
Adaptive Runtime Verification for Autonomic Communication Infrastructures

Giovanni Denaro, Leonardo Mariani, Mauro Pezzè, Davide Tosi
Universitá degli Studi di Milano Bicocca

Dipartimento di Informatica, Sistemistica e Comunicazione
Via Bicocca degli Arcimboldi 8

I-20126, Milano - Italy
{denaro|mariani|pezze|tosi}@disco.unimib.it

Abstract

Autonomic communication and autonomic computing
can solve many problems in managing complex network and
computer systems, as well as network applications, where
computing and networking co-exist. Autonomic applica-
tions must be able to automatically diagnose and repair
their own faults. In particular they must be able to monitor
the execution state, understand the behavior of the applica-
tion and of the executing environment, and interpret moni-
tored data to identify faults and select a repairing strategy.

Assertions have been extensively studied in software en-
gineering for identifying deviations from the expected be-
haviors and thus signal anomalous outcomes. Unfortu-
nately, classic assertions are defined statically at develop-
ment time and cannot capture unpredictable changes and
evolutions in the execution environment. Thus they do not
easily adapt to autonomic applications.

This paper proposes a method for the automatic synthe-
sis and adaptation of assertions from the observed behavior
of an application, aimed at achieving adaptive application
monitoring. We believe that this represents an important
basis to derive autonomic mechanisms that can deal with
unpredictable situations.

1 Introduction

The networking and the software engineering commu-
nities are increasingly studying autonomic communication
and autonomic computing as possible solutions to the prob-
lems involved in managing networks and software that grow
beyond the control of single development team. Auto-
nomic networks and software systems will be able to au-
tonomously adapt to unpredictable environmental changes,
by exploiting embedded self-managing capabilities such as
self-organization, self-configuration, self-regulation, self-
adaptation, self-healing and self-protection [11].

Autonomic web applications merge autonomic network-
ing and software features to overcome many limitations of
current communication technology, and thus meet the in-
creasingly demands of the Internet of the future.

An important characteristic of autonomic applications is
the ability to automatically diagnose and repair their own
faults. Fault diagnosing requires (1) monitoring the execu-
tion state, to understand the behavior of the application and
of the executing environment, and (2) interpreting the mon-
itored data, to identify faults and select a repairing strategy.

Common monitoring mechanisms instrument the soft-
ware and the environment with probes or gauges to capture
runtime data, e.g., control and dataflow traversals, changes
of values, performance indexes, and changes of context in-
formation. As for data interpretation, many approaches rely
on embedded assertions, that is, constraints over the col-
lected data at given execution points.

Assertions have been studied in software engineering for
many purposes, e.g., debugging, testing and runtime veri-
fication [19], and are supported by many tools (e.g., [1]).
The applicability of assertions to autonomic applications is
limited by the need of specifying the assertions in advance,
which prevents the possibility of dealing with unpredictable
changes and problems.

This paper proposes the automatic synthesis of assertions
from the observed behavior of the application to derive au-
tonomic mechanisms that can deal with unpredictable sit-
uations. In previous work, we exploited dynamic analysis
for verifying component-based systems and we developed
and experimented a technique, called Behavior Capture and
Test (BCT), to synthesize and use invariants that describe
both input/output properties and interaction patterns of soft-
ware components [15]. BCT automatically infers invariants
that describe the runtime behavior of components, and then
uses the inferred invariants to detect inconsistent behaviors
in new versions or in new uses of the components. BCT
works well for components that are reused without infor-
mation about the source code and without precise specifica-

Proceedings of the Sixth IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks (WoWMoM’05)

0-7695-2342-0/05 $20.00 © 2005 IEEE

tions of the components’ internals. In this paper we show
that BCT adapts well to dynamically changing systems that
present unpredictable behaviors, as in the case of autonomic
applications.

This paper is organized as follows. Section 2 gives de-
tails on the original BCT technique. Section 3 describes our
proposal of adapting BCT for autonomic communication
systems. Section 4 discusses related work, and section 5
summarizes the contribution of the paper and outlines our
research agenda for the future.

2 Behavior Capture and Test

BCT, which is the basis for our proposal, automatically
identifies behavioral differences of evolving component-
based systems. In particular, BCT can reveal incompati-
bilities of upgraded and reused components.

