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Abstract

We describe an architectural approach to achieving 

the goals of autonomic computing. The architecture 

that we outline describes interfaces and behavioral 

requirements for individual system components, 

describes how interactions among components are 

established, and recommends design patterns that 

engender the desired system-level properties of self-

configuration, self-optimization, self-healing and self-

protection. We have validated many of these ideas in 

two prototype autonomic computing systems. 

1. Introduction 

Creating large-scale computing systems that 

manage themselves in accordance with high-level 

guidance from humans has been recognized as a grand 

challenge—one upon which the future of information 

technology rides [1, 2, 3].  

Ultimately, our success in meeting this challenge 

will depend not only on our ability to invent new 

technologies, but also upon creating an architecture for 

self-management that exploits these technologies 

appropriately. Furthermore, we believe that the right 

architecture can, by itself, provide the key to achieving 

autonomic behavior at the system level. This paper 

attempts to motivate an architectural approach to 

autonomic computing. 

An architecture for autonomic computing must 

accomplish two fundamental goals. First, it must 

describe the external interfaces and behaviors required 

to make an individual component autonomic, that is, 

self-managing. (We do not impose any requirements 

on the internal structure of these components.) Second, 

it must describe how to compose systems out of these 

autonomic components in such a way that the system 

as a whole is self-managing. We seek to do both. 

We base our approach on a service-oriented 

architecture [4, 5]. Our approach bears much in 

common with agent-oriented systems [6] in that the 

system is composed of interacting, goal-driven 

autonomous or semi-autonomous components that 

sense and respond to their environment. It goes beyond 

both of these frameworks in that we specify the 

interfaces, behaviors and design patterns that are 

required to achieve self-management. 

A key concept in our architecture is the autonomic

element. Following [2], we define an autonomic 

element as a component that is responsible for 

managing its own behavior in accordance with 

policies, and for interacting with other autonomic 

elements to provide or consume computational 

services.

In our approach, every component of an autonomic 

system is an autonomic element. This includes 

computing resources such as a database, a storage 

system, or a server. It includes higher-level elements 

with some management authority, such as a workload 

manager or a provisioner. It also includes elements that 

assist others in doing their tasks, such as a policy 

repository, a sentinel, a broker, or a registry. 

This paper represents a first step towards describing 

an architecture for autonomic computing. In Section 2, 

we discuss required behavioral properties of autonomic 

elements. In Section 3, we describe interfaces and 

interactions among autonomic elements. In Section 4, 

we describe how to build a system with autonomic 

behaviors, starting with a collection of autonomic 

elements and, in Section 5, discuss common design 

patterns for doing so. Finally, in Section 6, we 

summarize prototype autonomic computing systems 

that have proven helpful in developing, verifying, and 

refining the architecture. 

2. Autonomic element behaviors 

In this section, we discuss some of the required and 

optional behaviors that we demand of autonomic 

elements. Because of its importance, the use of policies 

is discussed separately in Section 2.3. 
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2.1 Required behaviors 

First, an autonomic element must be self-

managing—that is, it must be responsible for 

configuring itself internally, for healing over internal 

failures, for optimizing its own behavior, and for 

protecting itself from external probing and attack. In 

order to simplify systems management in the large, an 

autonomic element must handle problems locally, 

whenever possible. For example, if it discovers that an 

autonomic element upon which it relies for service is 

not abiding by its agreement, it must try to resolve the 

problem. It may do so by demanding that the other 

element provide the agreed-upon service, or by 

terminating the relationship and finding another, more 

suitable element to provide the service. 

Second, an autonomic element must be capable of 

establishing and maintaining relationships with other 

autonomic elements—those to which it provides 

service, and those which provide service to it. This in 

turn induces several requirements. An autonomic 

element must describe its service accurately and in 

such a way that it is accessible and understandable to 

other autonomic elements. Relationships, as we will 

see, are based upon agreements, so the autonomic 

element must understand and abide by the terms of its 

agreements. Additionally, the autonomic element must

be capable of negotiating (even trivially) to establish 

agreements. 

