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Abstract 

In this paper we present a conceptual view on the 

incorporation of cognitive processing capabilities in 

future generation computer systems. We argue that 
cognition is at the heart of autonomic behavior, and 

therefore a necessary ingredient for autonomic 

computing and communication. We introduce a bio-

inspired cognitive engine that interacts with and has 

control over major operating system components, and 
showcase, based on scenario descriptions, how 

communicating applications take advantage of this 

setup by adapting and autonomously reacting to 

changes in heterogeneous and widely varying network 

resources. As a conceptual work, this paper does not 

cover experiences with the implementation of the 
introduced concepts, nor does it describe experimental 

results. 

1. Introduction 

In the emerging domains of autonomic computing 

and communication, many characterizing features such 

as self-awareness, self-(re)configuration, striving for 

optimization, self-recovery and healing are hard to 

realize with the current technologies we use for 

building computer systems and software. In fact, the 

characteristics that are distinctive to autonomic 

computing are characteristics that we know from 

biological organisms only. In nature, they are almost 

always related to cognition, i.e. the use or handling of 

knowledge including such aspects as sensation, 

perception, awareness, reasoning and judgment. For 

biological organisms, cognitive capabilities are 

prerequisite to capabilities such as problem solving, 

self-awareness and attention – many of the 

characteristics we also wish to realize in autonomic 

computing systems. So, taking this prerequisite as a 

hint from nature, we most likely need cognitive 

processing capabilities to implement autonomic 

behavior in computer systems. This makes artificial 

cognitive processing functionality a central element for 

autonomic computing. 

In nature, higher order cognitive processing takes 

place inside the human brain as well as brains of 

certain animal groups. Much research has been 

dedicated over the years on how to mimic parts of the 

functionality of the brain with Artificial Neural 

Networks (ANNs). In terms of computer architecture, 

neural networks depend on massively parallel 

processing by simple interconnected nodes, which is 

quite different from the Von Neumann model used by 

the majority of contemporary computers. Limited 

attention has gone to integrating ANN technology with 

computer operating systems. In theory, an ANN may 

do all processing on a computing device, but we 

consider this a too dramatic departure from the 

computing model we are currently used to. However, 

we also realize that bio-inspired cognitive processing 

on a computer system requires an ANN runtime.  

In this paper, we therefore propose a hybrid 

approach, with an ANN-based cognitive engine that is 

part of a more traditional computer system and that has 

control over most parts of the operating system. We 

expect that this system perspective with cognitive 

processing in the centre supports us in realizing 

autonomic computing applications.  

The motivation for this work lies with our objective 

to understand and support the adaptation of 

applications on mobile devices towards changing 

network resources – the kind of dynamic environment 

typical for mobile devices using heterogeneous 

network technologies. We realize, however, that the 

conceptual view presented here has a much broader 

scope and applicability and covers multiple research 

domains. We believe that it provides the groundwork 

for building autonomously adapting applications, not 

relying on limited sets of static adaptation rules but 
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capable of optimizing and learning even in situations 

not anticipated at design time. 

This paper is organized as follows. In section 2 we 

discuss a number of aspects relevant to system support 

for cognition. Section 3 lists the guiding principles we 

use for the formulation of our system perspective, and 

section 4 provides the outline of this cognitive system 

perspective. In section 5, we show a number of 

network related application scenarios that benefit from 

our approach. We wrap up with conclusions and future 

work. 

2. Towards System Support for Cognition 

When taking biological organisms as inspiration, 

we have to find the basic principles and mechanisms 

that build cognition in nature and map them, in a 

suitable manner, to the substrates and tools we use for 

building computer systems. This does not necessarily 

mean mimicking, with silicon and software, every 

physical process taking place inside a brain cell, it 

‘merely’ means the identification of those functions 

and processes that are necessary for cognition. As with 

heavier-than-air flight: our current – successful – 

aircraft technology relies on the principle of 

aerodynamic lift, but does not mimic every other 

common aspect of animal flight such as wing flapping. 

Biological cognition is based on the connectionist 

principle, where mental activity can be represented by 

activity inside networks of interconnected units 

(neurons). It is generally accepted, although to date not 

shown to realize higher levels of mental capabilities in 

artificial systems, that the algorithm describing the 

operation of a single neuron is relatively simple, while 

the network of neurons as a whole can express very 

complicated, even complex, behavior. This ‘complex 

behavior with simple rules’ is in stark contrast with the 

way we currently build computer applications (as 

illustrated in [6], although the topic itself is older). Any 

non-trivial software program needs many lines of code, 

and the implementation effort, i.e. the programming of 

software, intuitively is proportional to the complexity 

of the program’s functionality. This means that highly 

complicated functionality, such as higher order 

cognition, is very complicated to build using traditional 

software engineering techniques. With neural 

networks, a part of the effort is shifting from rule 

making (programming) to learning; typically, a neural 

network only shows the desired behavior after the 

network is sufficiently trained. Indeed, the training 

effort may be substantial, possibly even comparable or 

higher than the coding effort. So, by applying the 

connectionist principle to computing machinery, we 

believe it is possible to realize complicated 

functionality with simple rules, at the expense of 

learning. 

