A Proposal for Multi-Agent System based Modeling
and Validation of Self-Organization

Unai Arronategui
University of Zaragoza, Cenuro Politecnico Superior,
C/ Maria de Luna, 1, 50018 Zaragoza
Email: unai @unizares

Abstract— Dynamic self-organization is a basic feature to
Autonomic Computing Systems (ACS). But its modeling and
validation, being important issves, remain complex. Here, the
conceptual integration of multi-agent systems and high-level Petri
Nets can help with their powerful concepts and tools.

We propose an homogeneous modeling technique integrating
three concepis: agents, environments and Nets within Nets which
are supported by the RENEW tool, allowing direct execution of
the model.

This paper gives some in the proposed approach,
The dynamic self-integration of a service of code mobility in an
operating system is used as an illustrating example.

Keywords: IDE, high-level Petri nets, nets within nets, patterns,
Reference nets, Renew, workHow, workflow patterns

[,

[. INTRODUCTION

A main goal in Autonomic Computing Systems (ACS} is
transforming current and future computer systems in gradually
more and more self-organized dynamic systems. This goal has
been defined to solve the steadyly rising complexity in the
design, integration and management of networked computer
systemns [6]. A more self-organized system means, on the one
hand, system administrators can focus on higher levels of
system management tasks and, on the other hand, they will
be able 10 deal with future pervasive computer systems,

In this paper, we explore modeling and validation issues in
ACS.

At the operating system level work has been done by
reflective approaches like in Apertos [17) for self-organization
through reflection. An architecture is provided to deal with
runtime modification of operating system functionality. In this
case a reflective object-oriented modeling approach has been
taken.

Validatien of this kind of systems has been neglected in the
past. Thus, there is a need to validate a new state reached after
self-medification of a system has occurred. Also, in object-
oriented the modeling of concurrent and distributed activities
which are required in operating systems is not very well
integrated.

We propose to solve these obstacles by modeling an operat-
ing system architecture with the integration of three powerful
concepts: agents. environments and Nets within Nets. A muiti-
agent approach seems appropriate for the concurrent and
distributed nature of operating system setvices. A reflective
approach has been proposed in [4]. This already has references

0-7803-8513-6/04/$20.00 ©2004 IEEE

Danie! Moldt
University of Hamburg, Department of Computer Science,
Vogt-Kdlln-Sir. 30, 13-22527 Hamburg
Email: moldt@informatik.uni-hambusg.de

to the advantages of agent systems. In additien we propose
to use the Nets within Nets paradigm [16]. It allows both,
modeling the key concepts and directly representing recursion
and reflection. The miain problem is the missing restrictions of
such a powerful technique. Therefore, agents and Multi-agent
systems (MAS} are used to structure such models. Here we
rely on MULAN [7], our aichitectural reference framework for
MAS.

In the next section we will briefly introduce the Nets
within Nets paradigm, followed by the concept of muld-
agent systems. Since self-organization is a key concept, it
is presented in a separate section. The last section contains
conclusions on the results.

I1. NETS-WITHIN-NETS

Autonomic Computing Systemns can be viewed as Discrete
Event Systems (DES). This kind of systems can be modeled
with Petri Nets [14] that provide an intuitive graphical repre-
sentation and a formal semantics of concurrent distributed pro-
cesses. In this formal representation, complex and concurrent
systems execution can be validated and system properties can
be verified (mutual exclusion, deadlocks, livelocks, liveness,
boundness of resources, etc).

A Petri Net is composed of places, transitions and arcs.
Places represent resources that can be available or not, or
conditions that can be fulfilled. Places are denoted in diagrams
as circles or ellipses. Transitions are the active part of a net.
Transitions are depicted as rectangles or squares and they
connect different places. A wansition that fires (or occurs)
removes resources or conditions (for short: tokens) from places
and inserts them into other places. This is determined by arcs
that are directed from places (input places) to transitions and
from transitions o places (output places).

