

RSVP and other methods of QoS provisioning

Lecture for QoS in the Internet –course 24.11.2004 Mika Ilvesmäki

Mika Ilvesmäki, D.Sc. (Tech.)

RSVP in a nutshell

- In IntServ applications have to set up a reservation before transmitting traffic
 - RSVP is a signaling protocol for applications to reserve resources by setting up state in hosts and routers
 - but not necessarily only in IntServ
 - RSVP is a state establishment and maintenance protocol

Knowledge gain for this lecture

- · After this lecture you will
 - Be able to explain RSVP design goals, actual design, RSVP properties and shortcomings in the design
 - Be able to explain how RSVP functions and what different types of reservations are and how they differ from each other
 - Be able to explain alternative uses for RSVP and RSVP-TE
 - Be able to explain what CR-LDP is and how it compares to RSVP

HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

RSVP design goals

- Heterogeneous receivers
 - Receiver oriented reservation style
- Dynamic membership
 - Data transfer is not controlled by RSVP
- Sharing of resources
 - Reservation styles (WF, FF, SE)
- Adaptation to network dynamics
 - Soft-state approach
- Independence of architectural components
 - Flow specs, admission control, packet classification, scheduling, routing
- Controllable (and modifiable) protocol overhead
 - Refresh period parameter

RSVP design

- Not a routing protocol
 - designed to operate with current and future routing protocols
- · Policy independent
 - RSVP is independent of the service architecture
- · Soft state
 - times out unless state is refreshed
 - allows for state modification (original and refresh messages identical)
- Transparent operation through Non-RSVP clouds
- · Reservations may be shared or not

Mika Ilvesmäki, D.Sc. (Tech.)

RSVP properties

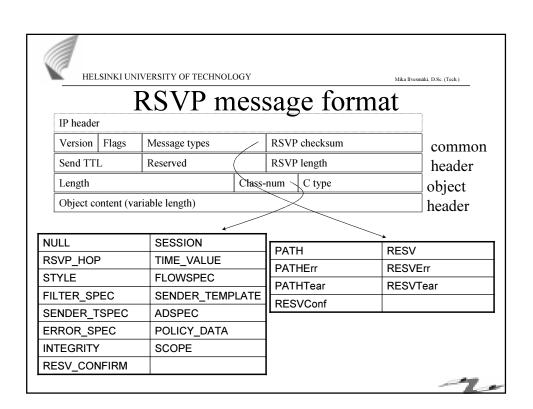
- · End-to-end
 - requests from applications
- · Per-flow method of signaling
 - fine-granularity
- Originally intended for IP multicast
 - receiver-oriented setup
 - reservations are one-way only

Method of establishing flow state

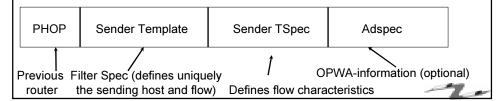
- sender sends a PATH –message to the receiver specifying the traffic characteristics (Tspec) and setting up the path (path state)
- receiver responds with RESV-mest to request resources for the flow Respective responds with RESV-mest responds with RESV-mes

Mika Ilvesmäki, D.Sc. (Tech.)

Soft state


- RSVP sends (by default) PATH and RESV messages periodically
 - If states are not updated regularly they time out.
- PATH refreshes make it possible to adapt to path/(multicast distribution tree) property changes
- RESV refreshes may incorporate changes altered reservations -> adaptive QoS
 - Old reservations die out, no additional state maintenance

RSVP messages


- Sent either as raw IP (protocol 46) or in UDP
- PATH
 - sent downstream along the data path installing path state
- RESV
 - reservation requests sent by the receivers

PATH-message

- Sent by the source
- · Includes flow identification and flow characterization
- Sets up PATH-state in the router
- Note: RSVP does not restrict a source from transmitting data even without any receiver having made reservation setup

Mika Ilvesmäki, D.Sc. (Tech.)