Cognitive capabilities only seem to develop and 

grow in the event of rich sensory input combined with 

sufficient actuator capabilities given resource and 

processing limitations and environmental constraints. 

To learn about the nature of an artifact, for instance, it 

is important that an animal or human can pick it up, 

observe it from different sides, feel, smell, etc.: the 

actuators position the artifact in such a way that the 

sensors detect relevant data (see also [3]). Likewise, 

cognitive computer systems must make sure that the 

cognitive processing parts receive input that is 

meaningful for the tasks at hand, and can steer or 

influence actuators in such a way that the input is 

enhanced, i.e. becomes more meaningful. Obviously, 

sensors and actuators in computer systems may be 

quite different from those found in nature. For 

instance, to learn about the availability of wireless 

networks at the current location, the system may 

instruct the wireless network interface to start scanning 

for networks with certain intensity, and decrease the 

intensity, after a while, when the list of known 

networks does not change. 

The research on ANNs has traditionally focused on 

relatively small networks, by far not approaching the 

billions of neurons (1011
) found in the human brain. 

We believe, however, that size is highly important, 

especially when aiming at higher order cognitive 

functions. So far, practical limitations have made it 

difficult to build ANNs in silicon and simulate them 

with software. In many cases, it is harder to build or 

simulate large networks when the individual neurons 

more precisely mimic the operation of brain neurons. 

These may turn out to be conflicting requirements: on 

one hand the individual neurons must mimic their 

biological counterparts in enough detail to reach a 

cognitive process, on the other hand building or 

simulating large networks may force neuron models to 

be as simple as possible. 

Large and multi-dimensional ANNs may show, 

similar to their biological counterparts, an organization 

that has many cyclic connections between sets of 

neurons. These recurrent networks show a dynamic 

behavior that is mostly determined by the feedback 

loops, much in the same way as with traditional control 

systems (see [3]). This means that the overall 

organization of interconnects may influence the ANN 

characteristics more than the characteristics of single 

neurons. 

In more recent years, a new neuron model that 

explicitly takes into account the timing of inputs has 

gained increasing attention. These so called Spiking 

Neural Networks (SNNs) represent input and output as 

series of spikes or pulses, similar to the biological 
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neuron. One advantage of this model is that neurons do 

not have a continuous output that needs to be 

propagated to others with every time step of, say, a 

simulation, and that spiking, generating a pulsed 

output, can be relatively sparse. These characteristics 

make them suitable for large size network simulations 

on standard PC equipment [2]. Developments in this 

direction, together with the increasing processing 

capabilities of standard computer equipment indicate 

that the incorporation of large ANNs in computing 

systems may be feasible, now or in the near future. 

Ultimately, ANNs will run much more efficiently, 

perhaps with much larger sizes and less power 

consumption, on dedicated silicon [5]. This would 

mean a departure from the Von Neumann architecture, 

at least for the cognitive processing part of the 

computer system. 

3. Guiding Principles 

Considering the discussion in the previous sections, we 

adhere to the following guiding principles when 

formulating our cognitive system architecture: 

• We take a bio-inspired approach when it comes to 

the implementation of artificial cognition. This 

ultimately means running very large ANNs on 

massively parallel hardware, but for the short term 

means applying moderate size ANNs with a 

runtime (simulated) environment on general-

purpose hardware. 

• Given the large paradigm shift when going from a 

Von Neumann architecture to a connectionist 

architecture for computing, see [4], we prefer a 

hybrid system that builds on our existing 

knowledge and experience while applying new 

principles to open problems. This offers the 

possibility to adjust proportions depending on the 

tasks and depending on future characteristics of 

then available hardware. For instance, at some 

time in the future, massively parallel hardware 

may be readily available which can support the 

ANN in taking over many functions executed by 

traditional hardware. An additional benefit comes 

from the observation that the different 

architectures are complementary: it’s hard for a 

human being to quickly calculate 7251 times 4.89, 

while it’s hard for traditional computer systems to 

anticipate on change, make correlations, and deal 

with unexpected situations. Hybrid systems are 

capable of merging functionality from both 

domains. 

• The traditional part of the hybrid system must be 

setup in such a fashion that the cognitive 

processing part is capable of receiving information 

on the operational status of as many subsystems 

and components as possible and capable of 

controlling and influencing the operation of these 

elements. The cognitive processing part should 

have rich sensory input and plenty of means to 

adjust the sensor characteristics or influence 

through other actuators the data reaching the 

sensor. Given limited processing resources and the 

cost of processing associated with obtaining 

sensory data, it must be capable of reducing the 

sensing and sensory input processing when not 

necessary for current tasks. As indicated in the 

previous section, sensors and actuators on 

computer systems can be radically different from 

the ones found in nature. We expect that the 

design of the sensors and actuators contribute to a 

large extend to the overall quality and level of the 

cognitive capabilities of a system. 

