1. Show that the Bayan, baseline, and omega networks (slide L4-48) have the self-routing property.
2. For the 8×8 Benes network, use the looping algorithm to find the paths for the following permutation:

input	1	2	3	4	5	6	7	8
output	3	6	2	1	8	4	5	7

3. Consider the following scale up by a factor of l for a three stage factoring of a rearrangeable network via $N=p \times q$ as shown in slide 3-68. Suppose now we replace each edge by l edges, each $p \times p$ switch by an $l p \times l p$ switch, and each $q \times q$ switch by $l q \times l q$ switch. Show that the resulting $l N \times l N$ switch is rearrangeable. Furthermore, show that the above scale up has unneccessary crosspoints for constructing $l N \times l N$ rearrangeable network. (Hint: Consider an equivalent $l N \times l N$ Clos network.)
4. Consider a symmetric $6 \times 6 \mathrm{SSS}$-switch where 1 st and 3 rd stages are composed of 2×2 switching blocks.
(a) Determine the size and number of 2nd SBs.
(b) Draw a graph presentation for the switch.
(c) Allocate paths for connections $t_{1} \rightarrow r_{3}, t_{2} \rightarrow r_{6}, t_{4} \rightarrow r_{1}$, and $t_{6} \rightarrow r_{5}$.
5. A 2×2 crossbar has 4 crosspoints. How many crosspoint settings (valid and invalid) there are? Use the results of Ex-2 b) and c) to determine how many legimate point-to-point and multicast connection patterns there are. Give the crossbar setup for connection patterns as logical truth tables (' 0 ' crosspoint open, ' 1 ' crosspoint connected).
