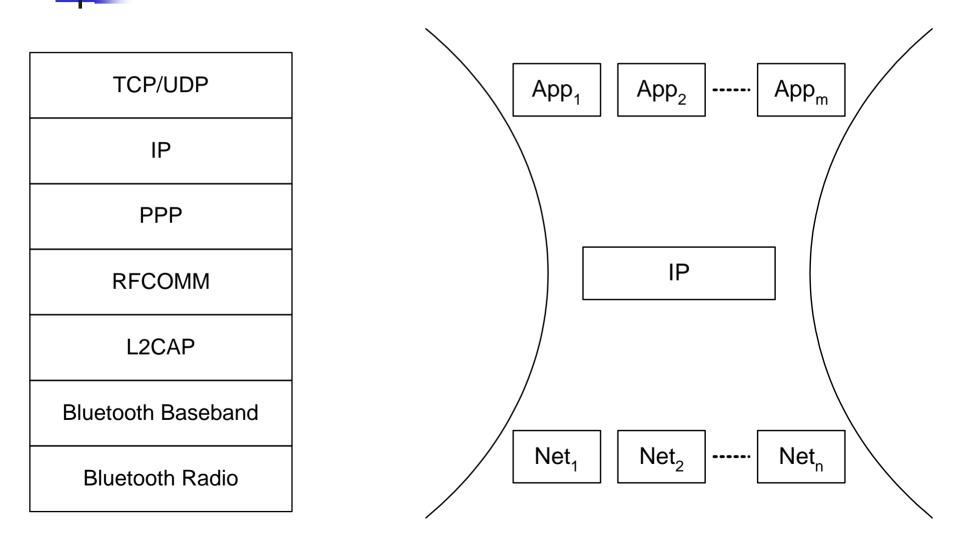
Delay-Tolerant Networking for Smart-phones

> By: Omar Mukhtar <u>omar@netlab.hut.fi</u> Supervisor: Prof Joerg Ott jo@netlab.hut.fi

Networking Lab – HUT

Agenda

- Overview of Internet protocols
 - Pros and cons...
- Emerging Networks
 - New paradigms, new issues...
- What's DTN?
 - How does it try to solve the issues?
- DTN protocols
- Implementation architecture
- Conclusions


The Internet and TCP/IP

- Internet the popular and fast growing communication medium
 - Web, E-mail, Chat, VoIP, Streaming...
- Example applications
 - Education, Research
 - E-Commerce
 - Entertainment
 - Communication

IP is everywhere...

 Changing and leading other communication paradigms

- IP in 3G & 4G
- Inter-networking of networks
 - Cellular, Wireless, Fixed
 - PANS, LANS, MANS, WANS
- Hour-Glass model

TCP/IP Architectural Principles

- End-to-end connectivity
- End-to-end reliability
- Small end-to-end errors in physical links
- End-to-end congestion control
- End-to-end flow control
- Frequent end-to-end message exchange
 - TCP signaling (SYN-ACK-FIN)
 - Conversational applications (HTTP, FTP etc.)
- In one phrase, Internet is an END-To-END mechanism.

TCP/IP Issues

- IP address for routing and node identification
 - HIP; very recent, not deployed yet
- Early binding (name to address translation before communication begins)
 - One IP address for one node (IPv6)
- Poor recovery on network failures
 - Establish end-to-end connection again?
 - Network nodes discard all packets on system crash.

Emerging Networks

- Extreme, stressed and challenged environmnets
- High error rates
 - Wireless networks (TCP performance degrades)
- Intermittent connectivity
 - Sparse ad hoc networks e.g. mobile devices, military battlefield equipment (frequent interruptions)
 - Sensor-nets (infrequent access)
 - Low Earth Orbit Satellites (periodic)
- Longer delays
 - Satellite connections
 - Deep space communication (Star-Trek ©)

Experimental networks...