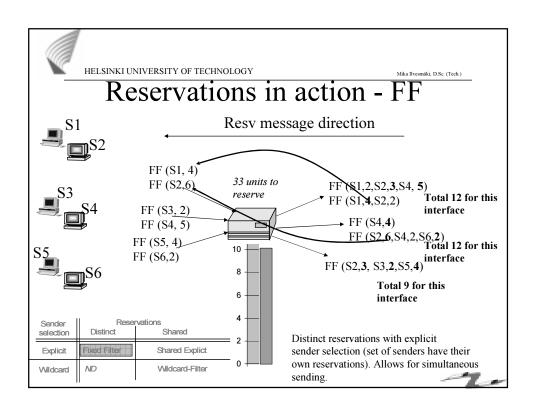
- RESV-message
 Sent by the receiver to reserve resources
- Contains the flow characterization and filter specification (reservation type, WF, FF, SE)
- Sets up RESV-state in the router
- Flowspec may include
 - Tspec (both Guaranteed and Controlled-load)
 - Rspec (only in Guaranteed service)

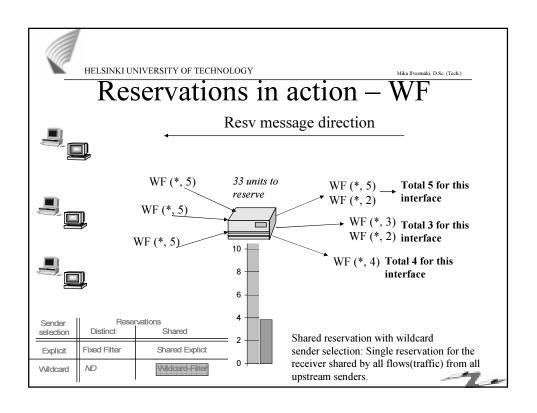
Flowspec	Filter Spec	
1		
Defines flow characteristics that will	Defines flow id	
be requested from the routers	(or sender/senders)	-7

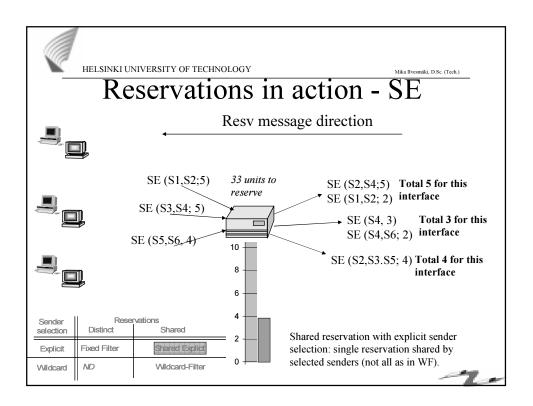
Reservation types

- · Three reservation types are defined
 - Wild-card filter
 - Fixed-Filter
 - Shared-explicit
- · WF and SE are designed for multicast

Sender selection	Reservations	
	Distinct	Shared
Explicit	Fixed Filter	Shared Explict
Wildcard	ND	Wildcard-Filter


HELSINKI UNIVERSITY OF TECHNOLOGY


Mika Ilvesmäki, D.Sc. (Tech.)


Reservation merging

- · Reservations may be shared or merged
 - Depending on the reservation type and possible only within same type
 - router calculates the filterspec and flowspec to be sent to previous hop(s) according to reservation type
 - Reservation messages (RESV) propagate only as far as reservation request meets an existing distribution tree with sufficient resources. (Reservation merged).

Adspec

- optional object in the PATH-message
- · Consists of
 - default general parameters
 - Guaranteed Service fragment
 - Controlled Load Service fragment
- advertise receivers the characteristics of the end-to-end path

Adspec – Default general parameters

- Minimum Path Latency
- Path bandwidth
- · Global break bit
 - cleared when Adspec is created by the sender
- IntServ Hop Count
- PathMTU

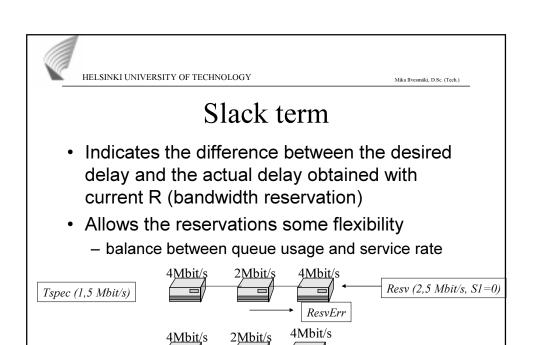
Mika Ilvesmäki, D.Sc. (Tech.)

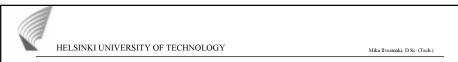
Adspec – Guaranteed Service fragment

- · Ctot, Dtot, Csum and Dsum
- · Guaranteed Service break bit
- Guaranteed Service General Parameters
 - overrides the values in default general parameters

Adspec – Controlled load service fragment

- Controlled-load service break bit
- Controlled-load service general parameters
 - overriding those presented in default general parameters




Mika Ilvesmäki, D.Sc. (Tech.)