The technique is applied in two main phases: data
collection and invariant checking. In the data collection
phase, components are monitored, while used as part of
running applications, and information about both the data
exchanged and the interactions between components is
recorded. The recorded information is then used to auto-
matically distill invariants, which characterize the observed
behavior. In the invariant checking phase, the invariants in-
ferred in the previous phase are used to dynamically iden-
tify incompatibilities between the behavior represented by
the invariants and new uses of components.

In the data collection phase, BCT derives two types of
invariants: I/O invariants and interaction invariants. I/O in-
variants describe properties of services as Boolean expres-
sions that can be evaluated over the input parameters and
the results. Interaction invariants specify the interactions
among components as finite state machines. To distill the
invariants, we must be able to (1) deal with object refer-
ences, which are difficult to analyze due to encapsulation,
(2) derive I/O invariants from raw data, and (3) infer finite
state machines from interaction samples.

BCT deals with object references by extracting infor-
mation about the state of the object through heuristically
identified inspectors, i.e., methods that return data about
the state without modifying the state of the object. The
heuristic consists of a set of syntactic rules that is used to
check the signature of the methods. If a method satisfies
a rule, it is selected as inspector (see [14] for details on
the heuristic). Extraction recursively applies to objects
returned as part of the state by inspectors until a primitive
data value is collected, an already examined reference
is returned, or the analysis reaches a given depth. For
example, extracting information from a reference to an
object Person produces the following output:

john.getFirstName = "John"

john.getSecondName = "Smith"
john.getAge = "12"
john.getAddress.getStreet = "street, 1"
john.getAddress.getCity = "New York"
john.getAddress.getCountry="US"

BCT distills I/O invariants from the traces obtained
by analyzing the objects exchanged between components
with the Daikon invariant inference engine [4], which
generates Boolean expressions for a set of variables starting
from a set of execution samples. The generated invariants
define relations on objects’ fields. For example, a set
of executions that involved only Persons from US un-
der the age of 15 is captured by the following I/O invariants:

john.getAddress.getAge <= 15
john.getAddress.getCountry == ‘‘US’’

BCT infers interaction invariants from traces that rep-
resent the sequences of services invoked by a component
when a service is executed. For instance, a component
customerCare may interact with an external library
for sorting the customers, and with an external compo-
nent for computing the unique Italian Social Security
Number.1 When the method getListOfContacts of
customerCare is executed, customerCare interacts
with both the external library to sort the customers, and
with the external component to compute the Italian Social
Security number for Italian customers. A possible set of
traces for getListOfContacts is:

Sort SSN
Sort
Sort SSN SSN SSN SSN SSN SSN
Sort SSN SSN
. . .

where Sort indicates the invocation of method Sort and
SSN indicates the invocation of the method that computes
the Italian Social Security Number. A unique invocation
of method Sort can be followed by many invocations of
method SSN, one for each Italian customer.
Interaction invariants are captured with finite state machines
that generalize the considered traces. For instance, BCT
generates the FSM shown in Figure 1, from the above set of
traces.

BCT infers finite state machines with an algorithm called
kBehavior, which builds the FSM incrementally, consid-
ering each trace only once, thus traces do not need to be
stored [13].

1The Italian Social Security Number, called Codice Fiscale, is required
for commercial transactions and can be computed from personal data.

2

Proceedings of the Sixth IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks (WoWMoM’05)

0-7695-2342-0/05 $20.00 © 2005 IEEE

q0 q1
Sort

SSN

Figure 1. A FSM produced by BCT

In the invariant checking phase, BCT checks the behav-
ior observed on a new system with respect to the invariants
computed on an old system, which can be the system with
an old version of an updated component, or a running sys-
tem using a component that is now reused in the new sys-
tem. In the case of component upgrade, BCT looks for vi-
olations of the invariants computed for the previous version
of the component, and thus it signals anomalous behaviors
that may either confirm expected upgrades, or indicate un-
expected failures. In the case of components reused in new
systems, BCT looks for violations of the invariants com-
puted for the reused components when running as part of
other systems, thus it signals new behaviors that may ei-
ther indicate new legal behaviors in the different context
or faulty interactions. BCT has been successfully validated
with several case studies. Details can be found in [14].

