
© 2010 Jörg Ott & Carsten Bormann 1 

Assignment 1: 
Chunked File Transfer (CFT) 

Design a protocol 
Specify the protocol 
Implement the protocol 

© 2010 Jörg Ott & Carsten Bormann 2 

File Pull: CFT 

  Scenario: a file server offers files for partial download 
  Like in the web (e.g., HTTP Range: header) 
  Example: large source distributions 
  Files may be structured (you don’t need to worry about the structure) 
  Clients can request all or parts of a file 

  “RETRIEVE 16384 – 32768” 
  “RETRIEVE 0 – 65536” 
  “RETRIEVE 131072 – ” 
  “RETRIEVE 0 –”  

  File content retrieval shall be according to a certain chunk size 
  Fixed or dynamic (up to you) 

  The chunk size and the retrieval part need not agree 
  E.g., chunk size 1024 bytes 
  RETRIEVE 300 – 1500 
  Needs to be handled by the receiving client (not a protocol issue) 

  Clients allow for complementary download in several passes 



© 2010 Jörg Ott & Carsten Bormann 3 

File Pull: CFT 

File 
storage 

CFT 
server 

CFT 
client File Y [chunk a] 

RETRIEVE file Y [chunk a] 

RETRIEVE file Y [x – y] 

© 2010 Jörg Ott & Carsten Bormann 4 

File Pull for CFT 
  “Reliable” transfer of a file part from one source to a destination 

  Individual transfers 
  Client mode operation 

  Initiate a transfer of part of a file from a server: receive data 
  Server mode of operation 

  Wait for requests from a client 

  File transmission shall take place in chunks that are individually requested 
  They may be in parallel, pipelined, or serially 

  File chunk transmission should be reliable 
  File chunk transmission should be somewhat performant 
  File identification to be conveyed (i.e., the file name) 
  File chunk identification to be chosen and conveyed (per file) 

  Needs to be persistent across multiple download 
  File and chunk validation information (e.g., a checksum) 
  Other information? 

  Support “simulated” packet loss 
  Independently on both sender and receiver side 



© 2010 Jörg Ott & Carsten Bormann 5 

Some Issues to Consider 
  How do chunk retrieval and delivering individual chunks interact? 

  How to pace chunk retrieval and data delivery 

  How to transmit data reasonably efficiently?  
  Keeping the link/path busy 

  How to do error handling? 
  File does not exist? 
  Chunk beyond EOF? 

  How to deal with failed file transfers? 
  What is a failed file transfer? 
  How and when do you declare something failed? 

  Client side handling 
  How to know the file size if no range is specified by the user? 
  Complementary downloads across multiple runs?  (like FTP) 

  What happens if the file changes on the server side?  How to find out? 
  Chunk and retrieval demands do not match? 

© 2010 Jörg Ott & Carsten Bormann 6 

CFT: Design and Specification 
  Document (and motivate!) your design decisions 

  There are many possible approaches 

  Write up a short specification for your protocol 
  Include sufficient detail so that one can understand and implement from it 
  Litmus test 

  Design together in your group 
  One or two of your group writes part of the spec 
  The other(s) try to understand it 
  Be critical: ask yourself what is really written there (as opposed to what might be meant) 

  No need to exaggerate on the spec though 

  Do a short version for group discussion first: 3 – 4 slides 
  Send to us by 30 March 2010, 16:00 EET 
  Group discussions on 30 March, 16 – 18 E110/E111 

  Update and complete your spec based upon feedback 
  Hand in the written spec by 9 April 2010 (hard deadline) 
  Try to implement your spec by 16 April 2010 (soft); needed for 2nd assignment 



© 2010 Jörg Ott & Carsten Bormann 7 

CFT: Implementation 
  Realize your protocol specification in some language 

  Write a single program that can act as both sender and receiver 
  Distinguished by command line options 

  Simulate your own packet losses 
  Trashing packets in your code before sending or after receiving 

  Test it! 
  Does it “comply” with your spec 

  Document what you did and what you learned 
  How is your program structured? 
  Which were the major implementation issues? 
  Did you have to adjust your spec during the implementation? 
  What would you do differently if you started all over again? 

© 2010 Jörg Ott & Carsten Bormann 8 

Packet loss simulation 
  Choose a simple Markov chain 

  Then, we can play with dependent and independent losses 

Lost Not Lost 

1-q 

p 

1-p q 



© 2010 Jörg Ott & Carsten Bormann 9 

cft [-s] [-t <port>] [-p <p>] [-q <q>] 
cft <host> [-t <port>] [-p <p>] [-q <q>] [–r start:end] <file> 

-s:  server mode: accept incoming files from any host 
 Operate in client mode if “–s” is not specified 

<host>  the host to send to or request from (hostname or IPv4 address) 
-t:  specify the port number to use (use a default if not given) 
-p, -q:  specify the loss probabilities for the Markov chain model 

 if only one is specified, assume p=q; if neither is specified assume no loss 
-r:  range of data to retrieve; all if not specified 
<file>  the name of the file(s) to send 

Further options may be useful; up to you. 
Remember to do report errors (locally and across the network) as needed. 
You may want to do something useful if the user aborts either process (Ctrl-C). 


