
A Framework for Dynamic Service Composition

Paramai Supadulchai and Finn Arve Aagesen
Department of Telematics, Norwegian University of Science and Technology (NTNU)

{paramai, finnarve}@item.ntnu.no

Abstract
To be able to utilize the generative potential of

future networks for service composition, the attributes
of services and networks must be appropriately
formalized, stored and made available. Important
attributes are the capability and the status. A
capability is an inherent property of a node or a user,
which defines the ability to do something. A capability
in a network node is a feature available to implement
services. A capability of a user is a feature that makes
the user capable of using services. Status is a measure
for the situation in a system. This paper proposes a
representation framework for capability and status,
denoted as Unified Capability and Status
Representation Framework (UniCS). This framework
is used to decide upon dynamic use of capabilities, and
is used to support the dynamic composition of a
service system. UniCS consists of facts and
configuration rules. The facts describe the availability
and requirement of capabilities and status of a service
system. The configuration rules verify, manipulate,
transform and discover new facts with defined axioms
and constraints. An instance of UniCS is the input
specification for a reasoning engine to dynamically
generate a composition plan for a service system.

1. Introduction
A network-based service system consisting of

services, service components and nodes is considered.
A service is realized by the structural and behavioral
arrangement of service components, which by their
inter working provide a service in the role of a service
provider to a service user. Service components are
executed as software components in nodes, which are
physical processing units such as servers, routers,
switches and user terminals. User terminals can be
phones, laptops, PCs and PDAs etc.

Traditionally, the nodes as well as the service
components have a predefined functionality.
However, changes are taking place. Nodes are getting
more generic and can have any kind of capabilities

such as MP3, camera and storage. The software
components have been also changed from being static
components to become more dynamic and be able to
download and execute different functionality
depending on the need. Such generic programs are
from now on denoted as actors. The name actor is
chosen because of the analogy with the actor in the
theatre, which is able to play different roles in
different plays.

We are entering a generative era, which gives a
high degree of flexibility. To utilize the generative
potential, the attributes of services, service
components, software components and nodes must be
appropriately formalized, stored and made available.
As a first further step towards this formalization, the
concepts capability and status are introduced.

A capability is an inherent property of a node or a
user, which defines the ability to do something. A
capability in a node is a feature available to
implement services. An actor executes a program,
which may need capabilities in the node. A capability
of a user is the feature that makes the user capable of
using services. Capabilities can be classified into:

• Resources: physical hardware components with
finite capacity,

• Functions: pure software or combined software/
hardware component performing particular tasks,

• Data: just data, the interpretation, validity and life
span of which depend on the context of the usage.

Status is a measure for the situation in a system
with respect to the number of active entities, the
traffic situation and the Quality of Services (QoS) etc.
Status reflects an instantaneous state of the system.

Rather than using the traditional approach that
nodes and service components have a pre-defined
functionality, the functionality can be composed from
several cooperating actors hosted in nodes. We
propose a representation framework for capability and
status, denoted as Unified Capability and Status
Representation Framework (UniCS). This framework
is used to decide upon dynamic use of capabilities,
and is used to support the dynamic composition of a

Proceedings of the Sixth IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks (WoWMoM’05)

0-7695-2342-0/05 $20.00 © 2005 IEEE

service system. UniCS consists of facts and
configuration rules. The facts describe the availability
and requirement of capabilities and status of a service
system. The configuration rules verify, manipulate,
transform and discover new facts with defined axioms
and constraints. An instance of UniCS is the
specification given as an input to a reasoning engine
to generate a composition plan for a service system.

The work presented in this paper has been related to
the Telematics Architecture for Play-based Adaptable
System (TAPAS) [1]. Section 2 discusses related
work. Section 3 gives some TAPAS concepts, which
are extensions to the generic concepts already defined.
Section 4 gives an overview of UniCS. Section 5
describes the methodology of the dynamic composition
of a service system. Section 6 gives a summary and
presents our conclusions.