• Detailed input on the current operational status of 

the system allows the cognitive processing part to 

watch other processes on the system performing 

tasks. This should enable learning by observation, 

for instance, learning from a traditional application 

that is communicating with external entities, watch 

how it uses system components such as network 

stacks and network interfaces. Note that this is not 

the same as invention, where the cognitive 

processing part tries out, more or less randomly, to 

steer system resources until something useful 

comes out. Obviously, humans often learn by 

watching others. 

4. Contours of a Computer System with 

Cognitive Features 

This section provides the outline of a computer 

system architecture that incorporates facilities 

supporting cognitive processing. Being a hybrid 

architecture, it consists, on the hardware side, of 

elements found in common contemporary computer 

systems such as a CPU, memory, hardware for I/O. 

Additionally, it may be equipped with hardware means 

for massively parallel processing, to support 

connectionist tasks. The architecture’s central entity is 

the cognitive engine, offering an environment for the 

cognitive processes that are active (see Figure 1). The 

cognitive engine is a large ANN that controls all tasks 

taking place on and executed by the system. 
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cognitive 
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cognitive 
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Figure 1: subsystems and components of a 

computer system with cognitive features 

The cognitive engine interacts with the traditional 

system components, which could be software as well 

as hardware components. The example in figure 2 

shows a media player that projects a video stream on 

the display of the computer. The cognitive engine 

obtains information on the operational status of all 

components that are relevant to the player, through 

interfaces between the ‘clocked’ world of the 

traditional components and the ‘continuous’ world of 

the ANN. Furthermore, it influences the operation of 

the components, for instance by tuning UDP, IP, and 

network interface parameters to reduce packet loss. 

When new tasks are assigned to the system, and it is 

extended with extra components (software or 

hardware), the cognitive engine will first have to adjust 

to the new configuration. Different tasks, or rather 

different cognitive processes, may overlap and 

influence each other. 

5. Experiments and Applications 

In this section we consider two application 

scenarios, both dealing with data communication: one 

with a focus on network usage from a single 

computing device, the other dealing with interaction 

between systems within the network infrastructure. 

In the domain of autonomic computing, an 

interesting interaction takes place between the 

computer system and the data network it is using for 

communication with other parties. Both the computer 

(or perhaps, applications running on the computer) and 

the network may show autonomic behavior and 

potentially influence each other’s adaptation. 

Furthermore, clusters of computer systems may form 

autonomic systems themselves, using the data network 

for internal communication. Indeed, the network 

infrastructure itself can in many cases be regarded as 

consisting of computer system nodes cooperating to 

deliver data from one end point to another. 

Software (app): 

show video on 

screen 

Software (sys): 

UDP / IP stack

Cognitive Engine: ANN, large number 

of neurons 

many local 

interconnects 

per neuron 

cognitive process 

Hardware: 

wireless nw. 

interface 

few long 

distance 

interconnects 

per neuron 

interface between ‘clocked’ and 

‘continuous’ world: retrieval of 

component info, influence 

component operation

Figure 2: interaction between cognitive engine and 

traditional system components 

The first application is an audio streamer, for 

instance as used in a Voice-over-IP setting, that runs 

on a mobile device (computer) and learns to direct the 

outgoing media stream over the best network path. The 

device is equipped with multiple wireless network 

interfaces, which offers multiple communication paths 

to the application, depending on availability of 

networks. For the sake of the experiment, the receiving 

endpoint supplies feedback to the sender in the form of 

a quality indication at application layer. The outgoing 

audio stream is artificial: it has elements corresponding 

to different frequency domain: low, middle, and high. 

The quality indication metric is artificial as well, 

although based on actual human perception: mid tones 

contribute more to the overall quality than the low and 

high tones.  

The streamer is now learned to optimize its own 

operation, using the feedback of the receiver. It has 

control over all elements having a part in the 

communication: application decisions such as dropping 

low or mid tones, system settings such as UDP and IP 

parameters, as well as hardware settings such as 802.11 

WLAN parameters: a true cross-layer optimization. 
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router 

router router 

router 

Figure 3: cognitive engine interaction between 

network routers 

The second application deals with the Knowledge 

plane [1]. Here, the routers in a network infrastructure 

are computer systems based on the architecture 

presented in the previous section. They are configured 

and learned in such a way that the cognitive engine 

exchange information about the overall status of the 

network infrastructure (see figure 3). Together the 

individual routers form an artificial organism 

responsible for keeping the data network in the best 

possible condition. 

6. Conclusions and Future Work 

We have presented a view on the incorporation of 

cognitive processing capabilities in a computer system 

in order to support autonomic computing and 

communication. Our perspective is based on biology 

inspired artificial cognition running as an ANN 

controlling all other system components. 

We realize that many aspects have not been covered 

or specified in detail. Amongst those are: 

• So far, large ANNs showing higher order 

cognitive capabilities have not been build. The 

examples from nature show it can be done, but 

we’re not there yet. 

• It is hard, at this point in time, to estimate the 

efforts necessary to learn the ANN as presented in 

our setup.  

Offering a conceptual view, this paper does not 

cover implementation aspect. We plan to fill in details 

of our architecture, supported by experience from 

running systems. Additionally, we want to apply the 

system in situations where applications need to be 

adaptive towards changing network resources. 
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