3 Adaptive runtime verification

In modern networking systems, the execution environ-
ment of web applications changes dynamically and unpre-
dictably, due to upgrades of the network protocols, modifi-
cation of the network infrastructure, evolution of the set of
available services, migration of software applications. As
in the case of component-based software, changes often in-
volve elements that have been already in use in other opera-
tive or testing contexts. Thus, as in the case of component-
based software, we may take advantage of historic informa-
tion about the components’ behaviors to validate expected
changes and identify potential faults. However, differently
from the case of component-based software, networking
systems evolve independently from the application devel-
opers, who cannot predict networking and environmental
changes beforehand.

We argue that BCT can be successfully adapted to the
new contexts, and in this section, we describe how to instan-
tiate BCT to support autonomic communication infrastruc-
tures. In a nutshell, we propose to embed assertions in the
communication infrastructures, to describe the legal inter-
actions between the communicating entities. Such asser-
tions are then checked at runtime to reveal misbehaviors,
incompatibilities and unexpected interactions that may be

due to hidden faults, changes in some components or ma-
licious code. The main novel contribution of our approach
is the ability of automatically synthesizing assertions that
evolve over time and adapt to the new context-dependent
interactions. The new technique, which we call Adaptive
Runtime Verification (ARV) adapts BCT to the new context
and is composed of three main phases:

Assertion synthesis: During the test of a new application,
ARV uses BCT to monitor the execution of the ap-
plication, and to produce invariants that describe the
executed test cases. The collected invariants represent
the interactions of the application with the testing envi-
ronments, i.e., the interaction protocols that have been
tested.

Assertion checking: At deployment time, ARV augments
the applications with the computed invariants that
are embedded in the underlying communication in-
frastructure in the form of assertions. The communi-
cation infrastructure checks the assertions at runtime,
to signal interaction protocols not previously tested,
and thus potentially dangerous. Notice that checking
the assertions within the communication infrastructure
(instead of within the application) allows the commu-
nication infrastructure to dynamically enable/disable
the checks (this can be for example required when
the overhead caused by the assertion checking risks to
compromise performance requirements), and to inte-
grate the checks with other advanced repairing strate-
gies that can be built into the communication in-
frastructure itself. On the other hand, checking the as-
sertions within the communication infrastructure can
introduce new vulnerabilities, i.e., new opportunities
to attack the communication infrastructure. How to
tackle these emerging security issues and whether it
is beneficial shifting these vulnerabilities from the ap-
plication to the communication infrastructure, are still
open problems and will be the subject of further inves-
tigations.

Assertion adaptation: When assertions are violated, ARV
records the sequences of events that led to the viola-
tions and the status of the application after the vio-
lation. Violations may indicate illegal interactions or
lack of testing, i.e., legal behaviors that have been not
observed during testing. To distinguish between these
two alternatives, we need diagnosis mechanisms that
inspect the detected violations, identify either illegal
interactions or lack of testing, and trigger the appro-
priate self-management mechanisms. Often, illegal in-
teractions generate a set of assertion violations. Diag-
nosis mechanisms can attempt to correlate sets of vio-
lations to better identify the cases of illegal interaction.

3

Proceedings of the Sixth IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks (WoWMoM’05)

0-7695-2342-0/05 $20.00 © 2005 IEEE

For example, the violation of an invariant followed by
an error message from the application can be safely
diagnosed as an illegal interaction.

Diagnosis mechanisms may include two steps: an au-
tomatic attempt to be exploited first, and an opera-
tor driven attempt to complement the automatic mech-
anisms, when they cannot completely cope with the
problem. Currently ARV relies on the operator driven
approach, while we are investigating the feasibility of
automatic diagnosis. ARV provides operators with in-
formation about the assertion violations to select an
adequate repairing strategy. Our experience with BCT
indicates that for adequately tested systems the infor-
mation about assertion violations can be handled by
human operators after some preprocessing. Moreover,
the BCT information can be enhanced with additional
data that indicate if the assertions have been violated
while executing previously tested or new protocol se-
quences.

When the diagnosis mechanisms identify illegal inter-
actions, they trigger proper self-management mecha-
nisms to overcome the failure and/or repair the fault.
In the case of lack of testing, self-management mech-
anisms may allow to run additional test cases to check
for the correct interaction of the application with the
new protocol. In this latter case, BCT can be instructed
to update assertions to include the information of the
newly tested interactions.

