



C

CC

Commonly used notion for filter ->Five tuple = (SourceIP, Protocol, SourcePort, DestinationPort)





Lic.(Tech.) Marko Luoma (13/23)

### Rate Control

#### • Objectives:

- Simple
  - Easy algorithm
  - Few parameters
- Accurate
  - Actions are correct
  - · Actions are transparent
  - Actions are immediate
- Predictable
  - Action are consistent from time to time



Lic.(Tech.) Marko Luoma (15/23)

## **Token Bucket**

(R)

Upon each arrival :

*if* Conformance  $\geq 0$ 

*Decrement* = *PacketLength* 

 $\bar{Increment} = TokenSize \cdot R \cdot (T_{Now} - T_{Last Arrival})$ 

then Number of Tokens = min(S, Conformance)

Conformance = Number of Tokens + Increment - Decrement

else Number of Tokens = min(S, Number of Tokens + Increment)

N C N C N

Produces information whether arrival Initial condition: rate is more or less than the threshold *Number of Tokens* = *S* 

- Algorithm is based on
  - Number of tokens in token bucket (in bytes)
  - Arrival time (T<sub>Now</sub>, T<sub>Last Arrival</sub>)
- Two limiting parameters
  - Bucket size (S)
  - Token rate (R) \* token size

### • Requires:

- Parametrization of user traffic
  - Either flow level
  - · Or Aggregate level
- This is bound to SLA made with the ISP

HELSINKI UNIVERSITY OF TECHNOLOGY

Lic.(Tech.) Marko Luoma (14/23)

### Metering

- Packet stream is measured to find out some of the following parameters:
  - *Peak rate* maximum rate on which user is sending
  - Sustained rate average rate on which user is sending
  - Burst size maximum burst size which user sending on either with peak or average rate

- Actual measurement of information may be based on
  - Continuous time measurement
- Discrete event analysis
- Window based analysis



Lic.(Tech.) Marko Luoma (16/23)

### **Token Bucket**

• Example:

- R=10

-S=3

- In ideal situation
  - Packets arrive with intervals of token generation rate (R)
  - Packets are size of token - Variation of arrivals is compensated with bucket size **(S)** 
    - Allows bursting

S=3 S=2 S=2 S=1 S=1 S=1 S=0 S=0 S=0 S=3 S=1 S=1 Time







Lic.(Tech.) Marko Luoma (21/23)

## Conformance algorithms

#### • Strict conformance

 Packets exceeding contracted rate are marked immediately as nonconforming

#### • TSW conformance

- Packets exceeding 1.33 times contracted rate are marked as non-conforming

#### Probability conformance

Packets exceeding contracted rate are marked as non-conforming with increasing probability

HELSING UNDERSITY OF TECHNOLOGY Networking laboratory

Lic.(Tech.) Marko Luoma (22/23)

## **Rate Control Problems**

Sending Rate

- Two parallel transport protocols with contradicting control:
  - UDP with no control
  - TCP with additive increase exponential decrease rate control
- **Problem:** Metering system cannot easily offer fair service to both TCP and UDP clients in the same system.





Lic.(Tech.) Marko Luoma (23/23)

# Marking

- Marker is used to attach conformance / class information to every packet.
- Marker uses IPv4 TOS/DSCP field to convey information for other processing elements in the network.

- TOS

- Prec: 3 bit priority
- TOS: user preference for routing
- DSCP
  - · Class and precedence

|                    |      | $\sim$   | <u> </u>     |          |
|--------------------|------|----------|--------------|----------|
| Versio             | Hlen | TOS      | Length       |          |
| Ident              | ```  | $\sim$   | Flags Offset |          |
| TTL                |      | Protocol | Checksum     |          |
| SourceAddr         |      |          |              |          |
| DestinationAddr    |      |          |              |          |
| Options (variable) |      |          | $\backslash$ | PAD      |
|                    |      |          |              |          |
|                    |      |          | Pre          | c. TOS 0 |