
A Programmable Routing Framework for Autonomic Sensor Networks

Yu He, Cauligi S. Raghavendra
Department of Computer Science
University of Southern California

{yuhe, raghu}@usc.edu

Steven Berson, Bob Braden
Information Sciences Institute

University of Southern California
{berson, braden}@isi.edu

Abstract

This paper proposes a programmable routing framework
that promotes the adaptivity in routing services for sensor
networks. This framework includes a universal routing ser-
vice and an automatic deployment service. The universal
routing service allows the introduction of different services
through its tunable parameters and programmable compo-
nents. The deployment service completes the configuration
of the universal routing service throughout a sensor network
in an automatic and energy-efficient way. With this deploy-
ment service, a self-configuring ability is realized for sensor
routing services. With the changeable parameters and pro-
grammable components of the universal routing service, the
self-optimizing as well as other autonomic abilities can be
explored in an experimental sensor network conforming to
the proposed framework.

1. Introduction

Technological advances have led to the emergence of
small, low-cost, and low-power devices that integrate micro-
sensing with on-board processing and wireless communica-
tion capabilities ([16], [26], and [27]). These sensors can
be deployed on a large scale and deeply embedded within
the physical environment. Each sensor node can operate au-
tonomously with no central point of control and can make de-
cisions based on the information it currently has. Networks
composed of these sensor nodes can support many new ap-
plications such as physiological monitoring, environmental
monitoring (air, water, soil, chemistry), precision agricul-
ture, transportation, factory instrumentation and inventory
tracking, condition based maintenance, smart spaces, and
military surveillance ([10], [9], [18], [5], and [12]).

The goal of a sensor network is to collect, process, and
forward sensed data to other sensor nodes and/or base sta-
tions. Therefore, a routing service is essential to sensor
network applications. Several non-traditional routing ser-
vices have been proposed for sensor networks. They in-
clude Greedy Perimeter Stateless Routing (GPSR) [19], Ge-
ographical Energy Aware Routing (GEAR) [37], Trajectory
Based Routing (TBF) [24], Directed-diffusion [17], Two-
Tier Data-Dissemination (TTDD) [34], Content-Based Mul-

ticast (CBM) [39], Rumor-routing [3] and others. These
routing services have distinct properties. First, they try to
meet the resource-limited requirements of sensor networks
[16]. Second, these routing services are different from tradi-
tional routing such as those in the Internet (OSPF [23], RIP
[13] and BGP ([28]). One main difference is that data may be
forwarded in sensor networks without explicitly addressing
individual nodes. For example, GPSR takes locations instead
of IP addresses as routing destinations. TBF uses a trajec-
tory instead of a node-path as its routing unit. In addition,
many routing services, such as Directed-diffusion, TTDD,
and CBM, forward packets according to packet contents. Ta-
ble 1 shows some other differences among routing services
for sensor networks and traditional network routing.

However, each of the above routing services is designed
to meet specific goals and therefore is not efficient for all ap-
plications. For example, Directed-diffusion has been shown
to be more energy-efficient than TTDD when the number of
sink nodes is large, while TTDD is better when the number of
sink nodes is small [34]. In addition, different network con-
ditions need different routing services. For example, GPSR
is a good routing service when there is a scalable location
service, but it cannot be used when sensor nodes have no
location knowledge. In this case, if the sensor nodes are
densely deployed, Rumor-routing can be a feasible routing
choice.

There is a need to have a routing service for sensor net-
works that can adapt to different applications and different
network conditions. To relieve management complexity, a
routing service should have autonomic computing abilities
that enable changes in an automatic and self-controlled way
[11]. Currently, it is very difficult, if not impossible, to
change a routing service in a large scale sensor network be-
cause the service is statically pre-configured into each node,
which is often unattended.