The paradigm of Nets within Nets [16} belongs to the
family of high-level Petri Nets [5]. So, it provides the intuitive
graphical representation and formal semantics found in Petri
Nets formalism. In this paradigm, the tokens of a Petri Net can
again be Petri Nets. In this way, hierarchical andfor recursive
structures and systems can be modeled in an elegant way,

Reference nets [9] are an implementation of some aspects of
Nets within Nets, With this kind of nets a referential semantics
are assumed, tokens in one net are the references to other net
instances. As for other Petri Nets formalisms the tool RENEW

266

mailto:maldt@informutik.uni-hamburg.de

[10], an integrated development environment and simulator
for references nets, is provided. The benefit of this feature for
the RENEW ool is that it is modular and extensible. In this
context, Reference net models are executable which allows the
validation of the modeled systems. '

The property of refiection could be expressed in the fact
that nets could be created, modified or destroyed, if they are
expressed as iokens runmng instde another net. This structure
can be layered, as required.

1. CONCEPTS FOR MULTI-AGENT SYSTEM MODELS

Autonomic computing systems can be viewed as a set of
inferacting autonomic agents. Autonomy, proactivity and goal-
oriented behaviour in an open environment are basic features
of these agents. Moreover, concurrency and distribution are
inherent features in multi-agent systems modeling.

In the context of open systems, the environment is a
basic abstraction that denotes the outside world, From the

left part of Figure 1). The transitions between places describe
communication or mobility channels. This level models the
infrastructure upon which the modeled system is modeled.

view-point of the model the environment is everything that
does not belong to the modeled system. Inside the model)
the interactions with the environment are represented with
basic general properties and input/output functions that are

needed as a part of the modeled system. In some cases, the;
environment can be represented as a special agent whose basic
interactions and properties are modeled only.

We propose a modeling paradigm based on a variant of the
MULAN [7] multi-agent system architecture. MULAN is buill
on Nets within Nets, which is used to describe hierarchies
in an agent system. Moreover, MULAN is implemented in the
RENEW tool. Qur proposed modeling 1akes advantage of these
features, since it allows for the validation of our models.

MULAN has a hierarchical structure witk four levels of
abstraction: rmuiti-agent system, agent platform, agent and
protocol. In this contribution we make an extension to our
successful MAS reference architecture by adding an environ-
ment. Each level covers some relevant properties of a MAS
or some specific behavior. The model for this is a reference
net insiance which has a reference to another reference net
instance, as described above.

The environment is the first bottom level in an open system.
It is uswally not modeled explicitiy, so isn't it here. In Petri
nets, it can be modeled as transitions that have only output
places or only input places if there are no further assumptions
about the behavior of the environment. Any kind of properties
and behavior can of course be added if this is appropriate
for the model. The general concept of an environment is
applied on all levels. The following nesting of the different
layers can always be viewed as a specialization of the relation
of an agent in its environment. In terms of the modeling
technique: an object net that lies within a system net. The
main purpose of the different layers is to illustrate explicitly
different aspects of multi-agent sysiems. The possibility of
combining and merging the different properties and behaviors
is discussed in the following.

The second level describes a multi-agent system, a Petri net
whose places contain agent platforms as tokens (see the top

2 c,. 2gant platorm
-
muly agent system s .
o~
7 N
b
7
protocol ’
o in
wiart subcall Process stop

Fig. 1. Multi agent sysiems as Nets within Nets; taken from [7)

Agent platform structure forms the third level of abstraction
(see the top right part of Figure 1). It defines the net within
agents run as tokens. We have places representing states
of (running) agents. Also, transitions dealing with reflective
actions upon agents. They could be agent creation, agent de-
struction, intra-platform communication between agents, inter-
platform communication between agents running on different
platforms, send and receive agent (for mobility), etc. The
creation transition is synchronized e.g. with the environment.
The interpretation of a platform can be a location (physical
or conceptual). The transportation or communication channels
on the system levels are synchronized with the external ac-
tions of a platform. Internal actions of the platform can be
synchronized with several local agents.