OPWA

- · One pass with advertise
 - Sender includes Adspec in the PATH-message
 - with the aid of Ctot and Dtot the receiver is able to determine the path characteristics and form a more accurate RESV-message
 - receiver includes R and S (the slack term) in the RESV-message Rspec
 - Rspec includes also reservation type, filter specification, flow specification with Tspec and Rspec
- Without Adspec we have OP (One pass) and the RESV-message includes only the Tspec

Resv (3 Mbit/s, S1>0)

Resv (2 Mbit/s, S2=S1-di>=0)

Confused?

- PATH(Tspec) describes how the traffic will behave
 - PATH will also establish the route
- The receiver calculates (maybe based on Adspec) what kind of reservations have to be made and puts this reservation request into RESV(Rspec)
 - RESV will make the reservations on the route

RSVP problems

- Implementation
 - RSVP is somewhat vague in its definitions and therefore difficult to implement consistently
 - · RSVP API found in latest MS Windows APIs
 - · compatibility between operating systems
 - For IntServ to function every node on the path must implement the IntServ functionality
 - especially true for the Guaranteed service

HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

Alternative uses of RSVP and future issues

- RSVP-TE
 - RSVP with traffic engineering extensions
- Hierarchical RSVP
 - reserve large pipes, classify packets to pipes at the edge.
 - reduction of reservation state, fewer choices for packet scheduling but still looking at the source and destination
- Accounting and billing need to be integrated
- Authentication issues need to be resolved

Using RSVP-TE for label distribution in MPLS

- · New functions:
 - Label distribution
 - Explicit routing, rerouting, route tracking
 - Bandwidth/Resource reservation
- · New objects
 - PATH-message
 - LABEL_REQUEST
 - EXPLICIT_ROUTE
 - RECORD_ROUTE
 - SESSION ATTRIBUTE
 - RESV-message
 - LABEL
 - RECORD_ROUTE

Mika Ilvesmäki, D.Sc. (Tech.)

RSVP-TE in action

- Addition of Label_request –message in RSVP PATH-message
 - Downstream label allocation
- Addition of Label –object to be carried in RSVP RESV-message
 - Labels propagate upstream in the RESVmessage
- LSPs are set up with FF-reservation

Domain wide QoS

- a.k.a Constraint based routing (CR) or QoS routing (QoSR)
- Calculate the route so that multiple constraints are met and that the route is optimal for every constraint
 - Constraints: delay, bandwidth, etc. and/or administrative
- Problems: route oscillation, path capacity
- Could be used together with a signalling protocol (RSVP or CR-LDP) that has knowledge on the constraint values

Mika Ilvesmäki, D.Sc. (Tech.)

CR-LDP

- LDP (label distribution protocol) is defined for distribution of labels in MPLS-networks.
 - Constraint-based Routing LDP (CR-LDP) uses information not available for routing protocols when setting up the paths.
 - Explicitly routed LSPs
- CR-LDP is simple, scalable (TLV), open and non-proprietary signalling protocol

CR-LDP and QoS

- · Strict and loose explicit routing
 - Route pinning
- Specification of traffic parameters (peak rate, delay variation...)
- Use of resource classes (instead of traffic parameters)
- LSP pre-emption
 - Set-up priority better than holding priority may preempt an existing LSP

HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

Comparing RSVP_TE and CR-LDP

- Both can be used to establish LSPs
- CR-LDP works over TCP, RSVP works over IP (or UDP)
- Direction of resource reservations is different

Property	CR-LDP	RSVP_TE
Transport mechanism	Transport on TCP (reliable)	Raw IP packets (unreliable)
State management	Hard state	Soft state; needs per-flow refresh management
Msgs required for LSP set-up and maintenance	Request, mapping	Path, Resv, Resv_Conf
Base architecture	Based on LDP for MPLS	Based on RSVP, may require major changes
Signalling of QoS and traffic parameters	Can signal DiffServ and ATM traffic classes	Extendable, currently based on IntServ
Types of LSPs	Strict, loose, and loose pinned	Strict and loose, no pinning
Models of label distribution and LSP set-up	All modes	Only downstream on demand
Failure notification	Reliable procedure	Unreliable procedure
Loop detection/prevention	Employs path vector TLV to prevent Label Request Hops. Hop Count TLV used to find looping LSPs	May be done using Record_Route -object