2. Related work
Several research activities are related to capability

representations [5,8,9,11]. A similar work to UniCS
presented in this paper in term of objectives,
functionalities and architecture, is a Resource
Definition Framework (RDF)-based knowledge model
for network management [5], which provides an
analogous framework to describe capability facts in
RDF. However, it requires additional framework(s) to
describe configuration rules. Directory Enabled
Network NGOSS (DEN-ng) [9] describes the
configuration rule partially in term of constraints in a
specific language, i.e. Object Constraint Language
(OCL). However, OCL limits the power of DEN-ng to
only verifying facts, while not permitting it to
manipulate, transform or discover them.

3. Necessary TAPAS concepts
The Telematics Architecture for Play-based

Adaptable System (TAPAS) intends to be an
architecture for autonomic network-based systems that
gives rearrangement flexibility, failure robustness and
resource load awareness and control [1]. In analogy
with the TINA architecture [3], the TAPAS
architecture is separated into a service architecture and
a computing architecture as follows.
� The service architecture is an architecture showing

the structure of services and services components.
� The computing architecture is a generic

architecture for the modeling of any service
software components.
These architectures are not independent and can be

seen as architectures at different abstraction layers.
The service architecture, however, has focus on the
functionality independent of implementation, and the

computing architecture has focus on the modeling of
functionality with respect to implementation, but
independent of the nature of the functionality.

The relationship of services and service components
in the service architecture are realized by the
computing architecture, which will be the focus of this
paper.

Role

Actor M anuscript

Role FigureD irector

P lay View Capability

P layV iew Status

Role Session

offers
projects

is defined by

plays

im plem ents
m anages

requires

offers

CoreP latform

Node Network V iew Capability

Network V iew Status

is requires by

has gives

has

has

im plements interprets

Play View

Netw ork
View

Service View
Service Com ponentService System

constitu tes

P lay
is realized by

is defined in

executes

consists of
can be

required

has

gives

Figure 1 the TAPAS computing architecture

3.1. TAPAS computing architecture

TAPAS computing architecture has three layers:
the service view, the play view and the network view as
shown in Figure 1. The service view concepts are
rather generic and should be consistent with any
service architecture. The network view concepts are
consistent with any corresponding network
architecture, with exception of the core platform,
which is a specific platform supporting the play view
concepts. The network view consists of nodes, which
are typically network processing units such as mobile
phone, desktop computer, laptop, printer and router
that possess particular Network View Capabilities,
from now on abbreviated as NV-Capabilities. Nodes
are installed in the core platform. At a specific time
point, a Network View Status denoted as NV-Status is
the state of a system with respect to the number of
active entities, traffic situation and QoS etc.

The play view is a basis for designing
functionality that can meet the rearrangement, the
robustness, the survivability, the QoS awareness and
resource control properties. The play view concepts
are seemingly rearrangement flexibility oriented. The
capability and status concepts, however, also give a
basis for the further design of the robustness, the
survivability, the QoS awareness and resource control
properties.

3.2. TAPAS theater metaphor

The play view is founded on a theater metaphor.
The TAPAS actor is a generic software component
consistent with the actor definition given in Section 1.
However, the TAPAS actor is specialized as follows.
Actors perform roles according to predefined

Proceedings of the Sixth IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks (WoWMoM’05)

0-7695-2342-0/05 $20.00 © 2005 IEEE

manuscripts, and a director manages their
performance. Actors are software components in the
nodes that can download manuscripts. They have Play
View Capabilities and Status abbreviated as PV-
Capabilities and -Status, which are transformed from
NV-Capability and -Status of the nodes. The
transformation is also based on UniCS and is referred
to [10]. An actor will constitute a role figure by
behaving according to a manuscript that defines the
functional behavior of that particular role in a play. A
role session is a projection of the behavior of a role
figure with respect to one of its interacting role
figures. Actors can be moved between nodes and their
role sessions can be re-instantiated automatically [6].

A director is an actor with supervisory status
regarding other actors. When the director needs to
choose a fitting actor for a certain role figure, he
requests help from a service manager, which is a
dedicated role figure to generate a composition plan
for the dynamic service composition. The director
reads the generated composition plan and assigns
role-based manuscripts to the recommended actors.
The actor interprets the manuscript and behaves
accordingly. The utilization of manuscripts is beyond
the scope of this paper and is referred to [7].

