
A Proposal for Multi-Agent System based Modeling
and Validation of Self-organization
Unai A m n a t e g u i Daniel Maldt

University of Zaragora. Cenuo Politecnico Superior, University of Hamburg, Department of Computer Science.
Voat-K6lln-Su. 30, D-22S27 Hamburg -

Email: maldt@informutik.uni-hamburg.de
Cl Maria de Luna, 1. 50018 Zaragona

Email: unui@uninar.cs

Abrrmcl-Dynamic self-organiution is 1) basic featuw to
Autonmie Computing systems (ACS). Rut its modeling and
validation, being important issues, remain complex. Here, tho
conceptual integration of multi-agent systems and hi&.level Petri
Nets can hrlp with their powerful ~onespts and tmk.

We propose an homogeneous modeling technique lntegmting
three coocopt~: agents, environments and Nets within Nets which
alp supported by the RENEW tml, allowing direct execution of
the model.

l h i s paper gives some insight in the proposed appmach.
The dynamic self-inlegration of B service o/mde mobilyy in an
operating system i s used as an illurtmling example
Keywords: I D 6 high-level Petri nets, nrls within nets. patlcms,
Reference nets. Renew. worksow, worksow pattems

1. INTRODUCTION

A main goal in Autonomic Computing Systems (ACS) is
transforming current and future computer systems in gradually
more and more self-organired dynamic systems. This goal has
been defined to ~ d v r the steadyly "sing complexity in the
design. integration and management of networked computer
systems [6] . A more self-organired system means, an the one
hand, system adminisuators c m focus on higher levels of
system management tasks and. an the other hand, they will
be able to deal with future pervasive computer systems.

In this paper, we explore modeling and validation issues in
ACS.

At the operating system level work hw heen done by
reflective approaches like in Apertos 1171 for wlf-organization
through resection. An architecture is provided IO deal with
runtime modification of operating system functionality. In this
case a reflective objecuriented modeling approach has been
taken.

Validation of this kind of systems has been neglected in the
past. Thus, there i s il need to validate a new state reached after
self-modification of a system has occurred. Also, in ohjrct-
oriented the modeling of concurrent and distributed activities
which are required in operating systmme is not very well
integrated.

We propose to solve these obstacles by modeling an opsral-
ing system architecture with the integration of three powerful
concepts: agents. environments and Nets within Nets. A multi-
agent approach seems appropriate for the concurrent and
distributed nature of operating system services. A reflective
apprrrach has been proposed in 141. This olrcady has references

to the advantages of agent systems. In addition we propose
to use the Nets within Ners pxadigm 1161. It allows both.
modeling the key concepts and directly representing recursion
and reflection. The main problem is the missing restrictions of
such U powerful technique. Therefore, agents and Multi.agent
systems (MAS) are used to structure such models. Here we
rely on MULAN 171, our architectural reference framework for
MAS.

In the next section we will briefly inuoduce the Nets
within Nets paradigm, followed by the concept of multi-
agent systems. Since self-organization is B key concept, it
is presented in a separate scction. The last section contains
conclusions on the results.

I I . NETS-WITHIN-NETS
Autonomic Computing System can be viewed as Discrete

Event Systems (DES). This kind of systems cm he modeled
with Petri Nets [I41 that provide an intuitive graphical repre-
sentation and a formal Semantics of concurrent distributed pro-
cesses. In this formal representation, complex and concurrent
systems execution cm be validated and system properties can
be verified (mutual exclusion, deadlocks, livelocks. liveness,
boundness of resources, etc).

A Par i Net is composed of places, usnsitions and arcs.
Places represent resources that can be available or not, or
conditions that can be fulfilled. Places are denoted in diagrams
as circles or ellipses. Transitions are the active part of a net.
Transitions are depicted as rectangles or squares and they
connect different places. A transition that fires (or occurs)
removes resources or conditions (for shorl: tokens) from places
and insens them into other placer. This is delernlined by arcs
that are directed from places (input places) to Vansitions and
from transitions to placer (output places).

The paradigm of Nets within Nets [I61 belongs to the
family of high-level Peui Nets [SI. So, it provides the intuitive
graphical representation and formal semantics found in Petri
Nets formalism. in this paradigm, the tokens of a Petri Net can
again be Petri Nets. In this way, hierarchical andlor recursive
svuctuies and systcnis can be modeled in an elegant way.

