

Lic.(Tech.) Marko Luoma (1/23)

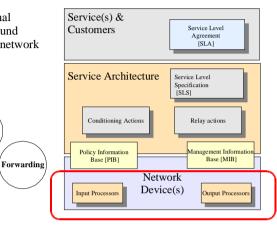
Lic.(Tech.) Marko Luoma (2/23)

Today's Topic

• This lecture is about functional mechanisms which can be found from the input processors of network devices

Marking

Filtering


Queuing

Scheduling

Policing

Classification

Metering

S-38.3180: Quality of Service in Internet

Lecture II: Ingress Traffic Processing

2.11.2006

HELEINEI UNIVERSITY OF TECHNOLOGY Networking laboratory

Lic.(Tech.) Marko Luoma (3/23)

Terminology

- **Connection**: is dynamically formed reservation of network resources for a period of time.
 - Connection requires a state to be formed inside the network
 - State is a filter defining packets which belong into particular connection and required reservation attributes
- **Flow:** is formed from arbitrary packets which fall within predefined filter and temporal behavior.
- Packets from one source to same destination arrive to investigation point with interarrival time less than *t* seconds.

HELENKI UNIVERSITY OF TECHNOLOGY Networkig laboraty

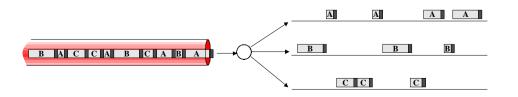
Lic.(Tech.) Marko Luoma (4/23)

Terminology

- Aggregate: is a group of flows which have same forwarding characteristics and share link resources.
- Class: is a group of connections which share same forwarding characteristics.

Lic.(Tech.) Marko Luoma (5/23)

Input processor


- Input processor of Internet router consists several mechanisms
 - Filtering
 - Classification
 - Metering
 - Policing
 - Marking
 - Shaping

Classification

- Classification is process where packets in the packets stream are separated into *n* logically separate packet streams.
- These streams are then treated as separate entities for which different actions are performed
- · Separation is based on filters which match packet content to the filtering rules.

HELEINKI UNIVERSITY OF TECHNOLOGY Networking labramay

Lic.(Tech.) Marko Luoma (6/23)

Classification

- Individual connections can be recognized by looking sufficient number of protocol fields.
- This is used in **Integrated Services** architecture.
- IntServ uses reservation protocol for informing the network about fields which should be examined.
- If per connection accuracy is not needed or can not be feasibly implemented is aggregate based operation the answer.
- This is used in **Differentiated Services** architecture.
- Aggregate is based on static filters covering broad range of different connections i.e. aggregating connections to one logical unit

Lic.(Tech.) Marko Luoma (8/23)

Filtering

- Commonly filters are based on IP packet / transport header information
 - IP addresses
 - Protocol information
 - DSCP-field

Version	IHL	ToS / DSCP	Length				
	Identification			Flags Offset			
Т	TTL Protocol		Checksum				
	Source Address						
	Destination Address						
Options					Padding		
Source Port			Destination Port				

- Port informationLength information
- Generally any fixed block of bits can be used as a filter
- Commonly used notion for filter ->Five tuple = (SourceIP, DestinationIP, Protocol, SourcePort, DestinationPort)

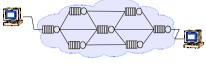
Lic.(Tech.) Marko Luoma (9/23)

Service Level Management

- QoS based networks need careful management
- Network level

Packet level

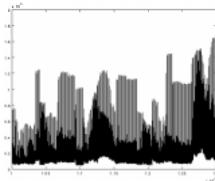
- Customer level / connection level
- How to provision the network so that there will not be unnecessary queuing or packet loss
- How to control the amount of traffic that gets into the network



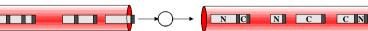
Lic.(Tech.) Marko Luoma (10/23)

Service Level Management

- Overall objective is to offer QoS and/or maximize network throughput
- This requires
 - Limiting user traffic to the level that individual links operate on optimal fashion
 - Individual links can not be fully utilized
 - · Unequal capacities
 - · Uncertainty of paths
 - Uncertainty of demands


Lic.(Tech.) Marko Luoma (11/23)

Rate Control


- Task is to decide which user packets should be delivered into the network and on what priority (mark)
 - They do not violate QoS management principles within the network by overloading the network
- Rate control operates in three levels
- Measures the traffic
- Compares the measured information to information in user / network policy
- Executes policy based on comparison results
 - Marking
 - Dropping
 - Shaping

- User traffic process is largely dependent on application which is used.
 - Some applications produce constant traffic stream
 - · Fixed size packets
 - Constant interarrival times
 - Other may produce bursts of packets
 - Variable size packets
 - Variable interarrival times

Lic.(Tech.) Marko Luoma (12/23)

Lic.(Tech.) Marko Luoma (13/23)

Rate Control

• Objectives:

- Simple
 - Easy algorithm
 - Few parameters
- Accurate
 - Actions are correct
 - · Actions are transparent
 - Actions are immediate
- Predictable
 - Action are consistent from time to time

- Parametrization of user traffic
 - Either flow level
 - Or Aggregate level
- This is bound to SLA made with the ISP

HELEINKI UNIVERSITY OF TECHNOLOGY

Lic. (Tech.) Marko Luoma (14/23)

Metering

- Packet stream is measured to find out some of the following parameters:
 - *Peak rate* maximum rate on which user is sending
 - Sustained rate average rate on which user is sending
 - Burst size maximum burst size which user sending on either with peak or average rate
- Actual measurement of information may be based on
- Continuous time measurement
- Discrete event analysis
- Window based analysis

Lic.(Tech.) Marko Luoma (15/23)

Token Bucket

(R)

Produces information whether arrival *Initial condition*: rate is more or less than the threshold Number of Tokens = S

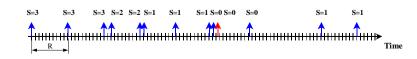
- Algorithm is based on
 - Number of tokens in token bucket (in bytes)
 - Arrival time (T_{Now}, T_{Last Arrival})
- Two limiting parameters
 - Bucket size (S)
 - Token rate (R) * token size

Upon each arrival : $\bar{Increment} = TokenSize \cdot R \cdot (T_{Now} - T_{Last Arrival})$ Decrement = PacketLength Conformance = Number of Tokens + Increment - Decrement if Conformance ≥ 0 then Number of Tokens = min(S, Conformance)

else Number of Tokens = min(S, Number of Tokens + Increment)

HELSINKI UNIVERSITY OF TECHNOLOGY

Lic.(Tech.) Marko Luoma (16/23)

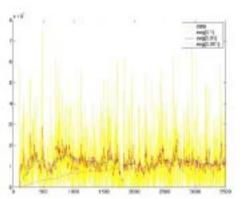

Token Bucket

• Example:

- R=10

- S = 3

- In ideal situation
 - Packets arrive with intervals of token generation rate (R)
 - Packets are size of token - Variation of arrivals is
 - compensated with bucket size (S)
 - Allows bursting



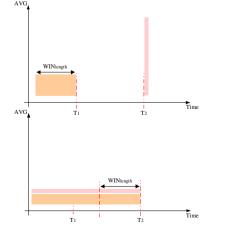
Lic.(Tech.) Marko Luoma (17/23)

Packet per packet EWMA meter

- Measures packet stream by using exponentially weighted moving average filter.
 - Tunable by parameter
 - Memory (ϵ)

Initial condition: avg(0) = 0After every packet arrival $avg(n+1) = (1-\epsilon) \cdot avg(n) + \epsilon \cdot \frac{PacketLength}{t_{n+1}-t_n}$

Lic.(Tech.) Marko Luoma (19/23)


Time Sliding Window Meter

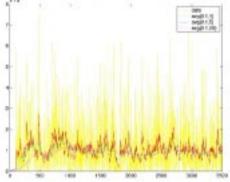
- TSW is memory based, windowed average rate estimator
- Tunable by parameter

Window length

Initial condition:

avg(0) = 0 $Win_{length} = C$ $T_{front} = 0$ After every packet arrival : $Bytes_{TSW} = avg(n) \cdot Win_{length}$ $New_{bytes} = Bytes_{TSW} + PacketLength$ $avg(n+1) = \frac{New_{bytes}}{T_{now} - T_{front} + Win_{leght}}$ $T_{front} = T_{now}$

Lic.(Tech.) Marko Luoma (18/23)


Windowed EWMA meter

- Measures packet stream by using exponentially weighted moving average filter with sampling window.
 - Tunable by parameters
 - Memory (ϵ)

٠

• Sampling interval (ΔT)

Initial condition : avg(0) = 0After every ΔT time units $avg(t_{n+1}) = (1-\epsilon) \cdot avg(t_n) + \epsilon \cdot bytes during[t_{n+1}, t_n]$

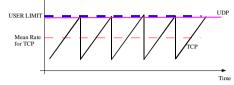
Metering

- Based on the measured information a conformance statement is declared
- Conformance is the observation whether the measured variable is within predefined boundaries.
- Customer has contracted rate of X bps with variation of x bps
- Customer has contract of average rate *X* bps and peak of *Y* bps. He is allowed to send bursts of *Z* kB in peak rate.

Lic.(Tech.) Marko Luoma (21/23)

Conformance algorithms

- Strict conformance
 - Packets exceeding contracted rate are marked immediately as nonconforming
- TSW conformance
 - Packets exceeding 1.33 times contracted rate are marked as non-conforming
- Probability conformance
 - Packets exceeding contracted rate are marked as non-conforming with increasing probability


A	
Q	HELENKI UNIVERSITY OF TECHNOLO Networking laboratory

Lic.(Tech.) Marko Luoma (22/23)

Rate Control Problems

Sending Rate

- Two parallel transport protocols with contradicting control:
 - UDP with no control
 - TCP with additive increase exponential decrease rate control
- **Problem:** Metering system cannot easily offer fair service to both TCP and UDP clients in the same system.

Lic.(Tech.) Marko Luoma (23/23)

Marking

- Marker is used to attach conformance / class information to every packet.
- Marker uses IPv4 TOS/DSCP field to convey information for other processing elements in the network.

- TOS

- Prec: 3 bit priority
- TOS: user preference for routing
- DSCP
 - · Class and precedence

Versio Hlen TOS		Length			
Ident		Flags Offset	t		
TTL Protoco		Checksum	Checksum		
SourceAddr					
Destination	Addr 🛛 🔪	<			
Options (va	riable)		PAD		
		Pr	ec. TOS 0		