A service system is defined by a play. A play
consists of several actors playing different roles, each
possibly having different PV-Capabilities and –Status
requirements. An actor will constitute a role figure,
which will constitute a service component based on a
role defined by a manuscript. The ability of an actor to
play a role depends on the matching of the required
PV-Capabilities and -Status of the role and the offered
PV-Capabilities and -Status of the actor [1].

4. Unified Capability and Status
Representation Framework (UniCS)

Requirement Facts

RDF + OWLS

General
Ontology

Domain
Ontologyextends

NV-Capabilities

NV-Status

Node
Offered

PV-Capabilities

Offered
PV-Status

Actor Role Requirement

CIM, UPnP, etc. RDF

is
tra

ns
fo

rm
ed

to

Proposal Facts Configuration Rules

XDD

Configuration Rule

instance of instance of uses

The Reasoning Engine in a Service Manager

Ontology Facts XML based-ontology
language

A Composition Plan

Unified Capability and Status Representation Framework (UniCS)

XML
Expressions

Axioms

Constraints

Facts

Play Session Specs

CMS

Service
Systems

CMSCMSRequired
PV-Capabilities

Required
PV-Status

Figure 2 the UniCS framework

As already defined in Section 3.2, the behaviors of
service components are based on roles. To allocate an
actor to a specific role, the information of available
actors and their PV-Capabilities and -Status is needed.
This capability and status information must be
described in a formal and machine-understandable
way. Unified Capability and Status Representation
Framework (UniCS) as shown in Figure 2 is a unified

representation and an executable framework for
capability and status information.

UniCS is used to represent the requirement on how
to dynamically compose a service system. This
requirement is given to the reasoning engine in a
service manager to generate a composition plan,
which suggests appropriate actors to play roles and
become the service components of the service system.

4.1 Syntactic representation

Figure 3 the PV-Capability and -Status representation

UniCS consists of facts and configuration rules
providing a way to separate syntactic and semantic
representation respectively. Facts indicate relationships
in a system. An example of a fact is “printer A” “has
capability” “duplex printing”. Concerning only
capability and status, facts can be represented in
various XML syntaxes. In the network view, any
syntax chosen by the manufacturers or the network
management program can be used. The examples are
Common Information Model encoded in XML (CIM-
XML) [11] and Universal Plug-and-Play (UPnP) [8].

In the play view, PV-Capability and -Status are the
projection of NV-Capability and -Status. Facts
concerning actors and PV-Capabilities and -Status are
from now on classified as proposal facts. The PV-
Capability syntax is carried on RDF. The main reason
is because representing facts transformed from various
NV-Capabilities and –Status syntax is rather easy with
the RDF construct triple [10]. Facts in RDF can also be
seamlessly facilitated with additional domain ontology
from any XML-based ontology language.

The facts concerning roles in a service system are
defined as play session specification and role
requirement. A play session specification is a set of all
role sessions in a play constituting a service
component. A play session is specified by an atomic
process in the Web Ontology Language for Semantic
Web (OWL-S) [4] and has two associative roles:
invoker and server. The invoker role generally has no
PV-Capability and -Status requirement. The server role
requires specific PV-Capabilities and -Status. Figure 4
shows a play session specification example.

At the time of writing, OWL-S is incapable of
describing the server roles’ required PV-Capabilities
and -Status, which are essential criteria in the
composition of a service system. We propose the using
role requirement, modeled in RDF, as an extension to
each play session to describe the roles’ required PV-
Capabilities and –Status. Role requirement

Proceedings of the Sixth IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks (WoWMoM’05)

0-7695-2342-0/05 $20.00 © 2005 IEEE

representation is similar to Figure 3 except that an
actor is replaced by a role as the subject of the fact.
Facts concerning the play session specification and the
role requirement of a service system are classified as
requirement facts. The requirement facts and the
proposal facts will be matched by configuration rules.