Reference nets 191 are m implementation ofsome aspects of
Nets within Nee. With this kind of nets a referential semantics
are assumed. tokens in one net are the references to other net
instances. As for other Petri Nets farnialisms the tool RENEW

0-7803-8S13-6/04/$20.~ 02004 IEEE 266

mailto:maldt@informutik.uni-hamburg.de

[IO]. an integrated development environment and Simulator
for references nets. is provided. The benefit of this feature for
the RENEW tool is that it is modular and extensible. In this
conte~t, Reference net models are executable which dlows the

left part of Figure I) . The transitions between placcs describe
communication or mobility channels. This level models the
infrastructure upon which the modeled system is modeled.

validation of the modeled systems.
The property of reflection could he expressed in the fact

that nets could he created, modified or destroyed. if they are
expressed as tokens running inside another net. This structure
can he layered, us required.

111. CONCEPTS POK MULTI-AGENT SYSTEM MODELS

Autonomic computing systems can he viewed as a S I of
interacting autonomic agents. Autonomy, proactivity and goal-
oriented behaviour in an open environment are basic features
of these agent^. Moreover, concurrency and distrihudan are
inherent features in multi-aeent svstems modeline.

" I -
In the context of open system. the environment is a

basic abstraction that denotes the outside world. From the
view-point of the model the environment is everything that
does not belong to the modeled system. Inside the model,
the interactions with the environment me represented with
basic general properties and inputloutput functions that are
needed as a part of the modeled system. In some cases. the
environment can be represented n special agent whose hasic
interactions and properties are modeled only. Rp. I . Multi apcnl sysl~ms as Nets wiUlln Neo: laken fmm 171

We nrooose n modeline oaradiem based on B variant of the . . _ . ~

MULAN 171 multi-agent system architecture. MULAN is built
on Nets within Nets. which is used to describe hierarchies
in an agent system. Moreover. MULAN is implemented in the
RENEW tool. Our proposed modeling takes advantage of these
features, since it allows for the validation of OUT models.

M U L A N has a hierarchical structure with four levels of
abstraction: multi-ugmt system, agent platform, agent and
protocol. In this contribution we make an extension to our
successful MAS reference architecture by adding an environ-
ment. Each level covers some relevant properties of a MAS
or some specific behavior. The model for this is I reference
net instance which has B reference to another reference net
instance, BE described above.

The environment is the first bottom level in an opcn system.
It is usually not modeled erplicitly. so isn't it here. In Petri
nets, it can be modeled as transitions that have only output
places or only input places if there are no further assumptions
ahout the behavior of the environment. Any kind of proptrties
and behavior can 01 COU~SC be added if this is appropriate
for the model. The general concept of an environment is
applied on all IovoIs. The following nesting of the different
layers c m always bc viewed us a specialization of the relation
of an agent in its rnvironnirnt. In terms of the modcling
technique: an abject net that lies within a system net. The
main purpose of the different layers is to illustrate explicitly
different aspects of multi-agent systems. The possibility of
combining and merging the different properties and behaviors
is discussed in the following.

The second level describes a multi-ngcnt system, a Petri net
whose places contain agent platforms as tokens (see the top

Agent platform smcture forms the third level of abstraction
(see the top right part of Figure 1). It defines the net within
agents run as tokens. We have places representing states
of (running) agents. Also. transitions dealing with reflective
actions upon agents. They could he agent creation, agent de-
ssuction, intra-platform communication between agents. inter-
platform communication between agents running on different
platforms, send and receive agent (for mobility), etc. The
creation transition is synchronized e.g. with the environment.
The interpretation of a platform can be B location (physical
or conceptual). The transportation or comniunication channels
on the system levels are synchronized with the external ac-
tions of a platform, Internal actions of the platform can be
synchronized with several local agents.

The fourth level of abstraction is built with an agent
net model. which we tokens at the platform level (see Ule
bottom right part of Figure 1). IntmCtionS between agents are
provided by message passing, with an incoming transition and
an outgoing transition. This ensures an activc autonomy of the
agent which has to explicitly execute such n communication. A
place stores the knowledge base where the persistent states of
the agent are defined and changed. The potential hehaviour
of an agent is described in Lcrms of protocols which are
also stored persistently. Instantiated protocols are p u t of
conversations. which manage interaction, and me developed in
the conversations place. A reactive and n proactive sansition
represent the possibility to create or start conversations inside
the agent. The reactive transition creates or starts protocols in
response to thu n ~ ~ s u g e s received from outside. The proactive
transition runs protocols based on inlemnl objectives provided

261

by the knowledge bvsr place. Active protocols (=conversa-
tions) arc again conceptually modeled by separate reference
net instances.

