
A System Perspective on Cognition for

Autonomic Computing and Communication

Arjan Peddemors , Ignas Niemegeers
*
, Henk Eertink and Johan de Heer

‡

INCA group /
‡
AIMS group, Telematica Instituut,

The Netherlands

{Arjan.Peddemors, Henk.Eertink, Johan.deHeer}@telin.nl

*
WMC group, EWI Faculty, TU Delft,

The Netherlands

I.Niemegeers@ewi.tudelft.nl

Abstract

In this paper we present a conceptual view on the

incorporation of cognitive processing capabilities in

future generation computer systems. We argue that
cognition is at the heart of autonomic behavior, and

therefore a necessary ingredient for autonomic

computing and communication. We introduce a bio-

inspired cognitive engine that interacts with and has

control over major operating system components, and
showcase, based on scenario descriptions, how

communicating applications take advantage of this

setup by adapting and autonomously reacting to

changes in heterogeneous and widely varying network

resources. As a conceptual work, this paper does not

cover experiences with the implementation of the
introduced concepts, nor does it describe experimental

results.

1. Introduction

In the emerging domains of autonomic computing

and communication, many characterizing features such

as self-awareness, self-(re)configuration, striving for

optimization, self-recovery and healing are hard to

realize with the current technologies we use for

building computer systems and software. In fact, the

characteristics that are distinctive to autonomic

computing are characteristics that we know from

biological organisms only. In nature, they are almost

always related to cognition, i.e. the use or handling of

knowledge including such aspects as sensation,

perception, awareness, reasoning and judgment. For

biological organisms, cognitive capabilities are

prerequisite to capabilities such as problem solving,

self-awareness and attention – many of the

characteristics we also wish to realize in autonomic

computing systems. So, taking this prerequisite as a

hint from nature, we most likely need cognitive

processing capabilities to implement autonomic

behavior in computer systems. This makes artificial

cognitive processing functionality a central element for

autonomic computing.

In nature, higher order cognitive processing takes

place inside the human brain as well as brains of

certain animal groups. Much research has been

dedicated over the years on how to mimic parts of the

functionality of the brain with Artificial Neural

Networks (ANNs). In terms of computer architecture,

neural networks depend on massively parallel

processing by simple interconnected nodes, which is

quite different from the Von Neumann model used by

the majority of contemporary computers. Limited

attention has gone to integrating ANN technology with

computer operating systems. In theory, an ANN may

do all processing on a computing device, but we

consider this a too dramatic departure from the

computing model we are currently used to. However,

we also realize that bio-inspired cognitive processing

on a computer system requires an ANN runtime.

In this paper, we therefore propose a hybrid

approach, with an ANN-based cognitive engine that is

part of a more traditional computer system and that has

control over most parts of the operating system. We

expect that this system perspective with cognitive

processing in the centre supports us in realizing

autonomic computing applications.

The motivation for this work lies with our objective

to understand and support the adaptation of

applications on mobile devices towards changing

network resources – the kind of dynamic environment

typical for mobile devices using heterogeneous

network technologies. We realize, however, that the

conceptual view presented here has a much broader

scope and applicability and covers multiple research

domains. We believe that it provides the groundwork

for building autonomously adapting applications, not

relying on limited sets of static adaptation rules but

Proceedings of the 16th International Workshop on Database and Expert Systems Applications (DEXA’05)

1529-4188/05 $20.00 © 2005 IEEE

capable of optimizing and learning even in situations

not anticipated at design time.

This paper is organized as follows. In section 2 we

discuss a number of aspects relevant to system support

for cognition. Section 3 lists the guiding principles we

use for the formulation of our system perspective, and

section 4 provides the outline of this cognitive system

perspective. In section 5, we show a number of

network related application scenarios that benefit from

our approach. We wrap up with conclusions and future

work.

2. Towards System Support for Cognition

When taking biological organisms as inspiration,

we have to find the basic principles and mechanisms

that build cognition in nature and map them, in a

suitable manner, to the substrates and tools we use for

building computer systems. This does not necessarily

mean mimicking, with silicon and software, every

physical process taking place inside a brain cell, it

‘merely’ means the identification of those functions

and processes that are necessary for cognition. As with

heavier-than-air flight: our current – successful –

aircraft technology relies on the principle of

aerodynamic lift, but does not mimic every other

common aspect of animal flight such as wing flapping.