 Third, an autonomic element must manage its 

behavior and relationships so as to meet its obligations, 

either by appropriately tuning or configuring its own 

parameters, or by drawing upon the resources of other 

autonomic elements in the system. There are two types 

of obligations to which an autonomic element may be 

subject. First, an autonomic element must honor the 

terms of its agreements. Second, an autonomic element 

must be capable of receiving and abiding by policies 

(cf. Section 2.3). An autonomic element must reject 

any service request that would violate its policies or 

agreements. Similarly, it must refuse (or 

counterpropose) any proposed relationship or policy 

that would cause a violation of its existing 

relationships or policies. It must have sufficient 

analytic capabilities to support these functions. 

Administrative relationships are not treated 

specially. An autonomic element receives a directive 

from another element in the same manner that it 

receives ordinary requests. If, upon checking its policy, 

it discovers that the requestor has sufficient authority 

to warrant taking the request as a command, then it 

acts accordingly. If the autonomic element receives 

conflicting requests from two autonomic elements that 

manage it, the autonomic element itself has the 

responsibility for resolving the conflict, although it 

may at its discretion invoke help from other autonomic 

elements in doing so.  Note that the element issuing the 

directive may expect, but not assume, that the directive 

will be carried out. 

2.2 Recommended behaviors 

The following behaviors are strongly encouraged, 

though not required, in autonomic elements. 

An autonomic element should ask for a realistic set 

of requirements when requesting a service from 

another element. It should not, for instance, request a 

terabyte of storage when it knows it only needs a 

megabyte. 

An autonomic element should offer a range of 

performance, reliability, availability and security 

associated with its service. This enables end-to-end 

optimization of these qualities in a system. 

An autonomic element should be able to translate 

requirements for its service characteristics 

(performance, etc.) into requirements for any services 

that it needs to request from other elements. This 

enables self-assembly of systems without requiring 

central planning. 

Finally, an autonomic element should protect itself 

against inappropriate service requests and responses. 

Specifically, it should authenticate all requests and 

requestors, and it should protect itself against 

inappropriate responses to its requests, e.g. by 

checking that each such response conforms to the 

pertinent agreement.  

2.3 Policies 

Of central importance to autonomic system 

behavior is the ability for high-level, broadly-scoped 

directives to be translated into specific actions to be 

taken by elements. This is achieved by the use of 

policies.

A policy is a representation, in a standard external 

form, of desired behaviors or constraints on behavior. 

Policy-based management of computer systems has 

been an active research topic for over a decade [7, 8]. 

For autonomic computing, the focus is specifically on 

policy-based self-management. 

To cover the broadest possible range of situations 

and contexts, we allow for at least three interrelated 

forms of policy [9]. At the lowest level of specification 

are action policies, which are typically of the form 

IF (Condition) THEN (Action), e.g. IF (ResponseTime 

> 2 sec) THEN (Increase CPU share by 5%). An 

autonomic element employing action policies must
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measure and/or synthesize the quantities stated in the 

condition, and it must execute the stated actions 

whenever the condition is satisfied. 

At the next level are goal policies, which describe 

the conditions to be attained without specifying how to 

attain them, e.g. “Response time must not exceed 2 

sec.” Goal policies are more powerful than action 

policies because a human or an autonomic element can 

give direction to another element without requiring 

detailed knowledge of that element’s inner workings. 

Autonomic elements employing goal policies must

possess sufficient modeling or planning capabilities to 

translate goals into actions. 

At the highest level are utility function policies,

which specify the relative desirability of alternative 

states. This is achieved either by assigning a numerical 

value [10] or a partial or total ordering to the possible 

states [11]. Utility functions are even more powerful 

than goal policies because they automatically 

determine the most valuable goal in any given 

situation. Autonomic elements employing utility 

function policies must have sufficiently sophisticated 

modeling and optimization capabilities to translate 

utility functions into actions. 