Figure 4 play session specification

4.2. Semantic representation
Table 1 Types of XML variables

Type Instantiation and examples
N XML element or attribute names Ex: <$N:var1>…</$N:var1> can be

instantiated to <actor>...</actor> or <node>...</node>

S XML string Ex: <prop name=”$S:var1”/> can be instantiated into
<prop name=”prop1”/> or <prop name=”prop2”/>

P Sequence of zero or more attribute-value pairs Ex: <element $P:var1/>
can be instantiated into <element/> or <element name=”1”/>

E Sequence of zero or more XML expressions
Ex: <element>$E:var1</element> can be instantiated into
<element/> or <element><value>1</value></element>

I Part of XML expressions Ex: <$I:var1><attr/></$I:var1> can be
instantiated into <element><prop><attr/></prop></element> or

Configuration rules are defined in a semantic web
language, XML Declarative Description (XDD) [12].
XDD is an XML-based knowledge representation,
which extends ordinary, well-formed XML elements
by incorporation of variables for an enhancement of
expressive power and representation of implicit
information into so-called XML expressions. Ordinary
XML elements – XML expression without variables –
are called ground XML expressions. Every component
of an XML expression can contain variables as in
Table1. Every variable is prefixed with ‘$T:’ where T
denotes its type.

A configuration rule is an XML clause of the form:
H, {C1, … Cm} � B1, … Bn

where m, n � 0, H and Bi are XML expressions. And
each of the Ci is a predefined XML condition used to
limit the rule for a certain circumstances. This allows
the modeling of constraints for a rule. Axioms are
defined from one or more rule(s) [11]. The XML
expression H is called the head of the clause. The set
of Bi is the body of the clause. When the body is
empty, such a clause is referred to an XML unit clause,
and the symbol ‘�’ will be omitted. Hence any facts
in form of XML elements or documents can be
mapped directly onto a ground XML unit clause.

Figure 5 the graphical representation of the query clause

4.3 UniCS reasoning mechanism

Intuitively, the UniCS reasoning process begins
with an XML expression based query. The reasoning
engine formulates an XML clause from the query of
the form:

Q � Q
The XML expression Q represents the constructer of
the expected answer which can be derived if all the
bodies of the clause hold. However, if one or more
XML expression bodies still contain XML variables.
These variables must be matched and resolved from
other rules.

A body from the query clause will be matched with
the head of each rule. At the beginning, there is only
one body Q. Consider a rule R1 in the form:

R1: H, C1 � B1, B2

If the XML structure of the body Q of the clause and
the head H of the rule R1 match without violating
condition C1, the body Q will be transformed into B1

and B2. All XML variables in the head Q and the new
bodies B1 and B2 of the query clause will be
instantiated. The query clause will be in the form:

Q* � B1*, B2*
Where X* means the one or more variables in the
XML expression X has been instantiated and
removed.

The transformation process ends when either 1) the
query clause has been transformed into a unit clause
or 2) there is no rule that can transform the current
bodies Bi of the query clause. If the constructor Q is
transformed successfully into Qf that contain no XML
variable, the reasoning process ends and a desired
answer is obtained. Due to the space limitation, the
details how the reasoning engine performs the rule
matching and the variable instantiation will not be
presented in this paper. The reader should be referred
to [12].

5. Service composition
Three generic configuration rules for composing

any service system are formulated. For each rule, a
graphical representation of RDF triples together with
the various types of XML variables is used instead of
the equivalent XML clause due to the space
limitation. These rules and the query clause are as
follows:

5.1. The query clause (Figure 5):

The query clause contains the name of the service
system to be composed, which can be changed. The
meaning of both head and body of the clause is that

Proceedings of the Sixth IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks (WoWMoM’05)

0-7695-2342-0/05 $20.00 © 2005 IEEE

“Service System 1” can have a role “$S:Role”, which
can be played by an actor “$S:Actor”.