Biological cognition is based on the connectionist

principle, where mental activity can be represented by

activity inside networks of interconnected units

(neurons). It is generally accepted, although to date not

shown to realize higher levels of mental capabilities in

artificial systems, that the algorithm describing the

operation of a single neuron is relatively simple, while

the network of neurons as a whole can express very

complicated, even complex, behavior. This ‘complex

behavior with simple rules’ is in stark contrast with the

way we currently build computer applications (as

illustrated in [6], although the topic itself is older). Any

non-trivial software program needs many lines of code,

and the implementation effort, i.e. the programming of

software, intuitively is proportional to the complexity

of the program’s functionality. This means that highly

complicated functionality, such as higher order

cognition, is very complicated to build using traditional

software engineering techniques. With neural

networks, a part of the effort is shifting from rule

making (programming) to learning; typically, a neural

network only shows the desired behavior after the

network is sufficiently trained. Indeed, the training

effort may be substantial, possibly even comparable or

higher than the coding effort. So, by applying the

connectionist principle to computing machinery, we

believe it is possible to realize complicated

functionality with simple rules, at the expense of

learning.

Cognitive capabilities only seem to develop and

grow in the event of rich sensory input combined with

sufficient actuator capabilities given resource and

processing limitations and environmental constraints.

To learn about the nature of an artifact, for instance, it

is important that an animal or human can pick it up,

observe it from different sides, feel, smell, etc.: the

actuators position the artifact in such a way that the

sensors detect relevant data (see also [3]). Likewise,

cognitive computer systems must make sure that the

cognitive processing parts receive input that is

meaningful for the tasks at hand, and can steer or

influence actuators in such a way that the input is

enhanced, i.e. becomes more meaningful. Obviously,

sensors and actuators in computer systems may be

quite different from those found in nature. For

instance, to learn about the availability of wireless

networks at the current location, the system may

instruct the wireless network interface to start scanning

for networks with certain intensity, and decrease the

intensity, after a while, when the list of known

networks does not change.

The research on ANNs has traditionally focused on

relatively small networks, by far not approaching the

billions of neurons (1011
) found in the human brain.

We believe, however, that size is highly important,

especially when aiming at higher order cognitive

functions. So far, practical limitations have made it

difficult to build ANNs in silicon and simulate them

with software. In many cases, it is harder to build or

simulate large networks when the individual neurons

more precisely mimic the operation of brain neurons.

These may turn out to be conflicting requirements: on

one hand the individual neurons must mimic their

biological counterparts in enough detail to reach a

cognitive process, on the other hand building or

simulating large networks may force neuron models to

be as simple as possible.

Large and multi-dimensional ANNs may show,

similar to their biological counterparts, an organization

that has many cyclic connections between sets of

neurons. These recurrent networks show a dynamic

behavior that is mostly determined by the feedback

loops, much in the same way as with traditional control

systems (see [3]). This means that the overall

organization of interconnects may influence the ANN

characteristics more than the characteristics of single

neurons.

In more recent years, a new neuron model that

explicitly takes into account the timing of inputs has

gained increasing attention. These so called Spiking

Neural Networks (SNNs) represent input and output as

series of spikes or pulses, similar to the biological

Proceedings of the 16th International Workshop on Database and Expert Systems Applications (DEXA’05)

1529-4188/05 $20.00 © 2005 IEEE

neuron. One advantage of this model is that neurons do

not have a continuous output that needs to be

propagated to others with every time step of, say, a

simulation, and that spiking, generating a pulsed

output, can be relatively sparse. These characteristics

make them suitable for large size network simulations

on standard PC equipment [2]. Developments in this

direction, together with the increasing processing

capabilities of standard computer equipment indicate

that the incorporation of large ANNs in computing

systems may be feasible, now or in the near future.

Ultimately, ANNs will run much more efficiently,

perhaps with much larger sizes and less power

consumption, on dedicated silicon [5]. This would

mean a departure from the Von Neumann architecture,

at least for the cognitive processing part of the

computer system.

3. Guiding Principles

Considering the discussion in the previous sections, we

adhere to the following guiding principles when

formulating our cognitive system architecture:

• We take a bio-inspired approach when it comes to

the implementation of artificial cognition. This

ultimately means running very large ANNs on

massively parallel hardware, but for the short term

means applying moderate size ANNs with a

runtime (simulated) environment on general-

purpose hardware.