This paper proposes a programmable routing framework
that creates an adaptable routing service for sensor networks.
In this framework, a routing service is divided into several
programmable components. Based on this division, a univer-
sal routing service is developed that allows the introduction
of different services through a set of tunable parameters and
programmable components. We further propose a deploy-
ment service to deploy the universal routing service through-
out a network. In order to automate the routing configu-

PROCEEDINGS OF THE AUTONOMIC COMPUTING WORKSHOP FIFTH ANNUAL INTERNATIONAL WORKSHOP
ON ACTIVE MIDDLEWARE SERVICES (AMS’03) ISBN 0-7695-1983-0/01 $17.00 © 2003 IEEE

Supported Communica-
tion Mode

What trigger forwarding State Type

GPSR Unicast Data packets Neighbor location
GEAR Unicast and Multicast Data packets Neighbor location
TBF Unicast and Multicast Data packets Neighbor location
Directed-diffusion Unicast, Multicast, and

Many-to-one
Data packets Neighbor info, neighbor in-

terest, neighbor data copy
TTDD Multicast Data packets Neighbor location, neigh-

bor interest, neighbor data
availability

CBM Multicast Control/Data packets Neighbor info, neighbor in-
terest, data from sources

Rumor-routing Unicast Data packets Neighbor info, neighbor
data availability, routing
table

Traditional routing Unicast or multicast Data packets Routing table

Table 1. Comparison of Routing Services in Sensor Networks and Traditional Networks

ration/deployment in an energy-efficient way, this deploy-
ment service supports a three-level approach that differenti-
ates the deployment of parameters and programmable mod-
ules, co-exists with a shared library to reduce the code size of
programmable components, and provides a lightweight syn-
chronization protocol to maintain configuration consistency
throughout the network in a dynamic manner. With this de-
ployment service, a self-configuring ability is realized for
sensor routing services. With the changeable parameters and
programmable components of the universal routing service,
the self-optimizing as well as other autonomic abilities can
be explored in an experimental sensor network conforming
to our proposed framework.

This paper is organized as follows. Section 2 proposes
a programmable routing architecture for sensor networks.
Section 3 describes a universal routing service based on the
architecture. In Section 4, we present how to deploy pro-
grammable routing services in large-scale sensor networks.
Section 5 describes some related work. Finally, concluding
remarks are given in Section 6.

2. A Programmable Routing Architecture for
Sensor Networks

A routing service for sensor networks must be
lightweight, due to limited available resources. This property
prohibits a routing service in sensor networks from being
constructed in a highly sophisticated way such as the ones
in extensible routing architectures for traditional networks
([25], [8], [20], [7], and [36]). Sensor networks should favor
a simple structure for a programmable routing service.

Figure 1 shows the sensor node architecture with the pro-
posed programmable routing framework. The routing ser-
vice is divided into three parts: a data-forwarding module,
a state-collecting module, and state information. The data-
forwarding and state-collecting modules are programmable.

The state information is used by these two modules. In this
architecture, we also propose a deployment service to load
the programmable routing service, which will be presented
with more detail in Section 4. This section focuses only on
the programmable routing service.

Two types of packets can originate within or transit the
routing service, namely: data packets and control packets.
Data packets usually carry sensed data. Besides forward-
ing a data packet, the data-forwarding module can consume
the data packet by sending it to an application-layer service,
or construct a data packet by obtaining the data from the
application-layer service. Control packets are constructed
by the state-collecting module in a similar way and are typ-
ically used for status check (Table 1) and state information
gathering to facilitate forwarding decisions. State informa-
tion can also be collected by the data-forwarding module
through observing data packets. The data-forwarding and
state-collecting modules can communicate with each other
not only through the state information, but also through di-
rect signals. For example, when the state-collecting module
receives a request, it can trigger the data-forwarding mod-
ule to forward the requested data immediately through a sig-
nal (Table 1). Table 2 shows the data-forwarding and state-
collecting functions of the existing routing services. It can
be shown that each of them is covered by the programmable
structure.

The above routing architecture provides a divide-and-
conquer way to define a routing service. For example, the
state information part should be scalable; the consumed
space should not increase significantly with increase of net-
work size and the number of source/sink pairs. As shown
in Table 1, CBM keeps data from sources as state that is
not scalable with the number of sources. Similarly, Rumor-
routing maintains routing table as state information that is
not scalable with the number of sinks unless a hierarchical
routing structure is assumed. Solutions to these problems

PROCEEDINGS OF THE AUTONOMIC COMPUTING WORKSHOP FIFTH ANNUAL INTERNATIONAL WORKSHOP
ON ACTIVE MIDDLEWARE SERVICES (AMS’03) ISBN 0-7695-1983-0/01 $17.00 © 2003 IEEE

Figure 1. Sensor Node Architecture with the Programmable Routing Framework

will be discussed in the context of the proposed universal
programmable routing service in Section 3.

