Networking Laboratory

MASTER THESIS

SCALABLE ROUTING MECHANISM IN AD HOC NETWORKS

TUNA VARDAR

09.05.2006 Espoo, Finland

ТКК

Networking Laboratory

Thesis Topic:

Thesis Supervisor: Thesis Instructor: Thesis Workplace:

Professorship:

Scalable Routing Mechanism in Ad Hoc networks Prof. Raimo Kantola Lic. Sc. Jose Costa-Requena MobileMan Project, Networking Laboratory, ECE Department, TKK T-110, Telecommunications and Multimedia Laboratory, CSE Department, TKK

ТКК

Networking Laboratory

Outline

- Introduction
- Objective
- SARP simulation analysis
- SARP implementation
- SARP testing
- Conclusions and future work

Introduction

- Ad Hoc networks
 - An emerging technology
 - There is no commercial demand
 - But they are perfectly suited for disaster scenarios, searchand-rescue operations
 - Nodes create Ad Hoc network dynamically without any fixed infrastructure
 - Every node in the Ad Hoc network act as a router
 - As nodes move around, routes to other nodes in the Ad Hoc network need to be discovered and maintained
 - All nodes cooperate in carrying network traffic

Introduction

- Routing
 - Fundamental aspect of network establishment
 - The process of exchanging route information from one node to other in a network
- Ad Hoc networks routing
 - It is a problem because there is no fixed infrastructure
 - Existing Internet routing protocols do not work very well in Ad Hoc networks
 - Because they are designed considering that network has a fixed infrastructure
 - Power constraints
 - Low powered nodes do not produce ideal conditions for better route discovery and maintenance

Networking Laboratory

Introduction

- Ad Hoc network routing protocols
 - Proactive routing protocols
 - Maintain routing tables filled with the whereabouts of the other nodes
 - Use routing algorithms to periodically exchange link information
 - Consume more power and bandwidth
 - OLSR, DSDV
 - On-demand routing protocols
 - Form the routes between nodes when needed
 - Consume less power, but still consumes unnecessary amounts of bandwidth
 - AODV, DSR, TORA
 - Hybrid routing protocols
 - Combine advantages of proactive and on-demand routing protocols, thus obtaining better performance
 - However, consume more memory and power, thus special precautions are necessary on the nodes
 - ZRP

Networking Laboratory

Objective

- To propose a new routing mechanism for Ad Hoc networks
 - Scalable Ad Hoc Routing Protocol (SARP)
 - Hybrid solution
 - Combines on-demand and proactive routing protocols in the same node
 - Two routing protocols can share eachother's routing information
 - Power constraints of the node are checked periodically to decide activation of proactive routing protocol or not for more efficient power consumption
 - Supports external QoS module (optional)

Networking Laboratory

Objective

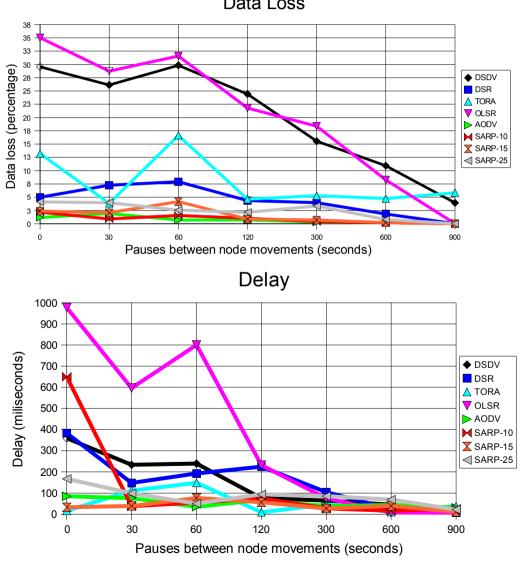
- SARP
 - Main target is to reduce the time spent in the route discovery
 - Proactive routing stores link information
 - It eliminates time spent in the route discovery by on-demand routing protocols
 - This operation consumes more power but can be managed
 - If the node is able to decide activation or deactivation of proactive routing, excess power consumption can be managed and routing efficiency is increased
 - Nodes are classified into two groups
 - Smart nodes
 - Nodes running simultaneously on-demand and proactive routing protocols
 - Ordinary nodes
 - Nodes running only on-demand routing protocols

Networking Laboratory

Objective

• SARP

- Each smart nodes decides to be smart or ordinary node by checking its power level
 - If node's battery power level is greater than predefined power threshold, node is "Smart".
- Smart nodes will communicate between them using proactive routing protocol
 - This will create so called a *virtual backbone of smart nodes*
- Smart nodes will communicate with ordinary nodes using on-demand routing protocol
 - On-demand routing protocol should be always active on the smart nodes
- Ordinary nodes will communicate between them and with smart nodes using on-demand routing protocol


Networking Laboratory

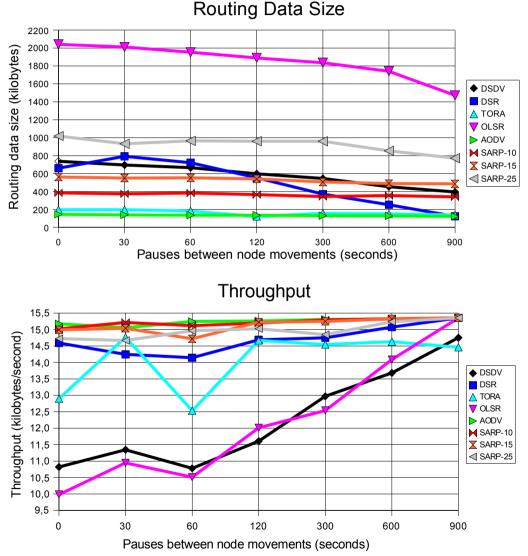
SARP Simulation Analysis

- Performance comparison of SARP with state of the art routing protocols
- Necessary for correctly verification of SARP
- Simulation environment
 - NS-2 running in Linux
 - SARP implemented for NS-2 using C++
- Simulation results
 - Data loss
 - Delay
 - Routing data size
 - Throughput
 - Overhead

Networking Laboratory

SARP Simulation Analysis - I

Data Loss

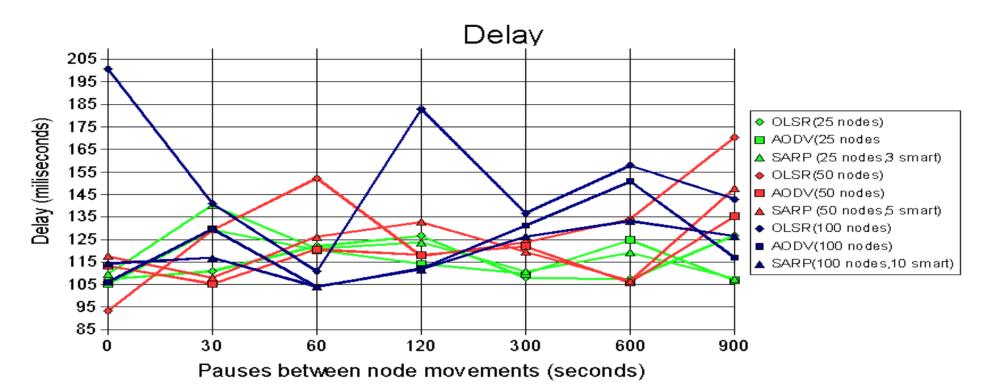

Simulation parameters

- SARP, AODV, OLSR, DSR, DSDV, ۲ TORA
- 50 nodes
- 5, 10, 25 smart nodes for SARP
- 1500 meters width, 300 meter height
- 7 different mobility levels at X-axis
- **Results are at Y-axis**
- 30 CBR traffic connection
 - 64 bytes UDP packets
 - Duration: 12,5 seconds
 - Rate: 8 packets/second
- Radio range: 250 meters

Espoo, 09.05.2006

Networking Laboratory

SARP Simulation Analysis - I

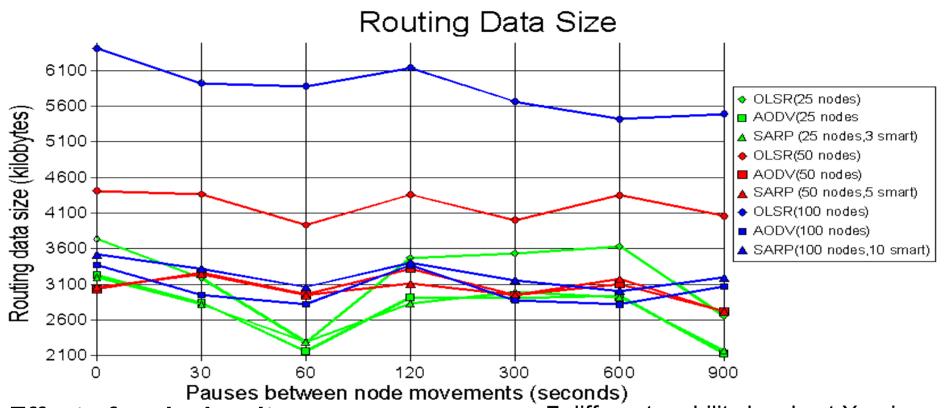


Simulation parameters

- SARP, AODV, OLSR, DSR, DSDV, TORA
- 50 nodes
- 5, 10, 25 smart nodes for SARP
- 1500 meters width, 300 meter height
- 7 different mobility levels at X-axis
- Results are at Y-axis
- 30 CBR traffic connection
 - 64 bytes UDP packets
 - Duration: 12,5 seconds
 - Rate: 8 packets/second
- Radio range: 250 meters

Espoo, 09.05.2006

TKK Networking Laboratory SARP Simulation Analysis - II

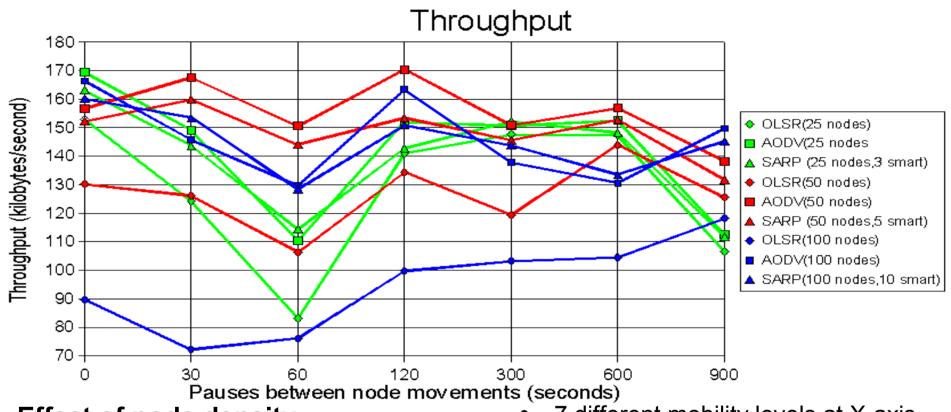


Effect of node density Simulation parameters

- SARP, AODV, OLSR
- 25,50,100 nodes
- 10%, 30%, 60% smart nodes for SARP
- 1500 meters width, 300 meter height

- 7 different mobility levels at X-axis
- Results are at Y-axis
- 30 TCP traffic connections
 - 64 bytes TCP packets
 - Duration: 20 seconds
 - FTP is used at application layer
- Radio range: 250 meters

TKK Networking Laboratory SARP Simulation Analysis - II

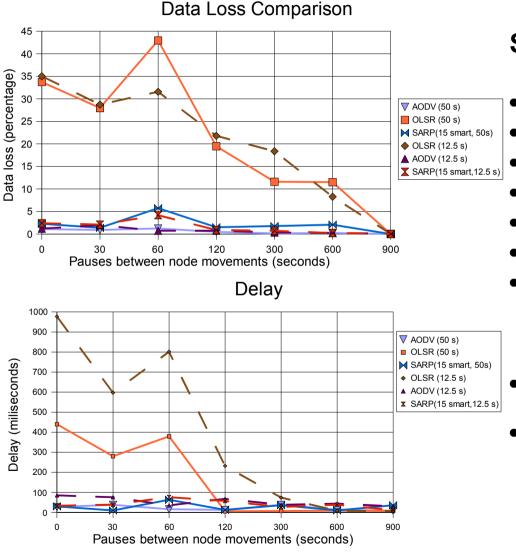


Effect of node density Simulation parameters

- SARP, AODV, OLSR
- 25,50,100 nodes
- 10%, 30%, 60% smart nodes for SARP
- 1500 meters width, 300 meter height

- 7 different mobility levels at X-axis
- Results are at Y-axis
- 30 TCP traffic connections
 - 64 bytes TCP packets
 - Duration: 20 seconds
 - FTP is used at application layer
- Radio range: 250 meters

TKK Networking Laboratory SARP Simulation Analysis - II


Effect of node density Simulation parameters

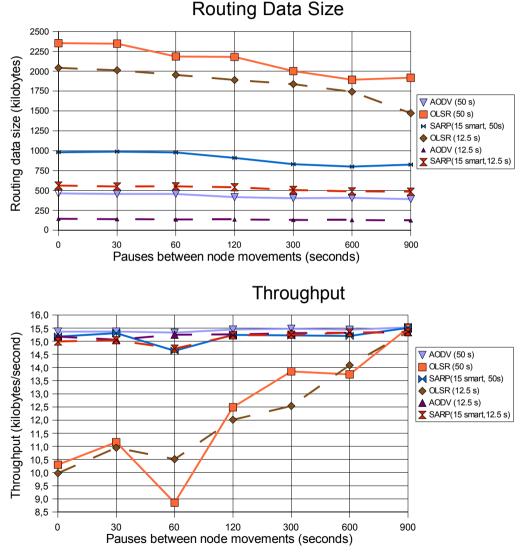
- SARP, AODV, OLSR
- 25,50,100 nodes
- 10%, 30%, 60% smart nodes for SARP
- 1500 meters width, 300 meter height

- 7 different mobility levels at X-axis
- Results are at Y-axis
- 30 TCP traffic connections
 - 64 bytes TCP packets
 - Duration: 20 seconds
 - FTP is used at application layer
- Radio range: 250 meters

Networking Laboratory

SARP Simulation Analysis - III

Simulation parameters


- SARP, AODV, OLSR
- 50 nodes
- 5, 10, 25 smart nodes for SARP
- 1500 meters width, 300 meter height
- 7 different mobility levels at X-axis
- Results are at Y-axis
- 30 CBR traffic connection
 - 65 bytes UDP packets
 - Duration: 50 seconds
 - Rate: 8 packets/second
- Radio range: 250 meters
- Effect of traffic congestion
 - Continuous lines show results for third simulation analysis
 - Dashed lines show results for first simulation analysis

Espoo, 09.05.2006

Tuna Vardar

Networking Laboratory

SARP Simulation Analysis - III

Simulation parameters

- SARP, AODV, OLSR
- 50 nodes
- 5, 10, 25 smart nodes for SARP
- 1500 meters width, 300 meter height
- 7 different mobility levels at X-axis
- Results are at Y-axis
- 30 CBR traffic connection
 - 65 bytes UDP packets
 - Duration: 50 seconds
 - Rate: 8 packets/second
- Radio range: 250 meters
- Effect of traffic congestion
 - Continuous lines show results for third simulation analysis
 - Dashed lines show results for first simulation analysis