The possibility of automatically generating assertions
that capture the set of tested interaction protocols and to au-
tomatically update the set of assertions while new interac-
tion protocols are revealed and tested is particularly useful
in the considered context, where the impossibility of con-
trolling and predicting the evolution of the execution envi-
ronment reduces the efficacy of classic testing techniques
that focus on pre-deployment only.

4 Related work

ARV monitors the internal and external system behav-
ior, records low-level data in term of input/output values
and entities interactions, and uses such data to identify
both untested and wrong interaction protocols. Several re-
searchers proposed mechanisms for low-level monitoring of
network applications in different contexts, e.g., Schmerl and
Garlan [5], Schilit, Adams and Want [20], Hong and Lan-
day [9]. This work focuses mostly on runtime information
about performances and architectural modeling, while ARV
focuses on automatic monitoring interaction protocols.

Diagnosing misbehaviors requires the ability of inter-
preting the monitored data. So far, research has focused

on the use of embedded assertions [19, 16, 1, 17] to iden-
tify violations of formal constraints, the runtime check of
event patterns [7, 8, 21] to validate temporal properties, and
the replication of program blocks to compare and confirm
the validity of the system outputs [10, 2]. We propose a
novel approach based on the run time check and adaptation
of automatically generated assertions that describe the set
of successfully tested interactions.

Mechanisms for self-repairing runtime systems have
proposed by some researchers. For example, Horning,
Lauer, Melliar-Smith and Randell provide an interesting
approach based on rollback and resume strategies [10].
Rollback and resume strategies are well investigated also
in database research [6], to deal with problems such as
concurrent accesses and incomplete transactions that are
well-know sources of non-determinism. These approaches
well complement our proposal that so far focused mostly
on identifying faults, leaving the problem of runtime self-
repairing in the future agenda.

Our approach integrates the DAIKON tool to capture and
synthesize the behavior of application entities. DAIKON
has been well used to infer likely invariants of software
components at runtime [4, 22, 12, 18], but existing ap-
proaches focus mostly on analysis of interactions of known
components, that works well in the case of component-
based software, but not in the case of unpredictably chang-
ing environments as the ones considered in our work.

5 Conclusions and future work

The Internet infrastructure and its expected evolution of-
fer the opportunity to develop ubiquitous and heterogeneous
applications that will increase productivity and flexibility
in many application domains, ranging from domestic sys-
tems to automotive, transportation, and medical control ap-
plications. These systems leverage technology from sev-
eral domains, such as service oriented architectures, peer
to peer systems, distributed middleware and wireless net-
works. In this scenario, many failures can likely stem from
unexpected concurrent interaction patterns between inde-
pendently developed and maintained applications, unpre-
dictable stress and interferences of the environment, or un-
expected malicious interactions.

In this position paper, we propose a new approach based
on the automatic synthesis of assertions during testing of an
application. The synthesized assertions capture the seman-
tics of the observed application behaviors, and can be in-
tegrated in the networking infrastructure to detect violating
interactions at runtime and trigger self-management mecha-
nisms correspondingly. This new mechanism can provide a
strong basis for the development of autonomic applications
able to survive unpredictable changes and evolutions of the
network environment.

4

Proceedings of the Sixth IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks (WoWMoM’05)

0-7695-2342-0/05 $20.00 © 2005 IEEE

Currently we are investigating the feasibility of auto-
matic diagnosis to distinguish between violations that in-
dicate illegal interactions and violations that indicate lack
of testing. Our research agenda includes the integration
of the mechanism briefly described in this paper with code
transformation mechanisms for diagnosis purposes. Our ex-
perience with semantic mapping across notations suggests
that graph transformations provide useful support for relat-
ing code to behaviors, thus supporting advanced diagnosis
mechanism [3]. We are also working to a set of case stud-
ies to better understand potentialities and limitations of the
ARV approach.

References

[1] P. Abercrombie and M. Karaorman. jContractor: Bytecode
instrumentation techniques for implementing design by con-
tract in java. In K. Havelund and G. Rosu, editors, Elec-
tronic Notes in Theoretical Computer Science, volume 70.
Elsevier, 2002.