The fourth level of abstraction is built with an agem
net model, which are tokens at the platform level (see the
bottom right part of Figure 1). Interactions between agents are
provided by message passing, with an incoming transition and
an outgeing tramsition. This ensures an active autonomy of the
agent which has to explicitly execute such a communication. A
place stores the knowledge base where the persistent states of
the agent are defined and changed. The potential behaviour
of an agent is described in terms of protocols which are
also stored persistently. Instantiated protocols are part of
conversations, which manage interaction, and are developed in
the conversations place. A reactive and a proactive transition
represent the possibility to create or start conversations inside
the agent. The reactive transition creates or starts protocols in
response 10 the messages received from outside. The proactive
transition runs protocels based on intemal objectives provided

267

by the knowledge base place. Active protocols {=conversa-
tions} are again conceptually modeled by separate reference
net instances.

Finally, protocois are basic Petri Nets, modeling the ongoing
conversation of an agent (see the bottom leit pare of Figure 1.
Usually this structure is very much like a workflow, since it is
described by an explicit start, middle and end part. The middle
part usually contains some action synchronized with the agent
1o send or receive information. However, protocols can have
an arbitrary net structure if necessary.

Reflection is obtained through each level in the adjacent
layer. The multi-agent system layer gives the reflective level
for agent platforms, Agent platforms can represent the re-
flective level for agents. But also, at the agent level, we
can use an organization-based reflection {41 through system
level "agentification”and agent representatives for delegation
of tasks. This later form of reflection, due to its relative
simplicity, is interesting in self-organizaton as we explain in
the next sections.

1V. MODELING SELF-ORGANIZATION

The following sections explain the proposed modeling ap-
proach. This is done using an illustrating example, operating
sysiemn modelling. More explicitly, this is developed in the
form of the self integration of a service of code moebility into
a flexible operating system.

This will be developed, in the next subsections, with this
methodology :

« Describe a basic mode! of a computing system with a

speciat focus on the operating system layer.

« Build a general model of self-organization in operating

system structured with a p-kernel design.

« Explain the validation approach with the tools that allow

so much the modeling as the execution of the system.

A. A Basic Model of a Computing System

Here, the multi-agent system level abstraction represents
a set of a finite number of networked computers. In this
case, the environment is evervthing not modeled at any level,
and corresponds to elements inside and around the computer
system: users, disk data, detailed hardware elements, etc.

The upper levels model the operating system architecture.

If we want to deal with self-organization, second generation
n-kernel designs, like L4 [12] and Exokernel [3], show real
possibilities {11] in flexible and efficient execution. Flexibility
is aimed to tailor most system services (memery manager,
scheduler, device drivers, etc.) to applications direcdy in the
user space. Efficiency is obtained giving minimal but very
efficient primitive services to sysiem and application designers.
For instance, L4 works only with the concepts of threads,
IPC (InterProcess Communication) and addresses spaces im-
piemented in very few and fast primitives. In this architecture,
system services can be reconfigured on the fly in a running
system. This functionality opens doors to self-organization at
different levels in computer systems.

With this kind of architecture in mind, the p-kernel is mod-
eled as an agent platform in our approach. Agents represent
all user-level programs: system services and applications,

On the one hand, the agent platform should be enhanced
to represent, at least, two places. One contains running agents
and the other stopped agents waiting for a processor 1o be
available. This would be the simplest model, sufficient to
represent a very simple 1-kernel. Still, we do not deal, at this
level, with different states related to scheduling policies, That
is left to the scheduler, modeled like an “agentified”system
service running on the agent platform.

On the other hand, the "agentified”system services (sched-
uler, memory manager. security manager, file system manager)
have a special relationship with application agents and the
agent platfori (the net supporting the agents), System agents
control what application agents can do and what resources they
can get. Application agents can ask for services directly to
each system service agent or, easier for them, they can ask for
all operating system services 1o a system manager agent, This
agent knows about all the other system agents competences, so
it can delegate each service demand to the appropriate system
service agent.

Also, more generally, agents can be grouped by affinity and
have representatives to interact with other agents. This way,
interaction complexity can be better managed.

B. Modeling Self-organization of Services in an Operating
Svstem

So far, a traditional computing system model has been
described.

We can think of wwo ways to mode! self-organization. On
the first one, we can mode! each sysiem service agent with
its own self-managing behaviour defined in its protocols. On
the second one, the systemy manager agent described in the
previous subsection could enhance its compelences 1o deal
with self-organization of its group, the system agents group.
As said before, the latter can be 2 more manageable approach,
albeit, the first one can have better resilience features due to
control distribution.