The programmable architecture also clarifies the control
packet overhead compared with overhead of data packets.
A low-overhead routing service suggests that the total num-
ber of control packets be much less than the number of data
packets. Besides, the average control packet size should be
considerably smaller than the size of data packets. Con-
sequently, we believe that one important research problem
about routing services is the visiting pattern of control pack-
ets. For example, what frequency of the control packets are
generated, what paths the control packets should take to go
through the network to complete a state-building for a given
amount of forwarded data, and which visiting pattern in-
volves least overhead? The third column of Table 2 gives a
brief view of the visiting patterns of existing routing services,
and Figure 2 depicts four significant cases. One observation
is that the query flooding in Directed-diffusion may cause
much overhead. Another observation is that CBM sources
flood data into certain areas to create state. This flooding
must be done restrictively since flooding data involves sig-
nificant overhead. Section 3 will discuss visiting patterns in
more detail.

3. A Universal Programmable Routing Service
for Sensor Networks

Based on the routing architecture in Section 2, a universal
programmable routing service is proposed to cover all exist-
ing routing services and to introduce new services for sensor
networks. The components of this universal service, a tun-
able state information part, a programmable state-collecting
module, and a programmable data-forwarding module, are
as follows.

The state information is a list of neighbor entries, each of
which consists of four parts:

• neighbor description (id, location, direction, distance,
energy reading, etc.)

• neighbor interest (type, rate, duration, etc.)

• neighbor data availability (type, duration, etc.)

• neighbor’s latest data copy (data, timestamp, etc.)

The above state involves only local information and thus
is scalable. This property solves the scalability problems
with state of Rumor-routing and CBM. For Rumor-routing,
the routing table is replaced by neighbor interest so that the
state does not increase with the number of sinks. For CBM,
the data copies from sources are replaced by data copies from
neighbors. This change is reasonable since the sinks only are
concerned with what the data are and not who sends them. In
this way, CBM and Rumor-routing become scalable with our
universal service.

Different packets are used to collect each part of the state
information. The following list shows the type of packet for
each state component:

• neighbor description - hello/announcement/query pack-
ets

• neighbor interest - query packets

• neighbor data availability - announcement/data packets

• neighbor latest data copy - data packets

The visiting pattern of each packet type is an important
parameter to control the overhead of the state collection. For
hello packets, the visiting pattern is straightforward and has
low overhead. For data packets, the visiting pattern generally
follows the route indicated by the neighbor interest state. But
when the data packets are solely used to build state, as the
case in CBM, the visiting pattern of these data packets needs
to be configured. For these state-collecting data packets, as
well as announcement and query packets, visiting patterns

PROCEEDINGS OF THE AUTONOMIC COMPUTING WORKSHOP FIFTH ANNUAL INTERNATIONAL WORKSHOP
ON ACTIVE MIDDLEWARE SERVICES (AMS’03) ISBN 0-7695-1983-0/01 $17.00 © 2003 IEEE

Data Forwarding Routing State Collection
GPSR Closest or perimeter neighbor to desti-

nation
Hello packets

GEAR Closest to destination(s) or multiple
neighbor(s)

Hello packets

TBF Neighbor(s) along trajectory Hello packets
Directed-diffusion Interested neighbor(s) with requested

rate(s)
Query flooding with reinforcement

TTDD Interested grid cross-point neighbor(s) Data announcement along grids +
query local flooding

CBM Interested neighbor(s) Data restrictive flooding + query re-
strictive flooding

Rumor-routing Next hop in routing table Data announcement/query with a ran-
dom path

Table 2. Data Forwarding and State Collecting Functions in Routing Services for Sensor Networks

can be specified as flooding, restricted flooding, single path,
or none. Among the four choices, both the restricted flooding
and the single path options have numerous possibilities. For
example, when location information is available, these two
options can be specified via certain trajectories such as those
in [24]; when location information is not available, some
probabilistic method can be used [3].

The final part of the universal routing service is the data-
forwarding module. The basic function of this module is to
check data packets against the state information and select
among neighbor(s) to forward the data. It also can include
application-specific in-network processing such as aggrega-
tion [22] of the data. Its tunable parameter is a set of selec-
tion criteria that includes: whether to check packet header
or content, how to choose forwarding neighbors, and some
QoS specification (say, data rates requested by neighbors).