[2] A. Avizienis and L. Chen. On the implementation of n-
version programming for software fault tolerance during ex-
ecution. In Proceedings of IEEE COMPSAC 77, pages 149–
155, Nov. 1977.

[3] L. Baresi and M. Pezzè. A toolbox for automating visual
software engineering. In Proceedings of the International
Conference on Fundamental Approaches to Software Engi-
neering, volume 2306 of Lectures Notes in Computer Sci-
ence, pages 189–202. Springer Verlag, 2002.

[4] M. Ernst, J. Cockrell, W. Griswold, and D. Notkin. Dy-
namically discovering likely program invariants to support
program evolution. IEEE Transactions on Software Engi-
neering, 27(2):99–123, Feb. 2001.

[5] D. Garlan, B. Schmerl, and J. Chang. Using gauges for
architecture-based monitoring and adaptation. In Proceed-
ing of the Working Conference on Complex and Dynamic
Systems Architecture, Dec. 2001.

[6] T. Haerder and A. Reuter. Principles of transaction-oriented
database recovery. ACM Computer Surveys, 15(4):287–317,
1983.

[7] K. Havelund and G. Rosu, editors. First Workshop on
Runtime Verification (RV’2001), volume 55(2) of Electronic
Notes in Theoretical Computer Science. Elsevier, 2001.

[8] K. Havelund and G. Rosu, editors. Second Workshop on
Runtime Verification (RV’2002), volume 70(4) of Electronic
Notes in Theoretical Computer Science. Elsevier, 2002.

[9] J. Hong and J. Landay. An infrastructure approach to
context-aware computing. Human-Computer Interaction,
16(2/4):287–303, 2001.

[10] J. Horning, H. Lauer, P. Melliar-Smith, and B. Randell. A
program structure for error detection and recovery. In Lec-
ture Notes in Computer Science, volume 16, pages 177–193,
1974.

[11] J. Kephart and D. Chess. The vision of autonomic comput-
ing. IEEE Computer, 36(1):41–50, January 2003.

[12] L. Lin and M. D. Ernst. Improving adaptability via program
steering. In Proceedings of the 2004 International Sympo-
sium on Software Testing and Analysis, pages 206–216, July
2004.

[13] L. Mariani. Behavior Capture and Test: Dynamic Analysis
of Component-based Systems. Phd thesis, Università degli
Studi di Milano Bicocca, 2004.

[14] L. Mariani. Capturing and synthesizing the behavior of
component-based systems. Technical Report LTA:2004:01,
DISCO, University of Milano Bicocca. LTA lab., Feb. 2004.

[15] L. Mariani and M. Pezzè. Behavior capture and test: Auto-
mated analysis of component integration. In Proceedings of
the 10th IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS’05), 2005 (to appear).

[16] B. Meyer. Applying ”design by contract”. Computer,
25(10):40–51, 1992.

[17] O. Raz, P. Koopman, and M. Shaw. Enabling automatic
adaptation in systems with under-specified elements. In Pro-
ceedings of the first workshop on Self-healing systems, pages
55–60. ACM Press, 2002.

[18] O. Raz, P. Koopman, and M. Shaw. Semantic anomaly de-
tection in online data sources. In Proceedings of the 24th
International Conference on Software Engineering, pages
302–312, May 2002.

[19] D. Rosenblum. A practical approach to programming with
assertions. In IEEE Transactions on Software Engineering,
volume 21, pages 19–31, Jan. 1995.

[20] B. Schilit, N. Adams, and R. Want. Context-aware comput-
ing applications. In Proceedings of the Workshop on Mobile
Computing Systems and Applications, pages 85–90, Dec.
1994.

[21] O. Sokolsky and M. Viswanathan, editors. Third Work-
shop on Runtime Verification (RV’2003), volume 89(2) of
Electronic Notes in Theoretical Computer Science. Elsevier,
2003.

[22] T. N. Win, M. D. Ernst, S. J. Garland, D. Kirli, and N. Lynch.
Using simulated execution in verifying distributed algo-
rithms. Software Tools for Technology Transfer, 6(1):67–76,
July 2004.

5

Proceedings of the Sixth IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks (WoWMoM’05)

0-7695-2342-0/05 $20.00 © 2005 IEEE

