Performance of randomized forwarding methods in large ad hoc networks

Olli Apilo Helsinki University of Technology Networking laboratory

Supervisor: Instructor: Professor Jorma Virtamo D.Sc.(Tech.) Pasi Lassila

CONTENTS

- Ad hoc networks
- Objective of the study
- MAC and routing in ad hoc networks
- Network model for simulations
- Used forwarding algorithms
- Results
- Conclusions and further work

AD HOC NETWORKS

- Wireless nodes that communicate without fixed infrastructure or centralized control
- Multihop communications
 - Each node acts as a router
- Military and rescue applications
- Wireless sensor networks
 - Sensing, data processing and communications

OBJECTIVE OF THE STUDY

- Survey of MAC and routing methods in ad hoc networks
 - Clear classification and most important methods
- Simulation study to maximize network-wide throughput and to compare the performance of geographic forwarding methods in a large ad hoc network
 - Maximization of packet flow intensity with respect to network density and the slotted ALOHA transmission probability

MEDIUM ACCESS CONTROL

- MAC in early packet radio networks
 - Randomized access, no channel reservation
 - ALOHA, slotted ALOHA, CSMA
- Reservation-based protocols
 - Control packet exchange to reserve channel
 - MACA, MACAW, IEEE 802.11 DCF
- Power aware protocols
 - Power control, adjust power level to reach the receiver
 - Power management, allow nodes to turn off when idle, important in sensor networks
- Better performance by utilizing advanced hardware
 - Directional antennas
 - Multichannel transceivers

ROUTING

- Proactive protocols
 - Maintain an up-to-date network topology
 - Amount of routing traffic can be high
- Reactive protocols
 - Routes found and maintained on-demand
 - Less routing traffic but increased delay
- Hybrid protocols
 - Combine both proactive and reactive approaches
- Routing in sensor networks
 - Energy-efficiency, network lifetime maximization
 - Data-centric communications, the id of the original sender may be irrelevant
- Geographic routing

GEOGRAPHIC ROUTING

- Greedy forwarding
 - Progress(A), distance(B), angle(C)
- Routing around concave nodes
 - Face routing based on Gabriel graphs
- Location service
 - Responds to queries about the location of a destination

NETWORK MODEL

- Nodes distributed according to the two-dimensional Poisson point process with intensity λ
- Boolean interference model with a fixed transmission range R
 - Collision if a receiver hears more than one transmissions
- Slotted ALOHA MAC protocol with transmission probability p
- Each node knows its own and neighbors' location as well as the direction of packet flow

MEAN DENSITY OF PROGRESS

The packet flow intensity is maximized

 $I = \rho \boldsymbol{v}_{x} \quad [1/(\mathbf{m} \cdot \mathbf{s})],$

where ρ is the packet density [1/m²] and v_x is the mean packet velocity projected to the direction of the packet flow

• Alternative definition for *I*: mean density of progress $I = (\sqrt{\lambda}/t) \cdot u(N_{R},p)$ [1/(m·s)], where *t* is the time slot length [s], $N_{R} = \lambda \pi R^{2}$ is the average degree of a node and $u(N_{R},p)$ is the mean progress of packets per time slot per node measured with $1/\sqrt{\lambda}$ as a unit length

SIMULATION MODEL

- Surface of the network plane seamed together into a torus
- Heavy traffic by initially placing 50 packets in each node
- Packets have infinite lifetime, no new packets generated
- Implementation using C++

USED FORWARDING ALGORITHMS 1/2

- Most forward within radius (MFR)
 - Packet is forwarded to the most forward neighbor
- Random forwarding (RF)
 - Packet is forwarded to a random forward neighbor
- Weighted random forwarding (WRF)
 - Packet is forwarded to forward neighbor *i* with a probability *q*_i that is weighted with the progress from sender to *i*
- Opportunistic forwarding (OF)
 - Packet is forwarded to all forward neighbors
 - The most forward neighbor that succesfully received the packet accepts the packet, others drop it

USED FORWARDING ALGORITHMS 2/2

 MFR forwards packets into static paths

- MFR forwards to A, collision
- OF forwards to B, success
- RF may forward to any node, success probability 1/2

RESULTS 1/2

31.1.2006

Results

RESULTS 2/2

OF

 $u(N_R, p)$ N_{R} р 0.0126 MFR 0.35 50 0.0222 0.25 RF 14 0.0279 WRF 14 0.3 OF 0.059 0.4 18

Opportunistic
forwarding achieves
clearly the best
performance

DISTRIBUTION OF PACKETS

15

CONCLUSIONS AND FURTHER WORK

- Randomized forwarding performs better than deterministic in a large ad hoc network
- Opportunistic forwarding improves throughput significantly
- Potential further work:
 - Take also into account the queue sizes at neighboring nodes when forwarding
 - Effect of power control
 - Effect of a more realistic interference model
 - Effect of node mobility