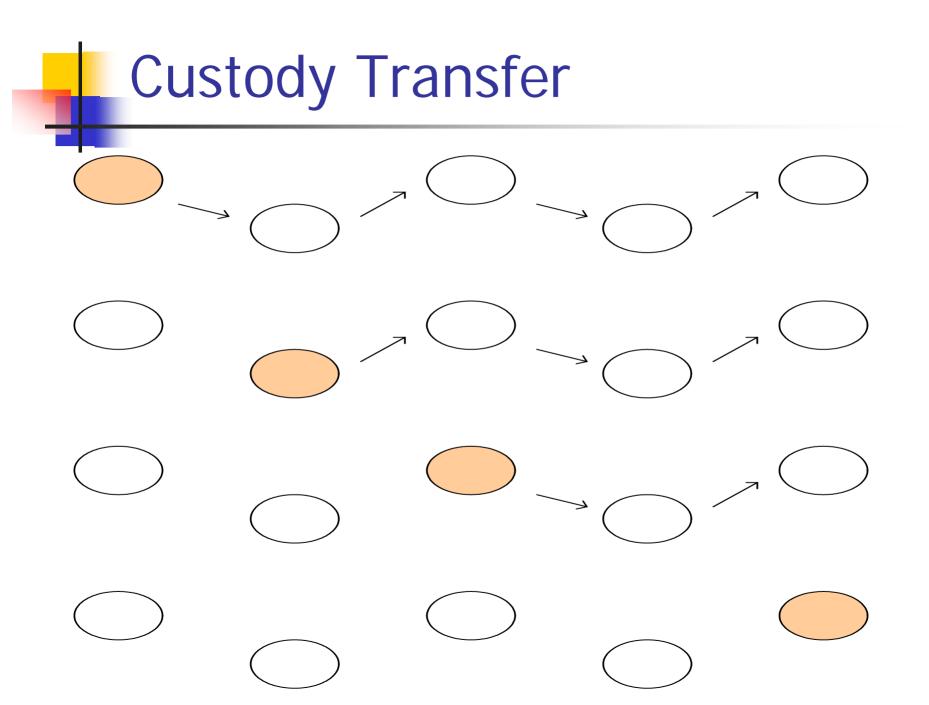
- Nomadic networks e.g. fast moving vehicles (very short connection time)
- Data-buses, data-mules, message ferries
 - Internet for remote areas, e.g. villages, islands

- End-to-end model breaks in all these scenarios...
 - Can't use TCP/IP; degrade of fail at all...
 - Separate solutions for separate networks
 - TCP enhancements for wireless networks

Delay-Tolerant Networking

- Tries to fix many of the problems
 - No end-to-end assumption
 - Better recovery on device failures
 - Long delays
 - Minimum end-to-end message exchanges
- A single solution for a variety of networks
 - Interplanetary Internet (deep space communications)
 - Ad Hoc and terrestrial wireless networks
 - Sensor networks
 - Nomadic networks

DTN Architectural Principles


An overlay network

- "Bundle" layer, above transport layer and below application layer to inter-network different heterogeneous networks
 - multiple communication links, topologies
- Variable length messages containing complete data and meta-data *bundled* into one (ideally)
 - Hence called bundle layer
- End-to-end message delivery
 - Virtual message-switching (in contrast with packetswitching)
 - Improved routing decisions made for whole message, rather than packets (based on QoS, priority etc.)

DTN Architectural Principles

E-mail style store-and-forward architecture

- Persistent storage to combat network failures, device reboots
- Custody transfer of message, from source to nodes in the network
 - Custody gradually moves "closer" to destination
 - Custodian is responsible for retransmissions (E2E model is broken)

Addressing-Naming Schemes

- End-point Identifier (EIDs) based upon standard URIs
 - Defines own URI scheme (dtn://mypc.hut.fi/email)
- Late-binding
 - Routing based on EIDs
 - Name to address translation is performed at quite later stage in the network
- Multiple nodes can register for one EID and one node may register for multiple EIDs
 - Multi-homing and mobility

Routing

- Multiple links for different underlying networks
 - Persistent, on-demand : (always connected)
 - Scheduled, opportunistic : (intermittent)
- Multi-graph network topology
 - Each link with different capacity, availability (time) and direction (symmetric, one way)
- Multi-path routing (in contrast with best route selection in Internet)
- "Intelligent" routing Active research area
 - Probabilistic, statistical; advanced ad hoc routing algorithms and protocols