Finally, protocols are basic Petri Nets, modeling the ongoing
conversation of nn agent (see the hottom left pan of Figure 1.

With this kind of architecture in mind. the p-kernel is mod-
eled an agent platfomi in OUT approach. Agents represent
d l user-level programs: system services and applications.

On the one hand, the agent platform should he enhanced
to represent. at least, two places. One contains running agents

Usually this structure is very much like a workflow. since it is
described hy an explicit start. middle and end px t . The middle
pan usually contains some action synchronized with the agent
to send or receive information. However. protocols cm have
an arbitrary net structure if necessary

Reflection is obtained through each level in the adjacent
layer. The multi-agent system layer gives the reflective level
for agent platfoms. Agent platforms can represent the re-
flective level for agents. But also, al the agent level. we
can use an organization-based reflection 141 through system
level "agmtiticauon"and agent representatives far delegation
of tasks. This latter form of reflection. due to its relative
simplicity, is interesting in self-organization as we explain in
the next Sections.

IV. MODELING SELF-ORGANIZATION

The following Sections explain the proposed modeling ap-
proach. Thjs is done using an illustrating example. operating
system modelling. Mom explicitly, this is developed in the
form of the self integration of B service of code mobility into
a flexible operating system.

This will be developed. in the next subsections, wilh this
methodology : . Describe a basic model of a computing system with it

special focus an the operating system layer.
Build a general model of self-organiwlian in operating
system structured with a pkerne l design. . Explain the validation approach with the tools that allow
SD much the modeling as the execution of the system.

A. A Basic Model of o Compuling system

Here, the multi-agent system level abstraction represents
a set of a finite numher of networked computers. In this
case, the environment is everythins not modeled at any level,
and corresponds to elements inside and around the computer
system: users. disk data, detailed hardware elements, etc.

The u~wr levels model the overating svsteni architecture.

and the other stopped agents whiting for a processor to be
available. This would be the simplest model, sufficient to
represent a very simple p-kemel. Still, we do not deal. 41 this
level. with different states related to scheduling policies. That
is left to the scheduler. modeled like an "agentified'kystem
service running on the agent platform.

On the other hand. the "agentified"system services (sched-
uler, memory manager. security nmnuger. file system manager)
have a special relationship with application agents and h e
agent platfomi (the net supporting the agents). System agents
control what application agents can do and what resources they
can get. Application agents can ask for services directly to
each system service agent or. easier for them, they can ask lor
all operating system Services to a system manager agent. This
agent knows about a11 the other system agents competences. so
it can delegate each service demand to the appropriate system
service agent.

Also, more generally. agents can be grouped by affinity and
have representatives to interact with other agents. This way.
interaction complexity cm be better managed.

R M n d d i q S~lfn%oniralion of Sewices in an Operoiing
sysrem

So far, a uaditional computing system model has k e n
described.

We cm think of two ways to model self-organization. On
the first one, we can model each system Service agent with
its awn self-managing behaviour defined in its protocols. On
the second one. the system manager agent described in the
previous subsection could enhance its campetrnces I o deal
with self-organization of its group, the system agents group.
AS said before. the latter can be a more manageable approach,
albeit. the first one can have better resilience features due to
con~ll l distribution.

A self-organization feature is the capacity to upgrade or
enhance its competences in an autonomic way. An application
agent asks for a task execution not available in the core- .. - ,

If we want to deal with self-organization. second generation
pkcmel designs. like U L I Z] and Exokemel 131. show real
oossibilitiss II 11 in flexible and efficient execution. Flexibility

spanding systeni service agent. In current systems, this event
leads to an error. Howeuer. the autonomic hehaviourofsystem
agents looks for the existence of this task protocol in secure. . .

is aimed to tailor most system services (memory manager,
scheduler. device drivers, etc.) to applications directly in the
user space. Efficiency is obtained giving minimal but very
efficient primitive services to system and application designers.
For instance, L4 works only with the concepts of threads,
IPC (InterProccss Communication) and addresses spaces im-
plementrd in very few and fa1 primitives. In Ihis architrcturr,
system services can he recontigured an the fly in a running
system. This functionality opens doors to self-organization at
different ICYCIS in computer sys tem.

well known and regularly updated repositories. I f there exists
a protocol for this new task, the system Service agent loads
n new protocol in its own protocol place. Next. this system
service executes the required task. This process can be kept
trunsparent. The application Service has only an additional
delay in the requested behaviour execution.