3. Autonomic element interactions 

Having described the behaviors that we demand of 

autonomic elements, we now turn to how those 

elements interact with each other in a larger system. 

We describe the interfaces that autonomic elements 

must implement, the way in which they make 

agreements about what they will do for other elements, 

and restrictions on the ways in which they interact. 

3.1 Interfaces 

Any service-oriented architecture defines a number 

of standard interfaces through which services are 

described, discovered, and supplied.  In order to 

achieve self-management and interoperability in 

autonomic systems, autonomic elements must 

implement additional interfaces as well. While space 

does not permit a detailed exposition of these 

interfaces here, we will briefly describe the major 

classes.  In our current work, we define these 

interfaces as extensions of the OGSA architecture 

described in [4], but the concepts apply to any service-

oriented architecture. 

Monitoring and test interfaces enable an element 

to be monitored by any other element that has 

established the appropriate administrative relationship 

with it.  These interfaces can be used to control the 

amount of logging and tracing data that an element 

gathers about its own operation, to gain access to that 

data, and in some cases to arrange for real-time feeds 

of the data.  Related interfaces can be used to instruct 

an element to conduct a self-test, and to obtain the 

results of such tests. 

Lifecycle interfaces enable administrative elements 

to determine the lifecycle state of an element (e.g. 

starting, paused), to cause that state to change (e.g. 

shut down), and to determine the lifecycle model that 

applies to the element. 

Policy interfaces enable administrative elements to 

send new policies to an element, and to determine the 

policies currently in use by the element.  The ability to 

send an element a new policy is not all-or-nothing; 

some elements may have a limited administrative 

relationship with the element (allowing, for instance, 

only new monitoring or alert policies to be accepted), 

while others may have total control, being authorized 

to replace or add any policy that the element 

understands.   

Negotiation and binding interfaces permit an 

element to request a service from another element, or 

to be requested to provide a service.  Simple forms of 

these interfaces allow an element to request a 

particular service, and receive either a confirmation or 

an error; this sort of interface is common to all service-

oriented architectures.  In order to achieve more 

flexible self-management, autonomic elements may 

also support more complex interfaces that allow 

proposals and counterproposals, negotiation over the 

exact terms and properties of the service to be 

provided (including levels of reliability, availability, 

performance, etc.), as well as allowing the formation 

and management of longer-term relationships. 

Additional interfaces are discussed in Section 5. 

3.2 Relationships 

When an autonomic element has agreed to provide 

service to another autonomic element, we say that 

these two elements have a relationship. Typically, 

relationships are formed at run time rather than baked 

in during system deployment, and they may change 

over time. They are put into place by the elements 

themselves, rather than by human administrators. 

Relationships are the way in which autonomic 

elements are composed to form autonomic systems. 

Indeed, in our approach, they are the only way in 

which elements are composed into larger entities. 

In general, relationships are formed as a result of 

negotiation among the elements involved in them.  An 

element will request the services of another element. 
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That request may be turned down (e.g. if the 

requesting element is not authorized, or if the 

requested element does not have sufficient resources). 

The requested element may counter propose a different 

relationship that it can accept (e.g. longer latency for 

transactions, but greater throughput). Once both 

elements agree on the terms of the relationship, they 

are bound by them and must seek to operate according 

to them. 

This negotiation need not be laborious. It can be 

trivial, as in the case where the requestor is not 

authorized and is simply turned down. Similarly, some 

services may be implicitly available to all requesters, 

as is likely to be the case for the service interface used 

to ask an autonomic element for service in the first 

place.

3.3 Interaction integrity 

Interaction integrity is a statement that an 

autonomic element is in control of all of its interactions 

with other elements. An autonomic element must

communicate with other autonomic elements via 

service interfaces defined in its associated service 

specification. It must not communicate with other 

autonomic elements via any other mechanism (that is, 

there must not be any back channels). Communications 

within a given autonomic element must never be 

accessible outside the element in any way, e.g. as 

public service interfaces, via RMI or Java messaging, 

or in such a way as to violate other security 

assumptions, e.g. over an unauthenticated protocol. 