• Given the large paradigm shift when going from a

Von Neumann architecture to a connectionist

architecture for computing, see [4], we prefer a

hybrid system that builds on our existing

knowledge and experience while applying new

principles to open problems. This offers the

possibility to adjust proportions depending on the

tasks and depending on future characteristics of

then available hardware. For instance, at some

time in the future, massively parallel hardware

may be readily available which can support the

ANN in taking over many functions executed by

traditional hardware. An additional benefit comes

from the observation that the different

architectures are complementary: it’s hard for a

human being to quickly calculate 7251 times 4.89,

while it’s hard for traditional computer systems to

anticipate on change, make correlations, and deal

with unexpected situations. Hybrid systems are

capable of merging functionality from both

domains.

• The traditional part of the hybrid system must be

setup in such a fashion that the cognitive

processing part is capable of receiving information

on the operational status of as many subsystems

and components as possible and capable of

controlling and influencing the operation of these

elements. The cognitive processing part should

have rich sensory input and plenty of means to

adjust the sensor characteristics or influence

through other actuators the data reaching the

sensor. Given limited processing resources and the

cost of processing associated with obtaining

sensory data, it must be capable of reducing the

sensing and sensory input processing when not

necessary for current tasks. As indicated in the

previous section, sensors and actuators on

computer systems can be radically different from

the ones found in nature. We expect that the

design of the sensors and actuators contribute to a

large extend to the overall quality and level of the

cognitive capabilities of a system.

• Detailed input on the current operational status of

the system allows the cognitive processing part to

watch other processes on the system performing

tasks. This should enable learning by observation,

for instance, learning from a traditional application

that is communicating with external entities, watch

how it uses system components such as network

stacks and network interfaces. Note that this is not

the same as invention, where the cognitive

processing part tries out, more or less randomly, to

steer system resources until something useful

comes out. Obviously, humans often learn by

watching others.

4. Contours of a Computer System with

Cognitive Features

This section provides the outline of a computer

system architecture that incorporates facilities

supporting cognitive processing. Being a hybrid

architecture, it consists, on the hardware side, of

elements found in common contemporary computer

systems such as a CPU, memory, hardware for I/O.

Additionally, it may be equipped with hardware means

for massively parallel processing, to support

connectionist tasks. The architecture’s central entity is

the cognitive engine, offering an environment for the

cognitive processes that are active (see Figure 1). The

cognitive engine is a large ANN that controls all tasks

taking place on and executed by the system.

Proceedings of the 16th International Workshop on Database and Expert Systems Applications (DEXA’05)

1529-4188/05 $20.00 © 2005 IEEE

A
p

p
l.

 l
a
y
er

S

y
st

em
 l

a
y
er

Component to hardware mapping

Software

Component

Software

Component

Hardware

Component

Cognitive Engine

Hardware

Component

Peripheral

hardware:

• network

interface

• keyboard/

display

Traditional

CPU and

memory

Cognitive Hardware:

massively parallel or

ANN runtime on

general purpose

hardware

cognitive

process

cognitive

process

cognitive

process

Figure 1: subsystems and components of a

computer system with cognitive features

The cognitive engine interacts with the traditional

system components, which could be software as well

as hardware components. The example in figure 2

shows a media player that projects a video stream on

the display of the computer. The cognitive engine

obtains information on the operational status of all

components that are relevant to the player, through

interfaces between the ‘clocked’ world of the

traditional components and the ‘continuous’ world of

the ANN. Furthermore, it influences the operation of

the components, for instance by tuning UDP, IP, and

network interface parameters to reduce packet loss.

When new tasks are assigned to the system, and it is

extended with extra components (software or

hardware), the cognitive engine will first have to adjust

to the new configuration. Different tasks, or rather

different cognitive processes, may overlap and

influence each other.

5. Experiments and Applications

In this section we consider two application

scenarios, both dealing with data communication: one

with a focus on network usage from a single

computing device, the other dealing with interaction

between systems within the network infrastructure.

In the domain of autonomic computing, an

interesting interaction takes place between the

computer system and the data network it is using for

communication with other parties. Both the computer

(or perhaps, applications running on the computer) and

the network may show autonomic behavior and

potentially influence each other’s adaptation.

