
© 2010 Jörg Ott & Carsten Bormann 1

S-38.3159

Protocol Design

2009–2010, 4th period

Jörg Ott jo@netlab.tkk.fi SE 324
[Carsten Bormann cabo@tzi.org]
Varun Singh varun@netlab.tkk.fi SE 325

© 2010 Jörg Ott & Carsten Bormann 2

General
  Architectures, mechanisms, principles, issues, and pitfalls for

protocol design from a conceptual viewpoint (examples!)
(taking an Internet perspective)

  Lectures: Tuesday, 14 – 16, S1 and Thursday, 12 – 14, S2
  Exercises (assignment discussion): Tuesday 16 – 18, E110/111

  Will be explicitly announced

  Prerequisites
  S-38.(2)188 (or equivalent knowledge)
  Further background in looking at or working with protocols desirable
  Interest in protocols and their technical realization
  Substantial coding skills (no novice in C/C++, Java, … for communications)
  Unix programming, network programming

  Suitable for graduate and postgraduate studies: 5 ECTS points

© 2010 Jörg Ott & Carsten Bormann 3

Teaching: Lectures and Responsibility

 Jörg Ott Carsten Bormann

© 2010 Jörg Ott & Carsten Bormann 4

Teaching: Exercises and Support
 Varun Singh
 (C / C++)

© 2010 Jörg Ott & Carsten Bormann 5

Theoretical and Practical Assignments
  3 Assignments

  Practical Assignments with theoretical documentation / motivation
  The practical coding assignments building on top of one another
  Create the structure of a communication application
  Deal with socket i/o and related system calls
  Support parameterization and some visualization (no GUIs!)
  Make design choices for a small protocol (and possibly regret them later)
  Document (motivate and defend) parts of your design in writing

  C/C++, Java, Perl, Ruby, … (choose your favorite language) code
  Write portable applications to be run on machines in a university computer pool (Maari-A)

  Small groups: 2 or 3
  Send one email per group in exactly the following format (one line per group member)

“Last name:First name:IDs:email address”

  Completion: usually 2 weeks, last one until 29 May 2010 (no extensions!)
  Send email with tgz or zip archive of source, build environment
  Result review yet to be decided

© 2010 Jörg Ott & Carsten Bormann 6

Assignments
1.  Design

  Develop and specify a protocol to achieve a certain task
2.  Implementation (and validation)

  Implement a small protocol specification
  Review with the teaching assistants

3.  Analysis
  Closer to the end of the course
  Analyze an IP-based protocol with respect to the protocol design aspects we will have

discussed
  Keep in mind the Internet architecture and design principles

  All assignments must be completed
  Grading of assignments based upon all assignment parts

  Will add points to the final exam

  50% of the points from the assignments required to pass

© 2010 Jörg Ott & Carsten Bormann 7

Assignments and Exercises
  Group discussion on the assignments

  Prepare your contributions as slides and send them to us before

  Discuss your ideas with the others

  Give feedback, improve upon feedback

  Don’t just replicate other ideas – stick to your own and make it
better

© 2010 Jörg Ott & Carsten Bormann 8

Exam
  18 May 2010, 13 – 16, A202

  8 tasks (classified into categories a, b, and c)
  4–5 type a: relatively short answers (mostly knowledge)
  2–3 type b longer answers
  1 type c: small design and/or analysis task

  50% of the points required to pass

  3 hours time

  Hints in the last lecture (6 May 2010)

  Total grade based upon the exam plus assignments
  60 – 75% exam
  25 – 40% assignments

© 2010 Jörg Ott & Carsten Bormann 9

Material
  Slides will be online as PDF

  Primary literature: RFCs, Internet Drafts, research papers
  We will point to some recommended ones for studying
  Do-it-yourself: google, ACM & IEEE digital library, …

  Books
  There are some old ones (beginning to middle of the 1990s)

  Different focus than the course: mostly on mechanics and approaches
  Not so much about design principles and experience

  Sometimes individual chapters in books have useful contents
  Example: Radia Perlman: Interconnections: Bridges, Routers, Switches, and