5.2. Rule 1 (Figure 6):

Figure 6 the graphical representation of rule 1

The head H of Rule 1 is similar to the body B1 of
the query clause except the variable $S:SS that makes
this rule applicable to any service system. After the
variable $:SS has been instantiated with the name of a
service system from the query clause, the body B1 will
query the requirement facts and find the play session
specification and the role requirement of that service
system. Each role in $S:SS requires PV-Capabilities
and -Status, represented by $E:PV-Capabilities and
$E:PV-Status. The body B2 looks for the proposal
facts with the capabilities and status represented by
the same E-variables. Rule 1 matches the proposal
and requirement facts that refer to the same variables.

5.2. Rule 2 (Figure 7):

Figure 7 the graphical representation of rule 2

Rule 2 is for querying the actor that has a set of
PV-Capability and -Status, represented by $E:PV-
Capability and $E:PV-Status. The body B1 will query
all the proposal facts and find actors that have such a
qualification. Additional E-variables in B1 allows an
actor to have PV-Capabilities and -Status in addition
to those in $E:PV-Capabilities and $E:PV-Status.

5.4 The result (Figure 8)
After the execution, the composition plan of

“Service System 1” is produced as illustrated in
Figure 8. Note that Role 2 can be played by both
Actor B and C because they both have the required
PV-Capabilities and -Status.

We used XML Equivalent Transformation (XET)
[2], a Java-based reasoning engine that transforms the
query clause by the XDD-based rules to compose a
plan for Capability Management System, a service
system that manages capabilities in TAPAS.

Figure 8 the graphical representation of the composition plan

6. Conclusion
This paper has presented a framework for capability

and status representation, denoted as Unified
Capability and Status Representation Framework
(UniCS). This framework has been further used to
support the modeling of the dynamic composition of
service systems. UniCS consists of facts and
configuration rules. Facts are categorized as proposal
facts, which are actors, PV-Capabilities and -Status,
and requirement facts, which are play session
specification and role requirement. Configuration rules
map the proposal facts and the requirement facts and
discover a composition plan. As a result, a service
system can be dynamically composed.

10. References
[1] Aagesen, F.A., et al., On Adaptable Networking.
ICT’2003, Assumption University, Thailand, 4/2003.
[2] Anutariya, C., et al., An Equivalent-Transformation-
Based XML Rule Language. Int’l Workshop Rule Markup
Languages for Business Rules in the Semantic Web,
Sardinia, Italy, 6/2002.
[3] Inoue, Y., et al., The TINA Book. A Co-operative
Solution for a Competitive World. Prentice Hall, 1999.
[4] OWL Service Coalition, Semantic Markup for Web
Services, 11/2003.
[5] Shen, J. and Y. Yang, RDF-Based Knowledge Model
for Network Management. IFIP/IEEE IM 2003. Colorado,
Springs, 3/2003.
[6] Shiaa, M.M., Mobility Support Framework in
Adaptable Service Architecture. IEEE/IFIP Net-Con’2003,
Muscat, Oman, 10/2003.
[7] Shiaa, M.M., et al., An XML-based Framework for
Dynamic Service Management. IFIP INTELLCOMM 2004,
Bangkok, Thailand, 11/2004.
[8] Steinfeld, E.F., Devices that play together, work
together, EDN Magazine, 9/2001.
[9] Strassner, J., DEN-ng: Achieving Business-Driven
Network Management. IEEE/IFIP NOMS 2002, Florence,
Italy, 4/2002.
[10] Supadulchai, P., Aagesen, F.A., An Approach to
Capability and Status Modeling, NIK 2004, Stavanger,
Norway, 11/2004.
[11] Westerinen, A. and W. Bumpus, The Continuing
Evolution of Distributed Systems Management. IEICE
TRANS. INF & SYST., Vol. E86-D Nr. 11: 11/2003.
[12] Wuwongse, V., et al.: XML Declarative Description
(XDD), A Language for the Semantic Web. IEEE Intelligent
Systems, Vol. 16 Nr.3, 5-6/2001.

Proceedings of the Sixth IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks (WoWMoM’05)

0-7695-2342-0/05 $20.00 © 2005 IEEE