This is a step beyond basic Web services and Grid 

services. Interaction integrity constrains how a service 

may be implemented, by limiting the ways in which an 

autonomic element can interact with, and be affected 

by, other autonomic elements: elements may interact 

only through their specified interfaces, and in no other 

way. 

Interaction integrity enables an autonomic element 

to control its own behavior, since no other entity may 

“reach inside” and manipulate it directly. This is 

critical to self-protection; an autonomic element must 

be able to control what happens to it in a system. It is 

also vital to the ability of an autonomic element to 

make agreements that it knows it can fulfill, and in 

general to be able to manage its own behavior reliably. 

4. Autonomic systems 

Clearly, throwing self-managing components 

together arbitrarily does not guarantee self-

management at the system level. For a system to 

function properly, its constituent elements must be able 

to discover each other, to identify other elements with 

which to communicate and to coordinate with each 

other in achieving their mutual goals. In addition, there 

are system-level behaviors that by their very nature 

cannot be performed by any single element, such as 

meeting end-to-end service level targets. 

Suppose we have collected the autonomic elements 

that we need in order to implement a particular system, 

say a financial transaction system. We have router and 

firewall and Web server and database and storage 

elements. How do we assemble these into an 

autonomic financial transaction system? 

Assembling an autonomic system requires: 

1. A collection of autonomic elements that 

implement the desired function; 

2. Additional autonomic elements to implement 

system functions that enable the needed 

system-level behaviors; 

3. Design patterns for system self-management. 

We already have the first of these in hand. The 

second entails the creation of a number of 

infrastructure elements—elements that support the 

operation of the autonomic system [4]. Some of these 

are briefly described below. 

A registry provides mechanisms for elements to 

find one another, to publish their ability to perform 

certain types of service, and to determine how to bind 

to one another. When an element wants to find an 

element of a certain type, it first contacts a registry 

with which it has a relationship. It asks the registry 

about elements of that type. The registry returns a list 

of addresses to such elements. The first element can 

now contact each of the elements on that list, 

determine their suitability, form a relationship with the 

one it deems best suited to its needs, and use its 

service.

A sentinel provides monitoring services to other 

elements. See [12] for further discussion of sentinels. 

An aggregator combines two or more existing 

elements and uses them to provide improved service—

for example, an aggregator may be able to provide 

higher reliability or higher performance than any of the 

underlying elements could provide individually. 

A broker facilitates interaction—it can, for 

example, assist an element in carrying out tasks 

requiring complex relationships of a sort that the 

element is not capable of entering into directly. Such 

an element would contact a broker and express its 

needs (e.g. a high availability storage service). The 

broker could create an aggregation of elements that 

fulfills this need (e.g. by composing underlying storage 

services) and return the address of the aggregate 

service to the requesting element. 
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A negotiator is an element that specializes in 

assisting elements with complex negotiations—for 

example, negotiations requiring a level of reasoning of 

which the client element is not capable. An element 

may know that it can trade off latency for throughput 

in a service that it needs to use, but not know the best 

protocol for exploring that trade-off. It can contact a 

negotiator, which can do that exploration for it, 

returning the best trade-off to the requesting element. 

The third requirement for autonomic systems—

design patterns—is the subject of the next section. 

5. Design patterns 

Here, we discuss initial patterns that we have used 

to institute self-configuration, self-healing, self-

optimization and self-protection at a system level. This 

is not an exhaustive list; we expect that the invention 

of autonomic design patterns will be a fruitful area for 

quite some time. 

5.1 Self-configuration 

Self-configuration is an important part of the 

autonomic computing vision. Autonomic elements 

configure themselves, based on the environment in 

which they find themselves and the high-level tasks to 

which they have been set, without any detailed human 

intervention in the form of configuration files or 

installation dialogs. 

It is possible to construct an autonomic system in 

much the same manner as we construct systems today. 