Note that the state-collecting module, the data-forwarding
module, and the entire function (Figure 1) of the univer-
sal service are programmable. Once the interfaces among
them and other services are defined, all of these three are
changeable, which brings a significant flexibility to adapt to
applications and introduce new services. Besides, changing
parameters in the proposed universal service allows chang-
ing among available services and introducing new services.
For example, by changing the visiting pattern and/or selec-
tion criteria parameter(s), we can obtain significantly dif-
ferent services (Table 2). Identifying these two parameters
in the universal service also facilitates studies about auto-
nomic computing in routing services. Suppose we want to
obtain new routing services that can automatically change
selections among neighbors based on certain QoS require-
ments, and/or adapt packet-visiting paths based on learned
routing overhead. One way to achieve this is to leverage the
deployment method in Section 4 to try out different parame-
ter values. Then some heuristic strategies learned from these
experiments can be added to the routing service to realize
good performance.

4. Deployment of Programmable Routing Ser-
vices

This section first gives an overview of the proposed de-
ployment service shown in Figure 1. It then discusses ap-
proaches to reduce communication overhead for routing ser-
vice deployment and presents how to maintain service con-
sistency throughout a sensor network in a dynamic way.

4.1. Overview

A few papers have described deployment in pro-
grammable sensor networks ([21], [2], and [1]). The general
approach proposed in these papers is to design some spe-
cific instruction that enables a service to replicate itself onto
other nodes. To support these instructions, each node con-
tains a runtime environment for the service. In this way, a
service can be loaded on a subset of nodes to carry out a dis-
tributed task. This approach may be useful to deploy certain
transient user-level services, but may not be feasible to de-
ploy a routing service in a sensor network. First, services
deployed by this approach are running (interpreted) on top
of runtime environment, and suffer computation overhead
([21] and [1]). This computation overhead may not signif-
icantly affect the performance of a transient user-level ap-
plication, but the performance of a routing service would be
substantially degraded since routing services are persistent
and computation-intensive. Second, a routing service needs
to be deployed to every node in the network instead of just a
subset of nodes. The specific replication instructions are not
necessary to deploy routing services.

To deploy a programmable routing service through a sen-
sor network, we can use a flooding protocol to disseminate
the service from any node to all other nodes. One example of
such a broadcast protocol is provided by SPIN (Sensor Pro-
tocols for Information via Negotiation) [15]. However, reli-
ability would need to be added because the deployment may
involve transferring binary code, which must be reliable. In

PROCEEDINGS OF THE AUTONOMIC COMPUTING WORKSHOP FIFTH ANNUAL INTERNATIONAL WORKSHOP
ON ACTIVE MIDDLEWARE SERVICES (AMS’03) ISBN 0-7695-1983-0/01 $17.00 © 2003 IEEE

Figure 2. Visiting Patterns of Control Packets for Four Routing Services

a very large sensor network, the deployment can take advan-
tage of a hierarchical structure that is provided either stati-
cally or dynamically. For example, we can use base stations
scattered around the network, each in charge of a sub-area
of a sensor field. If there are no base stations available, one
natural replacement is beacon nodes used in self-localization
systems [4] or header nodes in any other self-clustering sys-
tem [10]. These nodes are dynamically maintained so that
each sensor node is close to at least one such node. Deploy-
ment of routing services can be accomplished by deploying
these high-level nodes first.

In our routing framework, each sensor node contains a
deployment service as shown in Figure 1. This deployment
service receives deployment packets that contain parameters
or modules of the programmable routing services and de-
ploy services according to packet contents. This service per-
forms three levels of deployment: (1) the deployment ser-
vice only changes parameters to the state-collecting and/or
data-forwarding modules; (2) either of the two modules is
replaced; (3) the entire routing service is changed. The first
level of deployment obviously has least bandwidth require-
ment and thus can be done relatively frequently. The third
level of deployment has most overhead and should be done
only occasionally, say, when initializing sensor networks.
The second level of deployment is a middle case and can
be used when verifying some improvement on existing mod-
ules. Obviously, this deployment service, plus the proposed
universal programmable routing service, provides a unique
framework to conduct a systematic comparative experimen-
tal study on routing services for sensor networks.

Note that this deployment service allows different rout-
ing services to reside in different parts of sensor networks.
One possible use of this property is for heterogeneous sensor
networks. For example, GPSR service and Rumor-routing
service, mentioned in Section 1, can be deployed in hetero-
geneous parts of a sensor network. Generally, a different
routing service can be deployed at different condition. This

flexibility allows us to study the changing behaviors of rout-
ing services in order to obtain an adaptive routing service
that performs well under different conditions.