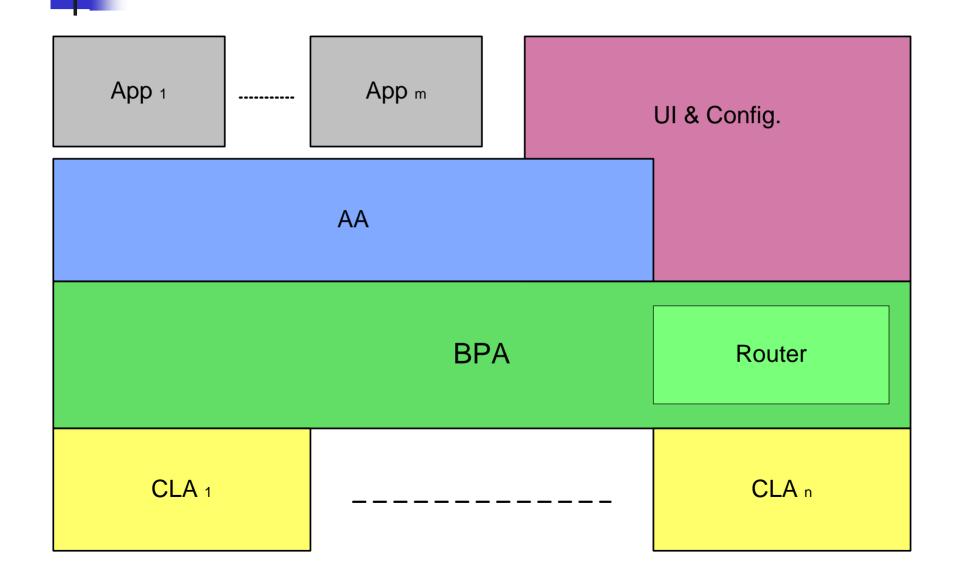
Non-conversational paradigm

- Applications restructuring
 - To minimize end-to-end transactions
- Gateways, proxies for existing applications
 - E-mail gateway
- New application design strategies
 - Web over DTN (bundle all related pages into one message
 - FTP over DTN (send login, password and other meta-data bundled with data

Protocol Stack & Nw Hierarchy

Protocol Features

- Flexible and extensible
 - A basic header and extension headers
- Self-Delimiting-Numeric-Values
 - No fixed size fields for lengths (variable headers)
- Dictionary block for EIDs
 - EIDs can also vary in length, so pointers within a buffer are (re)used
- Status reports
 - Like ICMP, but both for positive and negative feedbacks


Design and Implementation for Symbian OS

- User tend to carry mobile devices all the time
 - Social networks are formed when people meet
 - Statistical routing techniques in social networks an active research area
- Intermittently-connected ad hoc networks
- Reference implementation is very large and hard to port
 - A light-weight DTN framework for smart-phones
 - Can be integrated into OS itself
- Smart-phones are equipped with multiple communication technologies
 - New experimental CLAs for Bluetooth, GPRS, messaging

Programming for Symbian OS

- C++, the native programming language
 - Efficient, optimized applications and server components
- Non-preemptive multitasking
 - Active Objects; no synchronization required
- Constraint devices, less memory, low power
 - Compact code
 - In-place execution
- Optimized API and library functions
 - No STLs
 - Asynchronous OS services
- Client/server framework for IPC

Implementation Architecture

Implementation Details

- Design of architecture for Symbian OS
 - Generic, extendable, optimized design
- Application agent and sample application for file transfer
- Bundle protocol agent
 - Static routing, flooding
- Convergence layers
 - TCP, Bluetooth
- Socket like native IPC mechanism
 - Runs as a server application
 - offers API for client applications

Testing & Demo Setup

- Inter-operability testing with reference implementation
- Code released under GPL
 - http://www.symob.net/dasm.htm

Conclusions

- DTN is an emerging paradigm for challenged networks
 - Tries to solve many issues found in conventional Internet protocols
 - The implementation can be extended with new features / protocols
- Policy based statistical, probabilistic routing algorithms
- DTN-capable application design
- New convergence layers
- Security issues
- Real-world statistical analysis

- For your patience ☺
- Special thanks to Prof Ott

Questions?