruc-
ture bridges the gap between the models of the SMs, and be-
tween the SMs and the system. In this case study, the Rain-
bow framework operates at the architecture level, so trans-
lation between the Rainbow module and the system is nec-
essary. For system access, translation is realized via gauges
for the environment measurement and resource discovery
components, and a repair translator for the action compo-
nent. The model translator works partly as we described, to
translate between the system and Rainbow’s model. Based
on our analysis of the video conferencing system, we gen-
erated the initial type mappings of system element types to

architectural element types for the translation infrastructure.
On the other hand, the Libra framework actually operates

at the system level, so translation between the Libra module
and the system is unnecessary. In addition, the translation
between the Rainbow module and the Libra module only
requires the same translation knowledge described above.

Decision coordination. To ensure a single coherent deci-
sion between the SMs, in this case study, the provider speci-
fies and provides non-conflicting evaluation metrics to both
Libra and Rainbow. As an initial attempt, the single-active
control pattern is used to coordinate decisions between Li-
bra and Rainbow, and changes to the system occur through
the action component in the shared access infrastructure.

Global configuration incurs a higher computation cost,
but results in an optimal configuration. On the other hand,
incremental repair incurs a lower computation cost on a
shorter timescale, but the resulting decision may not be
globally optimal. The natural arrangement is to alternate be-
tween the two, performing global configuration only when
necessary, and otherwise performing incremental repair to
handle the localized problems.

The coordination works as follows: Initially, a user
sets up a video conferencing session, and the Libra frame-
work performs the initial conferencing system configuration
based on the user request and the provider’s recipe. It then
informs the Rainbow framework of the architectural model
of the system via the model translator, and hands the con-
trol to Rainbow. Rainbow begins monitoring the system for
problems and making incremental repairs when necessary.

Each time Rainbow detects a problem, it uses its evalua-
tion metrics to determine the best repair. If Rainbow cannot
fix the problem, it will pass the control to Libra for total
reconfiguration. Libra then composes a new video confer-
encing session using its own set of evaluation metrics.

Although both frameworks access information about the
system, their difference in expertise means different kinds
of information are needed. The Libra framework queries
system information on demand so that it can make in-
formed, globally optimal decisions. On the contrary, Rain-
bow needs access to information quickly to make expedi-
ent, run-time decisions so it must cache observed or queried
states over a window of time, thereby trading off accuracy
and overhead (of data-caching) for a shorter latency of adap-
tation response. Therefore, within the general coordination
approach, customization will be necessary depending on the
SMs being coordinated.

6 Prototype Implementation

In the previous section, we described at an abstract level
how we realized the coordination architecture for the case
study to integrate Rainbow and Libra. In this section, we
describe the prototype implementation.

Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04)
0-7695-2172-X/04 $ 20.00 © 2004 IEEE

Self-management module components. Tailor and the
model manager comprise the evaluation and decision com-
ponents in the Rainbow module. The model manager main-
tains an architectural model and provides a set of interfaces
for updating, changing, and querying the model, and for
querying the system. It evaluates the model to detect prob-
lems and triggers Tailor to repair them.

Synthesizer is the decision component in the Libra
framework. Our prototype implementation contains a spe-
cialized synthesizer for the video conferencing service.

Coordination architecture components. The high-level
components in the architecture are implemented in Java
and provide RMI interfaces for interaction with each other.
The communication between components is via XML re-
quest and response messages over RMI, where we have de-
fined message schemas for all communication to validate
the messages.

The environment measurement mechanism in the sys-
tem access infrastructure includes two subcomponents—
network measurement and monitoring gauges and probes.
The network measurement currently provides latency esti-
mates of network connections. This is achieved by using
the global network positioning (GNP) [25] approach, which
models the Internet as a geometric space. The monitoring
gauges and probes use the Siena publish-subscribe infras-
tructure [4], and currently include probes that can monitor
the load and liveness of components in the system.

For resource discovery, we use the network-sensitive ser-
vice discovery (NSSD) infrastructure [18]. The Libra or
Rainbow module can look for a service component by send-
ing a request to the NSSD directory, specifying the desired
service type and a set of predicates, which indicates con-
straints and preferences on the values of certain attributes
of the service. Such attributes might include, for exam-
ple, cost, supported protocols, and even network latency to
a particular user.

The action component provides the mechanism for the
Libra or Rainbow module to modify the system configura-
tion. It comprises a high-level Java part to provide an RMI
interface to the rest of the infrastructure, and a low-level
C++ part to interact with the target system and carry out the
actual operations.