We could figure out all of the various dependencies 

and relationships at design time and instruct the 

individual elements to form predetermined 

relationships. 

We have explored an alternative whereby the 

system builds itself, using what we call “goal-driven 

self-assembly” [12]. This potentially makes the system 

more robust, because system configuration decisions 

are made locally. Before each element joins the 

system, it is given a high-level description of what it is 

supposed to be doing (“make yourself available as an 

application server”, or “join policy repository cluster 

17”), and how to contact the registry. 

When each element initializes, it contacts the 

registry and issues queries to locate existing elements 

that can supply the services that the new element needs 

to operate.  It contacts the elements thus located, and 

enters into relationships as required to obtain the 

needed services.  Once the element has entered into all 

the relationships and obtained all the resources that it 

needs to function, it registers itself in the registry so 

that elements that later need its services can contact it. 

Once all of the elements have satisfied their goals, 

the system as a whole has self-assembled. 

There has been considerable previous work in the 

fields of service discovery (see [13] and [14]) and 

service registries (see [15] and [16]). These concepts 

could be modernized to support autonomic computing 

by translating them into a service-oriented architectural 

paradigm and supplementing them with appropriate 

service ontologies. 

5.2 Self-healing 

No matter how robust and resilient they are, we 

recognize that autonomic elements will still fail from 

time to time. We demand that the robustness and 

resiliency of an autonomic computing system not 

depend on the robustness and resiliency of any single 

autonomic element. That is, the system as a whole 

should be capable of dealing with the failure of any 

constituent part. 

We seek to ensure this property at an architectural 

level. Designers may, in some circumstances, be able 

to deal with failure by using techniques that are 

idiosyncratic to the particular element that they are 

designing. A storage system may have special 

hardware that copies data off of failing disks. A 

weather prediction module may be able to check that 

its results are physically consistent. We want 

something more. We want no architectural single 

point of failure. That is, it should be possible, within 

the architecture, for the system as a whole to be self-

healing. 

To do this, we make each autonomic element 

responsible for monitoring its input services and 

determining if those services are performing according 

to the negotiated agreement covering them. If the input 

service fails, whether entirely, or because its 

performance is out of bounds, or because the results it 

returns are incorrect, the requesting autonomic element 

will react, possibly by terminate its relationship with 

the input service and obtaining a new one. 

If the input service is stateless, this is relatively 

straightforward. A new input service can be found via 

the registry. In the case where not having an input 

service for a period of time would cause a problem, the 

requesting element should arrange for a standby for its 

input service, ensuring that it is provisioned and ready 

to go ahead of time. Then, should an input service fail, 

the requesting service can switch over to the standby 

input service quickly. Alternatively, clusters of input 

services can be created ahead of time, and requests 

handed out to them via round-robin mechanisms. 
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Should one of the autonomic elements in the cluster 

fail, the others in the cluster can absorb the load. 

If the input service is stateful, the state of the input 

service must also be resilient against failure. There is a 

substantial literature on this topic in the field of 

distributed and fault-tolerant computing, particularly as 

it relates to loosely-coupled distributed Web services 

[17, 18]. We illustrate one simple method here. 

The requesting service can maintain two mirror 

images of the (stateful) input service, sending identical 

transactions to both of them in order to keep them in 

synch. If one input service fails, the requesting service 

can first temporarily suspend its transactions with the 

second input service, find (or generate) a new input 

service of the appropriate type, and populate the new 

input service by copying state from the old input 

service (the one that did not fail) to the new input 

service. When the new input service is brought up to 

the same state as the old input service, the requesting 

service can return to mirroring transactions to the two 

input services. 

If this re-provisioning takes a long time, suspending 

the service will be impractical, and other ways of 

provisioning a new input service will be needed. We 

expect these to be idiosyncratic to both the requesting 

service and the input service. 

There are several places in which this self-healing 

functionality may be located. It may be in the 

requesting element, as in our example. It may be in the 

input service, which makes the input service internally 

self-healing. It may be in an intermediary, aggregating 

less-reliable input services into a more reliable 

aggregate service. Each has its advantages and 

disadvantages, but no one choice is sufficient by itself. 