Networking Laboratory

SARP Simulation Analysis

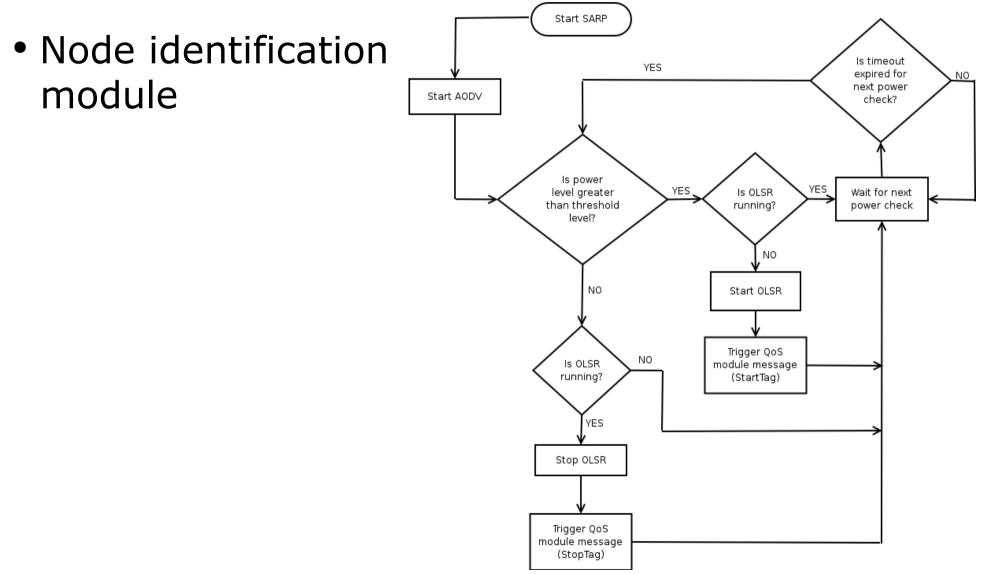
- Conclusions
 - SARP provides lower delay and data loss than OLSR, but similar to AODV
 - SARP uses less data for routing than OLSR, but slightly more than AODV
 - When amount of smart nodes increases, it does not have positive effect in the performance
 - Best performance is observed when 10-30 percent of nodes is smart
 - SARP performance is similar to AODV
 - SARP decrease data loss slightly in some cases
 - SARP decreases delay
 - SARP increases throughput slightly in some cases
 - SARP increases routing data size

Networking Laboratory

SARP Implementation

- Combination of AODV and OLSR in the same memory address space
 - AODV and OLSR existing functionality is kept unchanged
- 3 new modules added for SARP functionality
 - Node identification module added to AODV impl.
 - Decides if the node is smart or ordinary
 - QoS integration module added to AODV impl.
 - Initiated by node identification module
 - Supports integration of SARP with external QoS module (optional)
 - Routing table merging module added to OLSR impl.
 - Merges routes from AODV routing cache into OLSR routing table
 - Merges routes from OLSR routing table into AODV routing cache

Networking Laboratory

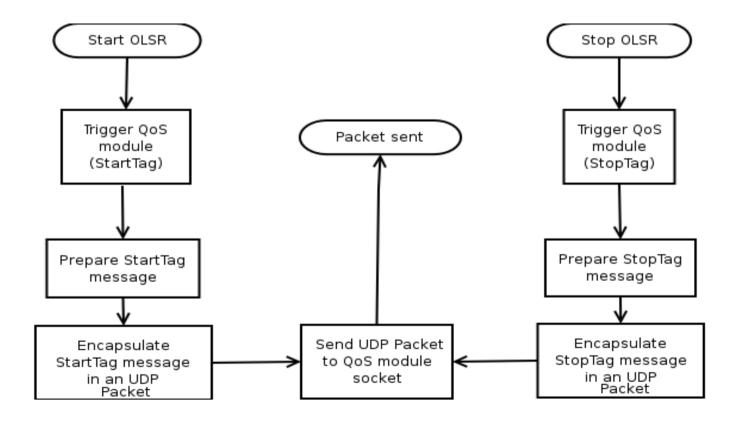

SARP Implementation

- Implementation is done using C language
 - AODV-UU 0.9
 - Unik OLSR 0.4.4
- Built for iPAQ PDA devices running Familiar Linux
 - ARM cross compiler
 - Familiar Linux kernel source code

ТКК

Networking Laboratory

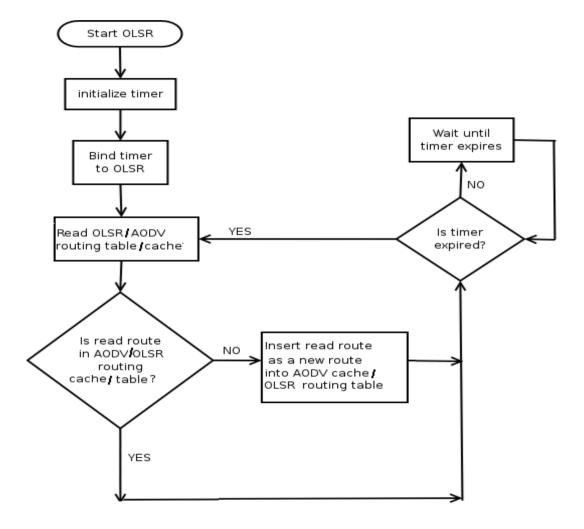
SARP Implementation



Tuna Vardar

Networking Laboratory

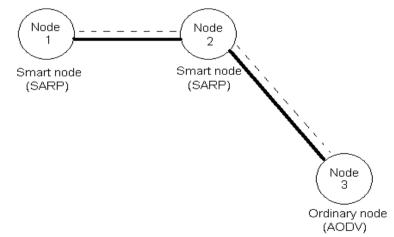
SARP Implementation


QoS integration module

Networking Laboratory

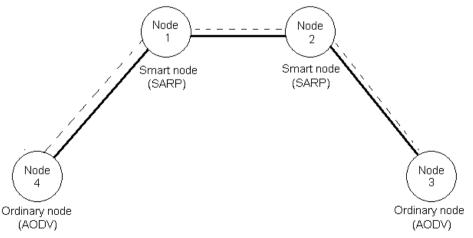
SARP Implementation

 Routing table merging module


- Four different test cases
- Tested on iPAQ PDAs running Familiar Linux
- Test case I
 - Communication between smart node and ordinary node
 - Communication was totally handled by AODV
 - Initial route discovery was 2-3 seconds
 - Test number 1: 2173 ms
 - Test number 2: 1968 ms
 - Test number 3: 1725 ms
 - Test number 4: 2483 ms
 - Test number 5: 2268 ms

Networking Laboratory

- Test case II
 - Communication between smart node and smart node
 - Communication was handled by AODV
 - OLSR module was running and updating AODV routing table
 - Initial route discovery was 2-3 seconds
 - Test number 1: 2423 ms
 - Test number 2: 2489 ms
 - Test number 3: 2654 ms
 - Test number 4: 2543 ms
 - Test number 5: 2802 ms


Networking Laboratory

- Test case III
 - Communication between two smart nodes and an ordinary node
 - Communication was handled by AODV and OLSR
 - OLSR module was running and updating AODV routing table
 - Initial route discovery from Node 1 to Node 3 takes 3-4 seconds
 - Test number 1: 3372 ms
 - Test number 2: 3464 ms
 - Test number 3: 3781 ms
 - Test number 4: 3267 ms
 - Test number 5: 3466 ms

Networking Laboratory

- Test case IV
 - Communication between two smart nodes and two ordinary nodes
 - Communication was handled by AODV
 - OLSR module was running and updating AODV routing table
 - Initial route discovery from node 4 to node 3 takes 4-5 seconds
 - Test number 1: 4835 ms
 - Test number 2: 4904 ms
 - Test number 3: 5067 ms
 - Test number 4: 5384 ms
 - Test number 5: 5130 ms

Conclusions and future work

- Good results for SARP in simulations
 - Increase in number of smart nodes do not increase the overall performance
 - Up to the simulation results, SARP performance is similar to AODV, even better in same cases
- Real-time tests show SARP implementation as stable enough
- Real-time tests show AODV and OLSR inside SARP exchanging routes
 - This decreases time spent for initial route discovery
 - Benefit of SARP may be seen better in larger size Ad Hoc networks as it is shown by simulations
 - Real-time tests in a bigger network is good to do in the future