For the translation infrastructure, the translation reposi-
tory is realized by a complex hash data structure and an RMI
interface for the various translators to store and retrieve the
mappings. The data stored in the mappings are Java object
representations of the types, elements, operations, errors.
As an implementation artifact, we merged the functionali-
ties of the environment measurement and resource discov-
ery translators.

Video conferencing applications. In the video confer-
encing system, the user applications include NetMeeting

and Vic/SDR, which are existing applications, and the hand-
held conferencing application, which is a slightly-modified
version of Vic.

We use the following three system components. The
video conferencing gateway (VGW) supports interoperabil-
ity between H.323-based and SIP-based conferencing ap-
plications, i.e., it translates the session negotiations and for-
wards the video streams during the session [17]. We im-
plemented a handheld proxy (HHP) that is able to join a
conferencing session on behalf of a handheld user. Finally,
we use a “proxy-based” variant of the end system multi-
cast (ESM) approach described in [6], i.e., the ESM proxies
(ESMPs) establish a multicast overlay among themselves,
and each end system communicates with a particular ESMP
to send and receive multicast data.

Since all these applications are legacy components, we
implemented wrappers to allow the system access infras-
tructure to control these components. Finally, note that
most infrastructure components such as the environment
measurement and resource discovery mechanisms might be
reusable in other efforts of self-management coordination.

7 Evaluation
We use the video conferencing system described in Sec-
tion 5.1 to test the prototype and demonstrate that a coordi-
nation framework designed and implemented according to
the recipes of the coordination architecture can consistently
and coherently manage a system. To do so, we performed
a case study of two adaptation scenarios: one to add a new
user and another to respond to component failure. Each re-
quired the interaction of the Libra and Rainbow modules to
compose and adapt the video conferencing system. The co-
ordinated Libra and Rainbow did achieve the desired adap-
tations, allowing the new user to join and recovering in the
presence of the component failure.

We also used the two scenarios above to quantify the ad-
ditional overhead introduced by the coordination architec-
ture, i.e., the overhead of the translation infrastructure (but
not the system access mechanisms because they would be
needed even without coordination).

Scenario 1: New Vic user. In the first scenario, a new Vic
user requests to join an already running video conferencing
session. This request causes the Rainbow model manager to
trigger Tailor to perform an adaptation as follows. First, Tai-
lor (through the query translator) queries network measure-
ment for the latency between the new Vic component and
each of the three existing ESMPs. After the three queries,
Tailor chooses the ESMP that is “closest” to the new Vic
and issues a “connect” operation, which goes through the
repair translator and is executed by the action component to
configure and start the user’s conferencing application. Our
measurements show that this adaptation takes about 2130
ms, of which the system access mechanisms cost 1600 ms,

Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04)
0-7695-2172-X/04 $ 20.00 © 2004 IEEE

the Rainbow module spent 230 ms, and the overhead intro-
duced by translation is 300 ms.

Scenario 2: Failed ESMP. In the second scenario, one of
the three existing ESMPs in the session fails. This failure
is detected by a liveness probe and reported to the model
manager, which triggers Tailor to perform an adaptation
as follows. First, Tailor (through the model manager and
query translator) queries the resource discovery mechanism
to find a new ESMP to replace the failed one. Then, Tai-
lor issues the following operations, which are translated by
the repair translator and executed by the action component:
shutdown the failed ESMP, start the new ESMP, connect the
new ESMP to the two remaining ESMPs and the end point
served by the failed ESMP (three connect operations), and
finally activate the new ESMP. The measurement results
show that this adaptation takes about 2730 ms, of which
1500 ms are spent on system access mechanisms and 330
ms on Rainbow, and the translation overhead is 900 ms.

From these preliminary results, we believe that the over-
head introduced by the translation layer is reasonable, given
that in both cases it is well below the cost of actually access-
ing the system.

8 Discussion
The self-management approach implied in this paper rests
on an important assumption that for any target system, the
framework has access to some measurement, resource dis-
covery, and effecting mechanisms to observe and change
that system. We believe this assumption is reasonable
because a growing number of measurement tools and in-
frastructures are able to provide information about com-
mon component or connector properties, such as network
bandwidth and latency measurements. Several different re-
source discovery protocols and infrastructure exist that can
discover new services and resources for a system. Like-
wise, effector technologies are emerging to support dy-
namic changes to running system components (e.g., Work-
flakes [15]). For many legacy systems, it is conceivable to
use wrappers to add hooks for making system changes.

In order for the coordination approach to work, a few
unresolved issues remain. First, to maintain consistency
across � SMs, ����� possible paths of translation exist be-
tween the SMs and between each SM and the system, po-
tentially requiring����� translators and complicating inte-
gration. However, the number of dimensions, i.e., size of
�, is unlikely to be large. Also, the models might not over-
lap significantly because they address different dimensions
of the system. Finally, more sophisticated representation of
translation knowledge can help reduce the number of trans-
lators to ����.