One useful design pattern for self-healing, which 

avoids the problem of having a single point of failure, 

is the self-regenerating cluster. The concept is to 

cluster two or more instances of a particular type of 

autonomic element together, such that they share input 

services and respond to requests for output services via 

round robin or spraying techniques. The autonomic 

elements in such a cluster could monitor each other’s 

health. If one such autonomic element were to fail, one 

of the remaining autonomic elements could generate 

(or find) a new instance of that type, bind it into the 

cluster, and thus reconstitute the cluster. 

To support this self-healing functionality, an 

autonomic element should expose interfaces which 

enable the following: 

Sending state. This is a request sent to an element, 

instructing it to send its internal state to another 

element—the message specifies the receiving element. 

Receiving state. This is a request sent to an 

element, instructing it to receive internal state from 

another such element—the message specifies the 

sending element. 

The state exchange could be initiated by a third 

element—an administrative element—or it could be 

initiated by either the sender or the receiver.

To support end-to-end availability management, an 

autonomic element should expose interfaces which 

enable the following: 

Querying planned outages. This is a request sent 

to the element, to which it replies with a list of planned 

outages in a specified period. The outages may be 

partial—i.e., the element may be unable to provide 

services to other element, but may still be able to 

respond to simple queries; or they may be total—i.e., 

the element may be unable to respond at all.  

Scheduling planned outages. This is a message 

sent to an element, specifying a time period in which 

the element may safely initiate a planned outage—e.g., 

to reboot, or to perform internal operations that cannot 

be done without compromising service levels. 

5.3 Self-optimization 

Self-optimization at the system level is obviously 

related to self-optimization of the individual 

components. But good behavior of each component 

does not necessarily ensure good behavior of the 

system as a whole. Furthermore, in any system, it is 

likely that conflicts will have to be resolved, such as 

when two components both want control over a limited 

resource.

One design pattern for resource allocation that has 

received some attention has been the use of market-

like mechanisms [19]. This has the advantage of being 

very general, but does incur additional real cost, both 

in run time efficiency and code complexity; and to be 

effective, the convergence time of the market’s prices 

must be smaller than the required response time of the 

system. For this pattern to be used, both the “buyer” 

and “seller” elements must be able to correctly 

determine the value of the services in question. This 

may be done, e.g., by enabling the elements with utility 

functions that assign values to the different services 

they might buy or sell.  

Another pattern, found in one of the prototypes 

described in Section 6 below, has a resource-arbiter 

element that directly queries elements’ utility 

functions, and then combines them to calculate a 

system-wide optimal allocation. 

Each of these patterns places its own requirements 

on the elements involved. Both, however, presume that 

an element will be able to offer different levels of 

service. Therefore, autonomic elements should offer 

multiple levels of service. 
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Service levels may be offered per individual 

relationship, so that each relationship has its own set of 

service goals, or even per work item, so that each job 

is assigned a service goal. It is often convenient to 

define service classes, each of which has its own set of 

service goals. 

Elements may offer multiple levels of service by 

participating in parallel clusters. Thus, for example, a 

single element may not be able to provide a given 

service level on its own, but it may be able to form 

relationships with other elements to achieve the desired 

service collectively. This pattern obviously applies 

only to work that can be parallelized. 

The ability to offer multiple levels of service may 

require an element to provide interfaces that include:

Querying service-level bounds. This is a request 

sent to the element, to which it replies with its current 

service goals and constraints. The request may identify 

a particular service class, relationship or work item. 

Querying service level. This is a request sent to the 

element, to which it replies with the current service 

level. The request may identify a particular service 

class, relationship, or work item. 

Requesting a service level. This is a request to 

modify the current service levels. 

5.4 Self-protection 

There are two distinct but related aspects to self-

protection: protection against undesirable system 

behavior due to bugs or unanticipated conditions, and 

protection against system penetration by attackers [20].  