Furthermore, clusters of computer systems may form

autonomic systems themselves, using the data network

for internal communication. Indeed, the network

infrastructure itself can in many cases be regarded as

consisting of computer system nodes cooperating to

deliver data from one end point to another.

Software (app):

show video on

screen

Software (sys):

UDP / IP stack

Cognitive Engine: ANN, large number

of neurons

many local

interconnects

per neuron

cognitive process

Hardware:

wireless nw.

interface

few long

distance

interconnects

per neuron

interface between ‘clocked’ and

‘continuous’ world: retrieval of

component info, influence

component operation

Figure 2: interaction between cognitive engine and

traditional system components

The first application is an audio streamer, for

instance as used in a Voice-over-IP setting, that runs

on a mobile device (computer) and learns to direct the

outgoing media stream over the best network path. The

device is equipped with multiple wireless network

interfaces, which offers multiple communication paths

to the application, depending on availability of

networks. For the sake of the experiment, the receiving

endpoint supplies feedback to the sender in the form of

a quality indication at application layer. The outgoing

audio stream is artificial: it has elements corresponding

to different frequency domain: low, middle, and high.

The quality indication metric is artificial as well,

although based on actual human perception: mid tones

contribute more to the overall quality than the low and

high tones.

The streamer is now learned to optimize its own

operation, using the feedback of the receiver. It has

control over all elements having a part in the

communication: application decisions such as dropping

low or mid tones, system settings such as UDP and IP

parameters, as well as hardware settings such as 802.11

WLAN parameters: a true cross-layer optimization.

Proceedings of the 16th International Workshop on Database and Expert Systems Applications (DEXA’05)

1529-4188/05 $20.00 © 2005 IEEE

router

router router

router

Figure 3: cognitive engine interaction between

network routers

The second application deals with the Knowledge

plane [1]. Here, the routers in a network infrastructure

are computer systems based on the architecture

presented in the previous section. They are configured

and learned in such a way that the cognitive engine

exchange information about the overall status of the

network infrastructure (see figure 3). Together the

individual routers form an artificial organism

responsible for keeping the data network in the best

possible condition.

6. Conclusions and Future Work

We have presented a view on the incorporation of

cognitive processing capabilities in a computer system

in order to support autonomic computing and

communication. Our perspective is based on biology

inspired artificial cognition running as an ANN

controlling all other system components.

We realize that many aspects have not been covered

or specified in detail. Amongst those are:

• So far, large ANNs showing higher order

cognitive capabilities have not been build. The

examples from nature show it can be done, but

we’re not there yet.

• It is hard, at this point in time, to estimate the

efforts necessary to learn the ANN as presented in

our setup.

Offering a conceptual view, this paper does not

cover implementation aspect. We plan to fill in details

of our architecture, supported by experience from

running systems. Additionally, we want to apply the

system in situations where applications need to be

adaptive towards changing network resources.

7. Acknowledgement

This research has been supported by the Dutch

Freeband Communication Research Programme

(AWARENESS project) under contract BSIK 03025.

8. References

[1] D. Clark, C. Partridge, J. Ramming, and J. Wroclawski,

“A Knowledge Plane for the Internet”, In Proceedings

of the ACM SIGCOMM, August 2003

[2] A. Delorme and S. Thorpe, “SpikeNET: An Event-

driven Simulation Package for Modeling Large

Networks of Spiking Neurons”, Network: Computation

in Neural Systems, Vol. 14, No. 4, pp. 613-627, 2003

[3] H. Ritter, J. Steil, C. Nölker, F. Röthling, and P.

McGuire, “Neural Architectures for Robot Intelligence”,

Reviews in the Neurosciences, Vol. 14, No. 1-2, pp.

121-143, 2003

[4] L. Stein, “Challenging the Computational Metaphor:

Implications for How We Think”, Cybernetics and

Systems, Vol. 30, No. 6, pp. 473-507, 1999

[5] P. Tosic, “A Perspective on the Future of Massively

Parallel Computing: Fine-Grained vs. Coarse-Grained

Parallel Models”, In Proceedings of the ACM

Conference on Computing Frontiers, April, 2004

[6] S. Wolfram, “A New Kind of Science”, Wolfram

Media, 2002

Proceedings of the 16th International Workshop on Database and Expert Systems Applications (DEXA’05)

1529-4188/05 $20.00 © 2005 IEEE