Also. pmlacnl upgrading can he planned progressively when
repositories get enhunccd with new protocols or new versions
of existing protocols. The autonomic computing system plans
when and when upgrades should be done automatically.

268

Moreover. this cm k also designed in a more crude contcxt.
E.g.. an application agent asks for il msk which can't be served
by any of the system service agents and does not correspond
to any system service agent domain. Thus, in some cases,
the operating system needs Io gel new system ;gents for
new services k i n g provided. That means a more complex
organization behaviour, The operating system manager agent
fetches the new system agent. Other system agents are asked
for an upgrade of protocols needed to interact with the new
system agent. And finally, the integration ends with the ncw
system agent running smoothly and providing the service
rrquircd by the application agent.

In this last case, a system iuonogrr agent carries out the
rvsks involved with a new system service agent integration. For
the sake of simplicity, n first version of the self-organization
architecture is built into the system manager agent. The other
system agents only have the capacity to upgrade or get new
protocols of behaviour. This is a group-based self-organization
where a representative (the system manager agent) deals with
self-management tasks far lhr group. The example developed
in the next subsection is based on this design.

Selflnrqrution of. service of C o t Mobility

An illustrating example can k provided with the integration
of a strong code mobility service in a running operating
system. This mobility service can be requested, for instance.
from a mobile agent application or, also, it can be demanded
by a new computer node in the network that asks for help
to reduce activity load by means of a load balancing service
agent. (Fur the modeling of mobility using nets within nets
sec 181).

The intrgrvtion of this new servicc means that. at bast.
the scheduler agent and the memory manager agent needs
to be upgraded. Both need. in this new content, to provide
new competences. The scheduler must offer a new migration
State in scheduling. The memory manager must give complete
information of the running state of processes (variables. srack
and registers) found in the migration scheduling state.

Once upgraded. the migration service interacts with the
scheduler to get processes in the migration scheduling state
and with the nlemory manager to obtain their running state.
Then, the stilte and cods of the migrating agent is serialized
and s m t IO the targeting computer node. When the migration
system agent receives confirmation of successful execution of
the migrated agent in the remote nude. it c m ask for the
releasing of local resources have k e n used by the migrated
agent.

From this point, 81 the same t i m that a new service has
k e n executed transparently to the application. the system has
heen upgraded for latter uses. Unless the system managcr has
k e n told. by the human system administrator or a higher level
computer manager agent. to revert thc system configuration
always to the same state. This kind of on-demand Services
could he individually provided. for instance. in little memory
footprint computing platforms.

How lo Model such Syslems based on MULAN

What is new with respect to traditional systems modeling?
The models proposed here can k completely described

within the RENEW-t001. The special structure of the Petri
net models is supported by a technical infrastructure called
CAPA 121. It allows for a FIPA-compliant implrmentatian
and therefore an easy interconnection over distributed systems
based on U standard communication protocol. Our proprietary
framework is therefore open IO other standardized frameworks
and implementations (see e.g. the integration into the Agent-
cities context 1151 and [I]).

At the same lime. agents bring a new and interesting mod-
eling concept into the application area. The way systems can
k structured and organized can be changed. MAS have their
strenglh especially in those xeas were the demands arc high
flexibility. robustness, self-aduptation. etc. However. if agents
are only considered to be special flexible components, then
these advantages cannot be used completely. For the complex
handling of such systems there is no complete theory. The
interaction of such MAS ryui res techniques able to handle
c a n c e p ~ of Social interactions. Some contributions have k e n
developed during the last years 81 Hamburg. Thc MULAN-
architecture has been extended on the conceptual level by
S O N A R - ~ ~ ~ ~ ~ S . Each S O N A K - ~ ~ C ~ ~ is implemented us a M U -
LAN-agent. The technical implementation is therefore homo-
geneous. However, the SONAR-L I~~"~ can contain arbitrarily
nested S O N A R - ~ ~ ~ ~ ~ S . These cover important sociologically
relevant features like system sm~tures, proces.scs and actors.
These we used to reflect the extemal relations of an agent
which contains the S O N A R - L ~ ~ ~ ~ . This holds for all kind of
agents. All this allows for an efficient implementation of the
overall svuclure of the system. (Some details can be found in
chapters 11-12 in 1131).