Many of the principles and design patterns described 

elsewhere in this paper are effective against accidental 

conditions. The ability of a system to dynamically self-

optimize protects the system’s performance against 

changes in demand, for instance, and self-healing 

functions protect a system against degradation due to 

the accumulation of failures over time. 

To the extent that autonomic functions protect 

against accidental failures, they will also protect 

against some types of maliciously-induced failure.  If 

an autonomic self-healing system can quickly and 

transparently replace a Web server when it crashes due 

to a hardware failure, that same system can recover 

from a crash caused by an attacker intentionally 

exploiting a network software bug to take down the 

machine. 

Other kinds of malicious attack, on the other hand, 

require special handling.  Accidental failures tend to be 

uncorrelated; failures due to malice, can be highly 

correlated, as when an attacker stages a denial of 

service attack against many systems at once, or when 

one machine is attacked to draw attention away from 

another which is the real target.  Autonomic intrusion 

defense systems that can detect and respond to these 

correlated failures in real time may share infrastructure 

with, but will often use different rules than, event 

correlators that detect accidental system failure. 

A key principle of autonomic computing is that the 

system as a whole should continue to function even if 

one or more of its elements fails.  In the security realm, 

this corresponds to a system that continues to be secure 

as a whole even when one or more of its elements is 

compromised.  This is a challenging goal, towards 

which some progress is being made. (See, for instance, 

the secure distributed storage system described in 

[21].) Similar design patterns will be needed in other 

aspects of autonomic systems, particularly security-

critical ones. For instance, particularly sensitive 

operations might be authorized only if multiple 

autonomic elements all register assent, significantly 

raising the bar for an attacker. 

Like any other computing system, autonomic 

systems will require access controls and other 

traditional security controls, dictating not only which 

users are authorized to take which actions, but also 

which autonomic elements are authorized. In 

autonomic systems, we anticipate that these security 

controls will be implemented through policies.  

Security policies in autonomic systems will benefit 

from the entire general policy infrastructure used in 

autonomic systems. It will be possible to deploy 

security policies into common policy repositories, it 

will be possible to detect conflicts between policies, 

both at policy creation time and at run time, and it will 

be possible to use advanced policy tools to explore the 

consequences of proposed policy changes before they 

are implemented.  Standardizing security controls in 

the form of autonomic policies should reduce the 

complexity and confusion that currently exists, by 

reducing the number of incompatible and non-

interoperable security management mechanisms, and 

leveraging common tooling and infrastructure. 

6. Autonomic computing system prototypes 

We have validated and refined these architectural 

ideas by creating two prototype autonomic systems 

[12, 22] that explore the use of autonomic systems for 

data center management and resource allocation. 

Autonomic elements represent applications running in 

the data center, the resources that those applications 

require to run, and the resource arbiter that allocates 

the resources to the applications. Other autonomic 

elements provide many of the infrastructural services 

described above, including a registry and a policy 
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repository. Goal-driven self-assembly and utility-

function policies are key elements of one of these 

prototype systems, which uses some of the design 

patterns described above to achieve a degree of self-

management. 

7. Conclusion 

We have described an architectural approach for 

creating autonomic elements (self-managing 

components), and for composing them to form 

autonomic systems (self-managing systems). 

Our approach takes advantage of the uniform 

representation and composition of components in 

service-oriented architectures and the autonomy of 

components in agent-oriented programming. It goes 

beyond previous work by deriving component-level 

self-management from the interfaces and behaviors 

that it requires of autonomic elements. It derives 

system-level self-management by composing 

autonomic elements via negotiated relationships, 

adding to them infrastructure elements (registries, 

service brokers, etc.), and requiring that they follow a 

growing list of system design patterns that we have 

developed. 

There is much to be done. We (and others) are 

working actively on detailed interface specifications, 

and reference implementations of them. We are 

working through the details of the design patterns 

described here and validating them with a more 

comprehensive prototype. 
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