A self-organization feature is the capacity to upgrade or
enhance its competences in an autonomic way. An application
agent asks for a task execution not available in the corre-
sponding system service agent. In current systems, this event
leads to an crror. However, the autonomic behaviour of system
agents looks for the existence of this task protocol in secure,
well known and regularly updated repositories. If there exists
a protocel for this new task, the system service agent loads
a new protocol in its own protocol place. Next, this system
service executes the required task. This process can be kept
transparent. The application service has enly an additional
delay in the requesied behaviour execution.

Also, protocol upgrading can be planned progressively when
repositories get enhanced with new protocols or new versions
of existing protocols. The autonomic computing system plans
when and where upgrades should be done automatically.

268

Moreover, this can be also designed in a more crude context,
E.g.. an application agent asks for a tusk which can’t be served
by any of the system service agents and does not correspond
t©o any system service agent domain. Thus, in some cases,
the operating system nesds to get new system agents for
new services being provided. That means a more complex
organization behaviour. The operating system manager agent
fetches the new system agent. Other system agents are asked
for an upgrade of protocols needed to interact with the new
system agent. And finally, the integration ends with the new
systemi agent running smoothly and providing the service
required by the application agent.

In this last case, a system manager agent carries oul the
tasks involved with a new systetn service agent integration. For
the sake of simplicity, a first version of the self-organization
architecture is built into the system manager agent. The other
system agents only have the capacity to upgrade or get new
protocols of behaviour. This is a group-based self-crganization
where a representative (the system manager agent) deals with
self-management tasks for the group. The example developed
in the next subsection is based on this design.

Self Integration of a service of Code Mobility

An illustrating example can be provided with the integration
of a strong code mobility service in a running operating
system. This mobility service can be requested, for instance,
from a mobile agent application or, also, it can be demanded
by a new computer node in the network that asks for help
10 reduce activity load by means of a load balancing service
agent. (For the modeling of mobility using nets within nets
see [8]).

The integration of this new service means that, at least,
the scheduler agent and the memery mianager agen! needs
to be upgraded. Both need, in this new context, to provide
new competences. The scheduler must offer a new migration
state in scheduling. The memory manager must give complete
information of the running state of processes (variables, stack
and registers) found in the migration scheduling state.

Once upgraded, the migration service interacts with the
scheduler to get processes in the migration scheduling state
and with the memory manager to obtain their running stare.
Then, the state and code of the migrating agent is serialized
and sent 1o the targeting computer nede. When the migration
systemn agent receives confirmation of successful execution of
the migrated agent in the remote node, it can ask for the
releasing of locul resources have been used by the migrated
agent.

From this peint, at the same time that a new service has
been executed transparcntly to the application, the system has
been upgraded for latter uses. Unless the system manager has
been 10ld, by the human system administrator or a higher level
computer manager agent, to revert the system configuration
always to the same state. This kind of on-demand services
could be individually provided. for instance. in little memory
feotprint computing platforms,

How 1o Model such Systems based on MULAN

What is new with respect to traditional systems modeling?

The models proposed here can be completely described
within the RENEW-100!. The special structure of the Petri
net models is supported by a technical infrastructure called
Capa [2). It allows for a FIPA-compliant implementation
and therefore an easy interconnection over distributed systems
based on a standard communication protocel. Qur proprietary
framework is therefore open to other standardized frameworks
and implementations (see e.g. the integration into the Agent-
cities context [15] and [1]).

At the same time, agents bring a new and interesting mod-
eling concept into the application area. The way systems can
be swructured and organized can be changed. MAS have their
strength especially in those areas were the demands are high:
flexibility, robustness, self-adaptation, etc. However, if agents
are only considered to be special flexible components, then
these advantages cannot be used completely. For the complex
handling of such systems there is no complete theory, The
interaction of such MAS requires techniques able to handle
concepts of social interactions. Some contributions have been
developed during the last years at Hamburg, The MULAN-
architecture has been extended on the conceptual level by
SoNaR-agents. Each SONAR-agent is implemented as a MU-
LAN-agent. The technical implementation is therefore homo-
genecus. However, the SONAR-agent can contain arbitrarily
nested SONAR-agents. These cover important sociologically
relevant features Iike system structures, processes and actors.
These are used to reflect the external relations of an agent
which contains the SONAR-agent. This holds for all kind of
agents. All this allows for an efficient implementation of the
overall structure of the system. (Seme details can be found in
chapters 11-12 in [13]).

As explained above, MAS can be viewed from different
angles, which we called environment, system, platform, agent
and protocol. Each view only emphasizes some important fea-
tures. On the application level several views can be integrated
on one implementation level. This means that the platform can
also be viewed as an agent. Usually this is the case since the
platform can be addressed and treated as being an agent when
seen from the upper (e.g. the system) level. Furthermore, as
mentioned above, the agents on a platform can again contain
agents, where the agent represents a platform. This allows
for an arbitrary nesting of agenis that can aggregate their
necessary features or services by hosting other agents and
serving as a platform for them and offering services to the
environment at the same time (with any kind of modifications).

C. Validaiion

Validation hecomes possible since the RENEW-tool allows
to implement directly, the models built according to the pro-
posed approach. Each reference net can be executed directly.
Java code can be used for inscriptions. External Java code can
be integrated, based on the fact that Java objects and reference
net instances ¢an be ahitrarily mixed in an efficient way, even

269

in a concurrent and distributed fashion {(we don’t explain here
ihe technical details).

Since the sophisticated models can cover. easily and in-
tuitively, important features, the execution of the models
allows to directly validate the specification, which is at the
same time the implementation of the prototypes. To make
really efficient systems with time-critical components like an
operating system a reimplementation is of course necessary.
However, this can be relawed w0 a thoroughly defined and
investigated prototype. The exploration of this modeled proto-
type can be of invaluable help to better design and guide the
effective implementation of the modeled system. For instance,
exploration can be made in different designs. Also, tuning of
the modeled system can be made before the implementation.

To what extend the advanced and complex concept of a
MAS can be applied in this area, still has to be checked. At
least the overall structure can be enhanced considerably.

V. CONCLUSION

Modeling and validation are important issues in Autonomic
Computing. Some important features have been presented by
means of the sketched example, the modeling of an operating
system. In the area of operating systems. efficiency/real-
time aspects are important, which prohibited to apply several
advanced features. However, very similar concepts have (o
be used when working on the modeling and validation of
different aspects of ACS. Here however, the goal is often
to understand these systems. This allows to directly apply
the approach as proposed here. What might be even more
interesting is that a smooth imegration of ACS and MAS
can be reached due to the concepis elaborated in the area
of hybrid systems (having humans and agents at the same
conceptual level). Again we have to confess that here the HCI
(Human-Computer-Interface) community is still working hard,
however, the goals of many developers can already be seen.

The concept of environment for agents is important. There is
a need to find the system borders and the respective interfaces.
Since it can be applied recursively, a homogeneous structure
can be used on the technical level. At the same time conceptual
views can be emphasized as they become necessary from
the modeler point of view. The underlying paradigm of Nets
within Nets, with its instantiation by reference nets and the
related tool set RENEW, is very powerful and can be used
to describe all relevant features. The restriction 1o agents and
MAS is necessary since otherwise the overview of models
guickly becomes impossible, even for experienced developers,
In our practical implementations we also apply (AJUML, Java
and many other traditional software engineering techniques. At
the same time, we have made very promising experiments with
the inclusion of techniques coming from Artificial Intelligence
(Al) and especially Distributed Al (DALI), like Prolog or BDI-
Architectures.

In the near foture we will work on some further case studies
to experiment with the applicabilily of the approach. The area
of flexible manufacturing systems has been used and will be
used. Also we will investigate possibilities of applying formal
results from the Petri nets research community.

ACKNOWLEDGMENT

The authors would like to thank the colleagues in our
respective departments for valuable discussions and a first
reviewing help, specially Jose Manuel Colom and Joaquin
Ezpeleta,

This work has been supported by the German-Spanish
Entegrated Action HA2000-0047, Deutscher Akademischer
Austauschdienst {DAAD) and the Spanish CICYT-FEDER
TIC2001-1819.

REFERENCES

[1] Michael Duvigneau, Michael Kohler, Daniel Moldt, Christine Reese. and
Heiko Rolke. Ageni—based settler game. 1n Proceedings of Agentcities
Agent Technology Competition, Barcelona, Spain, 2003.

[2] Michael Duvignean. Daniel Moldt, and Heiko Rilke, Concurrent ar-
chitecture for @ multi-agens playform, In Fausto Gionchiglia, James
Odell, and Gerhard Weil (eds.): Third International Workshop, AOSE
2002, Bologna, haly, July 13, 2002, volume 2585 of LNCS, Springer-
Verlag, Berlin Heidelberg New York, 2003,

{3] D. R. Engler, M. F. Kaashoek and J O'Toole Jr.. Exokernel: An Opera-
ting Svstem Architecture for Application-Level Resource Manngement,
15th SOSP'95 Proceedings. ACM. Dec. 1995. pp. 251-266.

[4)). Ferber, 0. Gutknechi, A Meta-Model for the Analvsis and Design of
Organizations in Multi-Agent Systems, ICMAS'98, Jul. 1998,

[5) K. Jensen and G. Rozenberg (eds.). High-level Petri Nets — Theory and
Application. Springer-Verlag, Berlin Heidelberg, 1991,

[6) 1. Q. Kephart and B. M. Chess, The Vision of Autoromic Computing,
Computer, Jan. 2003, pp. 41-50.

[?1 Michael Kihler, Daniel Moldt. and Heiko Rélke, Modelling the structure

and behaviour of Petri net agemis, Application and Theory of Petri

Neis, volume 2075 of LNCS, Springer Verlag, 2001, pp. 224-241.

Michael Kéhler, Danicl Moldt, and Heiko Rilke, Modeiling mobitity

and mobile agents using nets within nets, In Wil van der Aalsi and

Eike Best (eds.). Proc. of 24nd International Conference on Applicarion

and Theory of Petri Nets 2003 (ICATPN 2003), Eindhoven, NL. Berlin

Heidelberg, New York, 2003, volume 2679 of LNCS, Springer-Verlag.

[91 Otaf Kummer, Referenznerze, Logos-Verlag, Berlin, 2002.

[10] Olal Kummer and Frank Wienberg, Reference net workshop (Renew),

University of Hamburg, hiip:/fwww.renew.de, 1998,

Ld4KaTeam, L4 X.2 Reference Marnual, Deparment of Compu-

ter Science, University of Karlsruhe, hup:#/14ka.org/idocumentation/id-

x2.pdf. Apr. 2003,

[12] 1. Liedtke, The performance of ji-Kernel-based Systems,

Proceedings. ACM, OcL 1997,

R. v. Lide, . Moldt, R. Valk, M. Kohler, R. Langer, H. Rolke, and

D. Spresny, Secionik: Modellierung soziologischer Theorie. Wirschafi

— Arbeit — Technik. Lit-Verlag, Minster, 2003,

[14] T. Murata, Perri Neis: Properties, Analysis and Applications,

dings of the IEEE. vol. 77, n4, April 1989,

[15] Christine Reese, Mulri bindung der petrinetzbasierten

Plauform CAPA un dus internationale Netzgwerk Agentcities, diploma

thesis. University of Hamburg, Departiment for Computer Science, Vogt-

Kolln Str. 30, 22527 Hamburg, Germany, 2003,

Riidiger Valk, Petri nets as token objects: An introduction te elementary

object nets, In Jirg Desel and Manuel Silva {eds.), Application and

Theory of Pesri Nets, volumc 1420 of LNCS. Springer-Verlag., Berlin

Heidelberg New York, pp. 1-25, June E998.

Y. Yokote, The Apertos Reflective Operating System,

Proceedings, ACM, Oct. 1942, pp. 414-434.

[8

1]

16th SOSF97
113]

Procee-

- A
vsieme:

[16]

[173 QOPSLA'92Z

270

http://hap:llwww.renew.de