Second, there are other self-management dimensions in
addition to what we explored in the case study. The co-
ordination of these potentially conflicting dimensions ulti-

mately depends on the policy set forth by the stakeholders.
For example, domain experts coordinating the performance
and security dimensions of a system might stipulate that se-
curity overrides performance in all cases. As long as the
coordination policy can be expressed as a set of compatible
metrics and enforced by a control pattern, then we believe
that our approach would still be applicable.

Third, many different control patterns are possible to co-
ordinate self-management actions. The sophisticated con-
trol patterns enable the SMs to engage in intricate interac-
tions. For example, the democracy pattern might be used
to coordinate five equivalent SMs to increase fault toler-
ance. Or, the balance of power pattern might be used so
that a security-oriented SM could veto a potentially inse-
cure change from a performance-oriented SM.

Finally, the work presented in this paper is inherently
centralized, where monitoring and action are performed in a
centralized fashion within the shared infrastructures. Mak-
ing this assumption has allowed us to focus on core issues
of self-management, namely monitoring, detection, evalua-
tion, and action. At the same time, there may be concerns of
scalability and single point of failure. However, the coordi-
nation architecture is potentially applicable in a distributed
setting. For example, the self-management modules might
be distributed in different hosts. One might implement the
system access and environment measurement infrastructure
using distributed middleware. The translation infrastructure
can be distributed by replicating the translators that were
shared between SMs, and by replicating the repository to
ensure available access of translation knowledge. The co-
ordination and other distributed computing issues are future
research problems.

9 Conclusions and Future Work
In this paper we presented a coordination architecture and
approach that address the challenges of composing mul-
tiple self-management modules in a consistent and coher-
ent manner to manage a system. We demonstrated our ap-
proach by integrating two self-management modules, Libra
and Rainbow, in a case study, and applying a prototype im-
plementation to an example video conferencing system.

We then showed that the approach works using two adap-
tation scenarios. Finally, our evaluation based on the pro-
totype shows that the coordination architecture achieves
reasonable performance. We believe that our approach is
more generally applicable to coordinating multiple self-
configuring and self-healing modules, but unresolved issues
remain, as we have discussed above.

For future work, we plan to address the difficult chal-
lenge of coordinating decisions between different and pos-
sibly conflicting SMs. To resolve this challenge, we will
need to better characterize the kinds of SMs possible, de-
velop a technique to coordinate the various evaluation met-

Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04)
0-7695-2172-X/04 $ 20.00 © 2004 IEEE

rics, and determine a coordination policy to ensure coherent
action among the SMs.

We also plan to expand our case study as follows. (1)
We will explore the applicability of our approach to the
self-optimizing and self-protecting capabilities from IBM’s
classification. (2) We will add reconfiguration mechanisms
to the prototype and conduct a more comprehensive evalua-
tion to include total reconfiguration at system run-time and
incorporate greater use of utility evaluation in the coordina-
tion between Rainbow and Libra. (3) We will examine per-
formance bottlenecks in the coordination architecture and
attempt to optimize our prototype.

Acknowledgments
The research described in this paper was supported by

DARPA, under Grants N66001-99-2-8918 and F30602-00-
2-0616. Views and conclusions contained in this document
are those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied,
of DARPA.

References
[1] Introduction to the MBone. http://www-itg.lbl.gov/mbone/.
[2] Mbone Conferencing Applications. http://www-

mice.cs.ucl.ac.uk/multimedia/software/.
[3] Proceedings of the Working Conference on Complex and Dy-

namic Systems Architecture, Brisbane, Australia, Dec. 12–
14 2001.

[4] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and
evaluation of a wide-area event notification service. ACM
Transactions on Computer Systems, 19(3):332–383, Aug.
2001.

[5] S.-W. Cheng, D. Garlan, B. Schmerl, J. P. Sousa, B. Spitz-
nagel, and P. Steenkiste. Using architectural style as a basis
for self-repair. In J. Bosch, M. Gentleman, C. Hofmeister,
and J. Kuusela, editors, Software Architecture: System De-
sign, Development, and Maintenance, pages 45–59, Mon-
tral, Qubec, Canada, Aug. 25–30 2002. Kluwer Academic
Publishers.

[6] Y. Chu, S. Rao, and H. Zhang. A Case for End System
Multicast. In Proceedings of ACM Sigmetrics, June 2000.

[7] N. Combs and J. Vagel. Adaptive mirroring of system of
systems architectures. In Garlan et al. [11], pages 96–98.