As explained above. MAS can be vioved frani different
angles. which we cvlled environment. system, platform. agent
and protocol. Eilch view Only emphasizes some imponant fea-
tures. On the application level several v i e w can be integrated
on one implementatian level. This means that the platform can
also be viewed as an agent. Usually this is the case since the
platform can he addressed and treated as k i n g an agent when
seen from the upper (e.g. the system) level. Furthermore. as
mentioned above. the agents an a platform can again contain
agents, where the agent represents a plutfomi. This allows
for an arbitrary nesting of agents that can aggregate their
necrsrvry features or services by hosting other agents and
serving JS o platfom] for them and offering Services to the
cnvironnient 81 the same lime (with any kind of madificnlions).

C. Volidmion

Validation becomes possible since the RENEW-to01 allows
to implenient directly, the models built according to the pro-
posed approach. Each reference net can be executed directly.
Java code can he wed for inscriptions. Extemal Java code can
be integrated, based on the fact that Java objects and reference
net instances c m k arbitrarily mired in on efficient way. even

269

in a concurrent and disuibuled fashion (we don't explain here
the technical details).

Since thc sophisticated models can cover, easily and in-
tuitively. important features, the execution of the models
allows to directly validate the specification, which is at the
same time the implcmentation of the prototypes. To make
really efficient syslems with lime-critical components l i b an
Operating syslein a reimplementation is of course necessary.
However, this can be related to B thoroughly defined and
investigaled prototype. The enploralion of this modeled proto-
type can be of invaluable help to better design and guide the
effective implementation of the modeled system. Far instance.
exploration can be made in different designs. Also. tuning of
the modeled syslem can be made before the implementation.

To what extend the advanced and complex concept of a
MAS can be applied in this area. still has to be checked. At
least the overall ~tructure c m be enhanced considerably.

v. CONCLUSION
Modeling and validation are important issues in Autonomic

Computing. Some imponant features have been presented by
means of the sketched example, the modeling of an operating
system. In the area of operating systems. efficiencylreul-
time aspects are imponant, which prohibited to apply sovcraI
advanced features. However, very similar concepts have to
he used when working on the modeling and validation of
different aspects af ACS. Here however, the goal is oflen
to understand these systems. This allows to directly apply
the approach as proposed here. What might be even mom
interesting is that a smooth integration of ACS and MAS
cm be reached due to the concepts elaborated in the area
of hybrid systems (having humans and agents at the same
conceptual level). Again we have to confess that here the HCI
(Humnn-Compuler-lnterfuce) community is still worlung hard,
however. the goals of many developers can already be sen.

The concept of environment for agents is imponant. There is
a nrsd to find the systcm hordcrs and the respective interfaces.
Since it can be applied recursively, a homogeneous svucture
can be used on the technical level. At the same time conceptual
views can be emphasized us they become necessary from
the modeler point of view. The underlying paradigm of Nels
wirhin Ne& with its instantiation by reference nels and the
related tool set KENEW, is very powerful and can be used
to describe a11 relevant features. The restriclion Io agents and
MAS is necessary since otherwise the overview of models
quickly becomes impossible. w e n for experienced developers.
In our practical implementations we also apply (A)UML. Java
and many other vaditional software engineering techniques. AI
the Same time, we have made very promising experiments with
&e inclusion of techniques coming from Artificial Intelligence
(AI) and especially Disuibuted AI (DAI), like Prolog or BDI-
Architectures.

In the near future we will work on some funher case studies
to experiment with the applicahilily of the approach. The area
of Renibla manufacturing systems has been used and will be
used. Also we will investigate possibilities of applying formal
results from the Prui nets research community.

ACKNOWLEDGMENT

The authors would like to thank the colleagues in our
respective depmmenls for valuable discussions and B firs1
reviewing help, specially Jose Manuel Calani and Jovquin
Erpeletu.

This work has been supported by the German-Spanish
Integrated Action HAZ000-0047. Deutschrr Akademischer
Austuuschdienst (DAAD) and the Spanish CICYT-FEDER
TIC2001 - I8 19.

REFERENCES
I t] Michael Duvigneau. Michzl KShler. Daniel MoldL Chnrune Reese. and

Hello RSlke. Agmcbosrd sctiisr game. In Proceedings 01 Agcnlcilier
Agsnr Technology Compe,i!ion. Bnrc~lono. S p i n , 2W3.

121 Michrei Duuieneau. I J m i d Moldi. and HrikO Rblke. Concurmm or.
chiarmre for Y mulri-agmr pkform. In Faurlo Ciunrhiglia. J m s
Odelt. and Gehard WeiR (edr.): nid lolmolional Workshop, AOSE
2W2. Bologno. lmlv July 15. 2W2. volume 2585 of LNCS, S p t i ~ e e r ~
Verlae. Rerlin Hcidetkcp New York, 2W3.

131 U. R. En& M. F. Kaashork and I O'Toole Jr.. & o h " : An 0 ~ ~ 0 -
ling S y m m Archirrciure for Applicarion-Law R~rourcr Mamgm".
I5Ih SOW95 Proceedings. ACM. Dec. 19B. pp. 251-266.

141 I . Ferkr. 0. Gulxnecht. A Metu~Moddfor rhs Amlysir and Design of
Orgoniwiioni ul MultlAgmn(Sylrrms.

I51 K. leoseo and G. Ralenkrp (edr.!. High~ievrl Arri Nets - T k o v o d
Applicoiion. Springer-Vedag. Berlin Heidelkre. I991

161 J. 0. Kephan and D. M. Chcrr. Thr Wrlvn ofAuronomic CompuiMg.
Compuier, Im. 2W3. pp. 41-50,

171 Michael Kehler. Daniel MOIdL and Heiko Rolke, Modelihg the stmc~r?
and brhouiwr of Per?; mi agmis. Apphcauon and Theory of Mul
N e s . volume 2075 al LNCS. Springer VcrPlg. 2001. pp. 224-211.

181 Michael Kohler, Daniel MOldL and Hello R 6 k . Modeliing mobilio
and mobile q m i r uaulg nrm rirhln nrN. In Wit van der Adst and
Eikc Bcst (cdi.). P m . o f 2 4 d l n r m o r i o ~ l Conference on Appikarim
and nmry of P e r i N m 2W3 (ICATPN 2W31, Euldhowm. NL. Berlin
Heidelkg N w York. 2W3. volume 2679 01 LNCS. Sprinper-Verlag.

1101 Olal Kummer and Frmk W i e n k q . Refermm w f workshop lReomul).
Univmity ol Hamburg, hap:llwww.renew.de. 188.

1111 IAKaTeam. l.4 X.2 R e f e r m e Monuol. Department of Compu~
ter Science. University of Kartnuhe. hs~lfl4Xa.orgldocumentniann4~
i2.pdf. Apr 2W3.

1121 1. Liedtke. n e p c f l / o " m ofp-Kmpi-based Syxr~mr. 16th SOSP'97
PTweediqs. ACM. a l . 1997.

1131 R. I LU&. U. Moldi. R. Valk M. KShler, R. Lanecr. H. RBke. and
D. Spresny. Soiionjk: Moddlimung smidogirrhrr Theorie. WmSEhafl

~ Ark($ ~ TechncX. I.tt~Vcdrg, MGnstcr. 2W3.
1111 T, Muram, Prrri Nrrs: Pmpenirr, Analyxix and Applicoriunr. Roccc~

din?$ of ulu IEEE. vol. 77. n.4. Apnt 1989.
1151 Chrirtinc R-T. Mubiugn!mswrma: Anbinduns dwpetrcnmbmwtm

Piviflorm CAPA un &A ~ n l m u i b m l r Neiiwrrk Apmrclirr. diploma
Ihesis. Umversiiy of Hamburg. tkpvnrnenl for Computer SticncT. Voel-
KSlln S s 30. 22527 Hamburg. Germany. 2W3.

I I61 Rbdirer Vat . PcWi nrlr as tokm objecn: An inrmdurrion lo rlrmeniory
object ne($, In JOrg Descl and Maw1 Silva (eds.!. Applicatim und
Tl~rory q'Perri Ners. wlunl~ 1420 of LNCS. SprinSr-Voda& Berth"
Heidclkrg N n York. pp. 1-25. lune 3998.

1171 Y. YokoLe. The A p r r m Refie~iiur O p r d n g S y s r o n OOl'SLA'92
Proceedings. ACM. a t . 1W2. pp. 414434

ICMAS'98, Jul. 1998.

191 mi ~ummer, RPfemnmrrrr. ia~os~veriag. ~ d n . 2002.

270

http://hap:llwww.renew.de