4.2. Reducing Communication Overhead for De-
ployment

A routing service may be complex and require large code.
Transferring the routing code can be expensive in sensor net-
works where energy is a very scarce resource. Although
the module deployment (corresponding to the second-level
and the third-level deployment methods) for routing services
does not happen frequently, it is still beneficial to deploy
modules in an energy-efficient way.

To reduce service code size, [1] proposes a separate run-
ning environment that provides high-level building blocks
for services. Services running on top of the environment then
are expected to have small code size. This approach is not de-
sirable for routing services due to the entailed computation
inefficiency. A deployment approach for routing services
should be both energy-efficient and computation-efficient.

The approach we take is to move a part of routing ser-
vice code into sensor nodes before deploying routing service
modules. This part of code contains common routing service
operations and is designed as a shared library [32]. Routing
modules such as the state-collecting and the data-forwarding
modules are written by calling the shared library. Since the
library code will not be loaded until the routing modules start
to run, routing modules written with the library have smaller
code sizes than those without the library. On the other hand,
library code is automatically loaded by node OS when rout-
ing modules start. The whole routing service still runs di-
rectly on top of node OS. Thus the computation efficiency is
kept.

Figure 3 shows a sample node architecture extended from
Figure 1 for the purpose of reducing communication over-
head. For simplicity, Figure 3 does not show interactions

PROCEEDINGS OF THE AUTONOMIC COMPUTING WORKSHOP FIFTH ANNUAL INTERNATIONAL WORKSHOP
ON ACTIVE MIDDLEWARE SERVICES (AMS’03) ISBN 0-7695-1983-0/01 $17.00 © 2003 IEEE

Figure 3. A Sample Node Architecture with Shared Library

among the routing service and other services. The gray boxes
in Figure 3 are code that is pre-configured before deploying
a routing service, while the blank boxes are programmable
components for the routing service. In Figure 3, a routing
service is decomposed with a finer granularity than Figure
1. The decomposition is done according to packet type; the
state-collecting module is decomposed into several handlers
that process different control packets. Note this decompo-
sition does not significantly increase the complexity of a
routing structure since there are generally only a few packet
types for a certain routing service (for example, there are
only six packet types for Directed-diffusion [29]). This de-
composition further reduces the code size for each deploy-
ment unit and increases service flexibility. Figure 3 also
shows a packet demultiplexer/multiplexer whose parameters
(say, packet types) are changeable via the deployment ser-
vice. This packet demultiplexer/multiplexer directly runs on
top of node OS and can be integrated with the deployment
service (not shown).

Note that routing modules do not necessarily have to be
built with the shared library. They can be built from scratch
when the library does not provide required operations. Of
course, this may increase the deployment cost. Thus the
library code should also be changeable, with a frequency
higher than the OS but lower than a routing service.

4.3. Maintaining Deployment Consistency

The deployment service described so far assumes that all
nodes in a network can be reached at one time, but this is
generally not the case for sensor networks. Sensor networks
are prone to sensor node failures due to running out of en-
ergy, and communication failures due to lossy channel or
obstacles. Besides, it is normal for a sensor node to period-
ically or dynamically sleep for some time because of using
energy-saving mechanisms such as those in [31], [33], and

[35]. The consequence of these dynamics is inconsistency
among nodes for deployed services.

We propose a synchronization protocol that enables a sen-
sor node to make itself consistent with its neighbors in an
energy-efficient way. Each node runs this protocol after wak-
ing up from sleeping or after a period. Since a routing ser-
vice is updated less frequently than user-level applications,
this period can be relatively long, say, multiple times of a
hello packet interval.

Each node maintains a version number for each deployed
component (a parameter or a module). To start this proto-
col, a node (say, A) first broadcasts an initial request among
its neighbors for each component it wants to synchronize.
The initial request includes the node’s version number for the
component. Upon receiving the request, each neighbor Ni

that has a version number greater than the requesting node
starts out a timer. The timeout value can be determined by
the following example formula:

Timeout(Ni) = α/|V (Ni)− V (A)|+ β/E(Ni) + R (1)

where α and β are tunable weights, V (Ni) is the version
number of Ni, V (A) is the version number of A, E(Ni) is
the remaining energy of Ni, and R is a random variable to
break ties between nodes that have the same version number
and the same remaining energy. This timeout mechanism
ensures that the neighbor with the highest version number
and remaining energy first times out. After the timeout, the
neighbor sends an initial reply to the requesting node, sup-
pressing other overhearing nodes. The requesting node also
starts a timer immediately after sending the initial request to
wait for all possible initial replies from its neighbors. After
collecting all initial replies from neighbors, the requesting
node chooses the node with highest version number to send
a formal request, which in turn sends back a formal reply to
complete the synchronization. If the requesting node does
not receive any initial reply before the timeout, it assumes it
has updated routing service.

PROCEEDINGS OF THE AUTONOMIC COMPUTING WORKSHOP FIFTH ANNUAL INTERNATIONAL WORKSHOP
ON ACTIVE MIDDLEWARE SERVICES (AMS’03) ISBN 0-7695-1983-0/01 $17.00 © 2003 IEEE

Figure 4. Deployment Synchronization from
Neighbors

Figure 4 shows an example for the synchronization pro-
tocol. Node C has the highest version number and will time
out first. Since Node B is in the range of Node C, its reply
is suppressed. But Node D is out of range of Node C, thus
it also sends an initial reply to Node A. After obtaining all
replies, Node A chooses Node D to finish the synchroniza-
tion.

Note that the initial request can be piggybacked on hello
packets. Thus this protocol causes no additional communi-
cation cost when there is consistency. In case of inconsis-
tency, there is only one neighbor taking part in the updating
process. The proposed protocol ensures that each node even-
tually obtains the latest version of the routing service with
low communication overhead as long as the network is not
always disconnected. This synchronization protocol together
with the flooding protocol described in Section 4.1 complete
an automatic configuration for a routing service in a sensor
network.

5. Related Work

Scout [25], Router-Plugins [8], Click [20] and Internet
Exchangeable Architecture [7] study extensible router archi-
tectures [36] to meet the needs of sophisticated services in
the Internet. These routers follow powerful and heavyweight
models and are not applicable to sensor networks where re-
sources are very constrained. Besides, it is substantially dif-
ficult to deploy extensible routers on the Internet due to their
significant changes to traditional routers that do not have an
open architecture. On the contrary, our proposed routing

framework follows a lightweight structure, and its deploy-
ment is relatively easy since sensor networks explicitly favor
an open architecture.

Filter-based architecture in [14] specifies a software struc-
ture that contains a list of filter handlers, each of which is
executed when its attributes match with incoming packets.
This architecture provides a flexible way to add application-
specific code into sensor nodes. By following its API [30],
users of a sensor network can write their own in-network pro-
cessing modules and add them to the network in the form of
filters. One good example of such application-specific filters
is the information-driven tracking filter ([38] and [6]) that
uses tracking information to conserve energy. Our proposed
framework is related to this architecture. For example, the
universal routing service can be considered a routing filter in
the filter-based architecture. But our framework studies the
routing filter in a finer granularity. A routing service in our
framework is decomposed into several programmable com-
ponents, and is thus more general and flexible. Note that the
core part of the filter-based architecture is based on Directed-
diffusion and cannot be changed by users. Thus it is im-
possible to implement other significantly different routing
services such as TTDD by means of filters. Another ben-
efit of our framework is that the decomposition allows for
an deployment method with communication overhead sub-
stantially lower than loading a single big filter. The current
implementation of the filter-based architecture [29] does not
support the automatic deployment of filters, all of which have
to be statically pre-configured into nodes.

In [21], a virtual machine with a small instruction set is
built for each sensor node. Services constructed via this in-
struction set are interpreted by this virtual machine. Each
instruction in the set abstracts some high-level function car-
ried out by TinyOS [16]. The goal is thus to provide concise
code for sensor services that can be loaded in a memory-and-
energy-saving manner. This virtual machine could be a po-
tential environment to implement routing services. However
there are two limitations associated with the current imple-
mentation of this virtual machine. First, the expressiveness
of its instruction set is limited. For example, [1] has shown
that it is difficult to write an aggregation service with this
instruction set due to its limited stack size. With this ultra-
compact instruction set, it may be difficult to write significant
routing services for sensor networks. Second, this virtual
machine entails significant computation overhead to services
built on top of it. This virtual machine may not be used as
an developing platform for the proposed routing framework
before the above two limitations are overcome.

Sensorware ([2] and [1]) is another runtime environment
but provides a higher-level service abstraction than the vir-
tual machine proposed in [21]. Services then can have
smaller code size, written using a script language that can be
understood by the sensorware built in each node. The sensor-
ware targets to support a specific kind of application called
localized distributed application such as a collaborative sig-
nal processing task. These applications generally only in-
volve a subset of sensor nodes and are transient. Further-

PROCEEDINGS OF THE AUTONOMIC COMPUTING WORKSHOP FIFTH ANNUAL INTERNATIONAL WORKSHOP
ON ACTIVE MIDDLEWARE SERVICES (AMS’03) ISBN 0-7695-1983-0/01 $17.00 © 2003 IEEE

more, due to reasons similar to the virtual machine in [21],
using scripts to describe a routing service is not computa-
tionally efficient. We believe that loading decomposed code
with a shared-library support is a both energy and computa-
tionally efficient way to deploy a routing service in sensor
networks. Note that the sensorware can co-exist with our
proposed framework. It is necessary to separate the deploy-
ment of persistent system-level services and transient user-
level services since these two kind of services have differ-
ent requirements about computation and energy efficiency.
Our deployment service can be integrated with deployment
of other system services and user-level services (such as sen-
sorware).

6. Conclusions

We have described a universal routing service based on
a programmable architecture for sensor networks. We have
identified two parameters (visiting pattern and selection cri-
teria) for the universal service whose changes facilitate the
optimization of a routing service. With its programmable
components, the universal service can freely change its be-
havior. A deployment service has been proposed to deploy
the universal routing service throughout a network. This de-
ployment service has taken four approaches to automatically
configure a network in an energy-efficient way. First, a re-
liable broadcast protocol has been included to disseminate
a routing service. Second, a three-level deployment method
has been presented to differentiate deployment between pa-
rameters and programmable modules. Third, to reduce the
communication overhead for module deployment, we have
proposed a shared-library mechanism that does not incur ad-
ditional computation overhead. Finally, a lightweight syn-
chronization protocol has been described to maintain service
consistency throughout the network in a dynamic way.

With the presentation of our framework, we have shown
that the configuration complexity for routing services in sen-
sor networks can be significantly relieved by an automatic
deployment service. The self-optimizing as well as other au-
tonomic abilities of a routing service can be explored by ex-
perimenting with the tunable parameters and programmable
components of the universal service with a sensor network
conforming to our proposed framework.

References

[1] A. Boulis, C.-C. Han, and M. B. Srivastava. Design and im-
plementation of a framework for efficient and programmable
sensor networks. MobiSys, May 2003.

[2] A. Boulis and M. B. Srivastava. A framework for efficient and
programmable sensor networks. OPENARCH, July 2002.

[3] D. Braginsky and D. Estrin. Rumor routing algorithm for
sensor networks. WSNA, September 2002.

[4] N. Bulusu, J. Heidemann, and D. Estrin. Self-configuring lo-
calization systems: Design and experiment evaluation. Sub-
mitted to ACM TECS Special Issue on Networked Embedded
Computing, August 2002.

[5] J. Cerpa, D. Estrin, and et al. Habitat monitoring: application
driver for wireless communications technology. ACM SIG-
COMM Workshop on Data Communications in Latin Amer-
ica and the Caribbean, April 2001.

[6] M. Chu, H. Haussecker, and et al. Scalable information-
driven sensor querying and routing for ad hoc heterogeneous
sensor networks. Int’l J. High Performance Computing Ap-
plications, 16(3), Fall 2002.

[7] I. Corporation. Ixp1200 network processor datasheet.
September 2000.

[8] D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner. Router
plugins: A software architecture for next generation routers.
IEEE/ACM Transactions on Networking, 8(1):2–15, Februray
2000.

[9] D. Estrin, L. Girod, and et al. Instrumenting the world with
wireless sensor networks. ICASSP, May 2001.

[10] D. Estrin, R. Govindan, and et al. Next century challenges:
scalable coordination in sensor networks. Mobicom, August
1999.

[11] A. Ganek and et al. Autonomic computing: Ibm’s
perspective on the state of information technology.
http://www.research.ibm.com/autonomic/manifesto/, October
2001.

[12] L. Girod, D. Estrin, and et al. Robust range estimation us-
ing acoustic and multimodal sensing. IEEE Conference on
Intelligent Robots and Systems, 2001.

[13] C. Hedrick. Rfc 1058 - routing information protocol. Request
for Comments, June 1988.

[14] J. Heidemann, F. Silva, and et al. Diffusion filters as a flex-
ible architecture for event notification in wireless sensor net-
works. USC/ISI Tech. Report, April 2002.

[15] W. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive pro-
tocols for information dissemination in wireless sensor net-
works. Mobicom, August 1999.

[16] J. Hill and et al. System architecture directions for networked
sensors. ASPLOS, November 2000.

[17] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
diffusion: A scalabel and robust communication paradigm for
sensor networks. Mobicom, 2000.

[18] J. M. Kahn and et al. Mobile networking for smart dust. Mo-
bicom, August 1999.

[19] B. Karp and H. T. Kung. Gpsr: Greedy perimeter stateless
routing for wireless networks. Mobicom, 2000.

[20] E. Kohler and et al. The click modular router. ACM Transac-
tions on Computer Systems, 18(3):263–297, August 2000.

[21] P. Levis and D. Culler. Maté: A tiny virtual machine for
sensor networks. ASPLOS X, October 2002.

[22] S. R. Madden, R. Szewczyk, M. J. Franklin, and D. Culler.
Supporting aggregate queries over ad-hoc wireless sensor net-
works. WMCSA, June 2002.

[23] J. Moy. Rfc 2328 - ospf version 2. Request for Comments,
April 1998.

[24] B. Nath and D. Niculescu. Routing on a curve. Hotnets I,
October 2002.

[25] L. Peterson and et al. An os interface for active routers. IEEE
J-SAC, 19(3):473–487, March 2001.

[26] K. Pister and et al. Smart dust: wireless networks of
milimeter-scale sensor nodes. Highlight Article in 1999 Elec-
tronics Research Laboratory Research Summary, 1999.

[27] G. Pottie and et al. Wireless sensor networks. Communica-
tions of the ACM, 2000.

[28] Y. Rekhter and T. Li. Rfc 1771 - a border gateway protocol
(bgp-4). Request for Comments, March 1995.

PROCEEDINGS OF THE AUTONOMIC COMPUTING WORKSHOP FIFTH ANNUAL INTERNATIONAL WORKSHOP
ON ACTIVE MIDDLEWARE SERVICES (AMS’03) ISBN 0-7695-1983-0/01 $17.00 © 2003 IEEE

[29] F. Silva and et al. Diffusion 3.1.3 code.
http://www.isi.edu/scadds/software/, July 2002.

[30] F. Silva, J. Heidemann, and et al. Network routing appli-
cation programmer’s interface (api) and walk through 9.0.1.
http://www.isi.edu/scadds/papers/, December 2002.

[31] S. Singh and C. S. Raghavendra. Pamas - power aware multi-
access protocol with signalling for ad hoc networks. ACM
Computer Communication Review, July 1998.

[32] D. A. Wheeler. Program library howto.
http://www.tldp.org/HOWTO/Program-Library-HOWTO/,
December 2002.

[33] Y. Xu, J. Heidemann, and D. Estrin. Geography-informed
energy conservation for ad hoc routing. Mobicom, 2001.

[34] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang. A two-tier
data dissemination model for large-scale wireless sensor net-
works. Mobicom, September 2002.

[35] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient mac
protocol for wireless sensor networks. Infocom, June 2002.

[36] L. P. Yitzchak Gottlieb. A comparative study of extensible
routers. IEEE OPENARCH, June 2002.

[37] Y. Yu, R. Govindan, and D. Estrin. Geographical and en-
ergy aware routing: a recursive data dissmination protocol
for wireless sensor networks. UCLA CS Tech. Report, 2001.

[38] F. Zhao, J. Shin, and et al. Information-driven dynamic sensor
collaboration for tracking applications. IEEE Singal Process-
ing Magazine, March 2002.

[39] H. Zhou and S. Singh. Content-based multicast for mobile ad
hoc networks. Mobihoc, August 2000.

PROCEEDINGS OF THE AUTONOMIC COMPUTING WORKSHOP FIFTH ANNUAL INTERNATIONAL WORKSHOP
ON ACTIVE MIDDLEWARE SERVICES (AMS’03) ISBN 0-7695-1983-0/01 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