[8] E. M. Dashofy, A. van der Hoek, and R. N. Taylor. To-
wards architecture-based self-healing systems. In Garlan
et al. [11], pages 21–26.

[9] A. G. Ganak and T. A. Corbi. The dawning of the autonomic
computing era. IBM Systems Journal, 42(1):5–18, 2003.

[10] D. Garlan, S.-W. Cheng, and B. Schmerl. Increasing sys-
tem dependability through architecture-based self-repair. In
R. de Lemos, C. Gacek, and A. Romanovsky, editors, Ar-
chitecting Dependable Systems, New York, NY, USA, 2003.
Springer-Verlag Inc.

[11] D. Garlan, J. Kramer, and A. Wolf, editors. Proceedings of
the First ACME SIGSOFT Workshop on Self-Healing Sys-
tems (WOSS ’02), Charleston, SC, USA, Nov. 18–19 2002.
ACM Press.

[12] I. Georgiadis, J. Magee, and J. Kramer. Self-organizing soft-
ware architectures for distributed systems. In Garlan et al.
[11], pages 33–38.

[13] S. D. Gribble, M. Welsh, R. von Behren, E. A. Brewer,
D. Culler, N. Borisov, S. Czerwinski, R. Gummadi, J. Hill,
A. Joseph, R. Katz, Z. Mao, S. Ross, and B. Zhao. The
Ninja Architecture for Robust Internet-Scale Systems and
Services. IEEE Computer Networks, Special Issue on Per-
vasive Computing, 35(4), Mar. 2001.

[14] P. N. Gross, S. Gupta, G. E. Kaiser, G. S. Kc, and J. J.
Parekh. An active events model for systems monitoring.
In Proceedings of the Working Conference on Complex and
Dynamic Systems Architecture [3].

[15] P. N. Gross, S. Gupta, G. E. Kaiser, G. S. Kc, and J. J.
Parekh. An active events model for systems monitoring.
In Proceedings of the Working Conference on Complex and
Dynamic Systems Architecture [3].

[16] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg.
SIP: Session Initiation Protocol. RFC 2543, IETF, Mar.
1999.

[17] J.-C. Hu and J.-M. Ho. A Conference Gateway Supporting
Interoperability Between SIP and H.323 Clients. Master’s
thesis, Carnegie Mellon University, Mar. 2000.

[18] A.-C. Huang and P. Steenkiste. Network-Sensitive Service
Discovery. In Proc. USITS ’03 (to appear), Mar. 2003.

[19] A.-C. Huang and P. Steenkiste. Building Self-configuring
Services Using Service-specific Knowledge. In Proceedings
of the Thirteenth IEEE International Symposium on High-
Performance Distributed Computing (to appear), June 2004.

[20] ITU-T Recommendation H.323. Packet-based Multimedia
Communications Systems, Nov. 2000.

[21] J. Jann, L. M. Browning, and R. S. Burugula. Dynamic re-
configuration: Basic building blocks for autonomic comput-
ing on ibm pseries servers. IBM Systems Journal, 42(1):29–
37, 2003.

[22] J. C. Knight, D. Heimbigner, A. L. Wolf, A. Carzaniga, J. C.
Hill, P. Devanbu, and M. Gertz. The Willow survivabil-
ity architecture. In Fourth Information Survivability Work-
shop, Vancouver, British Columbia, Oct 2001. Postponed to
March 2002.

[23] V. Markl, G. M. Lohman, and V. Raman. Leo: An autonomic
query optimizer for db2. IBM Systems Journal, 42(1):98–
106, 2003.

[24] Microsoft Windows NetMeeting.
http://www.microsoft.com/windows/netmeeting/.

[25] T. S. E. Ng and H. Zhang. Predicting Internet Network Dis-
tance with Coordinates-Based Approaches. INFOCOM ’02,
June 2002.

[26] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner,
G. Johnson, N. Medvidovic, A. Quilici, D. S. Rosenblum,
and A. L. Wolf. An architecture-based approach to self-
adaptative software. IEEE Intelligent Systems, 14(3):54–62,
May-June 1999.

[27] S. R. Ponnekanti and A. Fox. SWORD: A Developer Toolkit
for Web Service Composition. WWW2002 (Web Engineer-
ing Track), May 2002.

[28] P. Reiher, R. Guy, M. Yarvis, and A. Rudenko. Automated
Planning for Open Architectures. In Proc. OPENARCH
2000 – Short Paper Session, pages 17–20, Mar. 2000.

Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04)
0-7695-2172-X/04 $ 20.00 © 2004 IEEE

	footer1:

