

An Approach to Monitor Application States
for Self-Managing (Autonomic) System

Hoi Chan, Trieu C. Chieu
IBM T.J Watson Research Center

19 Skyline Drive
Hawthorne, NY 10532

914-784-7741
hychan,@us.ibm.com, tchieu@us.ibm.com

ABSTRACT
Autonomic Computing has gained widespread attention over the
last few years for its vision of developing applications with
autonomic or self-managing behaviors[1]. One of the most
important aspects of building autonomic systems is the ability to
monitor applications and generate corrective actions should
exceptions occur. The problem lies in those applications where
source code is not available and therefore it is virtually
impossible to modify the application code to include monitoring
functions, or the application code is too tangled with other
components which make modification difficult. This hinders the
inclusion of autonomic features in many of the legacy
applications. In this report, we will describe an approach to build
generic monitoring systems for legacy applications.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Techniques –
object oriented programming

General Terms
Management, Design, Measurement

Keywords
Autonomic, Self-Management, Aspect , Monitor

1. INTRODUCTION
Developing tools and creating new software engineering
methodologies to incorporate self-managing features into
applications is an important engineering and research topic. In
general, monitoring the states of an application and take
appropriate corrective actions should exceptions occur is the most
common method of producing self managing behavior. The
process of monitoring an application is very application specific
and in general requires the monitoring features to be incorporated
into the application itself. For many existing applications,

application source code is not available and appropriate
monitoring features may not be provided.
The use of Aspect-Oriented programming technology [2] allows
the monitoring functions to be treated as a concern, developed
separately, integrated selectively in applications at development
and/or at run time.

2. ASPECT-ORIENTED PROGRAMMING
FOR CREATING MONITORING SYSTEMS
To achieve self-managing behavior, an Autonomic Manager is
created to monitor the application [3]. An Autonomic Manager
relies on collecting and analyzing information from the monitored
applications, and takes appropriate actions. Specifically, to
monitor the state of an application, one needs to monitor the
values of its variables as well as the sequence of processes the
application has executed. Aspect-oriented software development
is an innovative technology for separation of concerns (SOC), or
the ability to identify, encapsulate, and manipulate only the parts
of software which are relevant to a particular goal, concept or
purpose [4] in software development. The techniques of Aspect
Oriented System Design (AOSD) make it possible to modularize
crosscutting (two concerns crosscut if the methods related to those
concerns intersect [5]) aspects of a system. The monitoring
function of an application can be viewed as a concern, and
developed separately from the main application. This
methodology can be used to include monitoring functions in
development time, where source code is available. General tool
such as AspectJ [6] is well developed and readily available for
Java programming language. For existing applications, where
source code is not available, the same methodology can be
applied, but at object code level. For Java application, before all
classes (as class files) are loaded into JVM, these classes can be
intercepted, analyzed, decomposed, and appropriate non-invasive
(without affecting the logic) constructs are added in the Java byte
code to provide state information to an external entity, usually the
values of the variables at method entry and exit points. An
example of the tool which provides such capability is IBM's
HyperJ [7] which supports “multi-dimensional” separation and
integration of concerns in standard Java software. In addition, the
monitor concern can be subdivided into many sub-concerns, each
can be switched on and off, allowing the monitoring manager to
monitor the concerns which are relevant.

Copyright is held by the author/owner(s).
OOPSLA’03, October 26–30, 2003, Anaheim, California, USA.
ACM 1-58113-751-6/03/0010.

312

Analyze Plan

ExecuteMonitor

Sensors Effectors

Application

Aspect Crosscuts

Autonomic Manager

Figure 1: conceptual view

Figure 1 illustrates the building blocks of an Autonomic Manager.
An Autonomic Manager [2] consists of the following functions:
sensing or information collection, analysis of the collected
information, planning actions based on result of analysis, and
executing the actions. The application being monitored is
connected to the sensors and effectors of the Autonomic Manager
via an Aspect crosscuts layer.

3. EXAMPLES
Suppose we want to build an autonomic management system
which manages the utilization of a storage device and takes action
should utilization reach a predefined value. We want to have
Utilization objects monitored by StorageDevice objects, where
Utilization is an existing class. Following the Aspect
methodology, the implementation is relatively straightforward, an
instance utilizationMonitor is introduced into the class
StorageDevice, that keeps track of the StorageDevice object
which monitors Utilization. Monitors are added and removed with
the static methods addMonitor and removeMonitor. The pointcut
“newData” defines the entities which need to be monitored, and
the “handleMonitorValue” defines what we want to do when a
change is detected. As we can see, neither StorageDevice nor
Utilization’s code needs to be modified, and all the additional
code required to support this monitoring capability are within the
Aspect. The following code fragment illustrates the relatively
simple steps to generate the required concerns [9].

Aspect utilizationMonitor {
 Private Vector utilizationMonitors = new Vector();
 Public static void addMonitor(Utilizaton u, StorageDevice(s)) {
 utilizatioMonigor.addMonitor(s);
 }
 Public static void removeMonitor(Utilization u,
StorageDevice s) {

 utilizatioMonigor.removeMonitor(s);
 }

 pointcut newData(Utilization u): target(u) &&
 call(void Utilizatiou.set*(double));
 after(Utilization u): newData(u) {
 Monitor[] monitors = u.utilizationMonitors.toArray();
 for(int i=0; i<monitors.length; ++i) {
 handleMonitorValue(u, s);
 }
 }
 static void handleMonitorValue(Utilization u,

StorageDevice s) {
 s.handleNewUtilization(u);
 }
}

Sample code

4. CONCLUSION
The use of Aspect programming methodology [3,4,5] in building
Autonomic Manager to monitor applications without modifying
source code provides an important path to connect legacy
applications with an Autonomic Manager System. However, with
the current available Aspect tools, it is still rather limited in the
actual usage. Questions such as copy right, security issues with
object code interception and modification, may hinder the further
usage and development of this programming systems. However,
we believe that the beauty of this programming system lies its
clear separation of concerns, and the ability to crosscut concerns
without modifying source code, which makes it an ideal candidate
for providing monitoring services to applications when such
capabilities are not built in.

5. REFERENCES
[1] Jeff O. Kephart, David M. Chess, “The Vision of

Autonomic Computing”, Computer Journal, IEEE Computer
Society, January 2003 issue

[2] Aspect Programming Technolgy: http://aosd.net

[3] Autonomic Manager Toolkit (available 3Q, 2003 for free
download... : http://www.alphaworks.ibm.com)

[4] Harold Ossher and Peri Tarr, “Using Multidimensional
Separation of Concerns to (Re)shape Evolving Software",
Communications of the ACM, vol.44, no. 10, pp43-50,
October 2001.

[5] Tzilla Elrad, Mehmet Aksits, Gregor Kiczales, Karl
Lieberherr, and Harold Ossher, “Discussing Aspects of
AOP", Communications of ACM, vol. 44, no.10, pp33-38,
October 2001

[6] AspectJ: http://aspectJ.org

[7] HyperJ: http://www.alphaworks.ibm.com

[8] AspectJ programming guide, Xerox Corp.

313