Internetworking Protocols, 2nd Edition, 1999. Chapter 18 (available online)

© 2010 Jörg Ott & Carsten Bormann 10

Relation to other Comnet Courses
  38.(2)188: Computer Networking: prerequisite

  Some minor overlap (when repeating some stuff)

  38.(3)115: Signaling Protocols: complementary
  38.3152: Networked Multimedia Protocols and Services: complementary

  Can be done before or afterwards
  Helpful if done before

  S-38.3151: Delay-tolerant Networking
  Lecture with (practical) assignments, next term, 1st period
  Looks at particular environments for different style of protocol design

  S-38.3155: Seminar on Challenged Networks
  Postgraduate seminar, Spring term 2010, 3rd period
  Addresses specific subject matters of delay-tolerant and other challenged networks

  S-38.4043: Seminar on Network Economics
  Depending on the topic a very good complement on market aspects and deployment

© 2010 Jörg Ott & Carsten Bormann 11

Contents 1
1.  State sharing and reliability

2.  Scalability concerning many dimensions

3.  Resource consumption and fairness (network and endpoints)

4.  Naming and Addressing

5.  Protocol syntax and encoding

6.  Security 1: Robustness

7.  Security 2: Protocol Design Techniques

8.  Intermediaries: NATs/firewalls (+ proxies, gateways, routers)

9.  End-to-middle signaling

© 2010 Jörg Ott & Carsten Bormann 12

Contents 2
10. Interoperability, Evolveability

11.  Internet design principles (and their evolution)

12. Taking protocols to the real world

13. Considerations on specific link layers and networks

14. Meta-aspects of design: financial, political, human

15. Case studies

16. Future in protocol design and future Internet architectures

© 2010 Jörg Ott & Carsten Bormann 13

Further Information
  Course web page

  http://www.netlab.tkk.fi/opetus/s383157/2010/index.html
  (yes, the old course number is correct in this link)

  Noppa page in progress (slides and material will show up here)

  Newsgroup
  opinnot.sahko.s-38.tietoverkkotekniikka

  Material and other resources will be placed on the course page

  Important: don’t try to learn just from the slides!

  Feedback is always welcome at any time!

© 2010 Jörg Ott & Carsten Bormann 14

Protocol Design

Overview and Course Focus

© 2010 Jörg Ott & Carsten Bormann 15

Motivation: Why Protocol Design?
  New applications appear all the time – more and more net-based
  Within applications, functional decomposition and distribution

makes protocol design an inherent part of system design

  Evolution of communication technology incurs new demands
  Environmental changes require reconsidering the design of

existing protocols
  Migration (aka “convergence”) requires re-thinking solutions to old

problems for a new environment (e.g. IP telephony, IPTV)

  Vast variety of problems and solutions
  Simple (e.g., just use RPC) vs. complex (BGP-4 for telephone numbers)
  All layers (from wireless MAC to QoS to autoconfiguration to applications)
  Closed environments (within a product) to open standards

© 2010 Jörg Ott & Carsten Bormann 16

What is Protocol Design?
  Many possible views

  Mathematical modeling
  Design and correctness proofs

  Protocol engineering process
  Management and process aspects of protocol design (software engineering view)

  Building blocks and design patterns
  Mechanisms for certain functions in creating protocols

  Tool chains for protocol specification, implementation, and validation
  Automating the creation process (but not the conceptual thinking)

  …
  We are interested in

  Why some designs work better (get accepted) than others (which don’t)
  Ideas of what is known as good practice beyond the engineering literature
  Understanding relationship between functional and non-functional aspects
  Considering some non-technical real-world aspects as well

© 2010 Jörg Ott & Carsten Bormann 17

Conceptual design Tools (mechanical design)

Devising technologies Applying technologies

ea
rli

er

la
te

r

Sample Protocol Design Process

Requirements

Design and validation

Maintenance

Implementation

Test & Validation

(just a random diagram – variation of the waterfall model)

© 2010 Jörg Ott & Carsten Bormann 18

Requirements Aspects
  Understanding which problem to solve

  Real problems vs. thoughts about solutions in search for a problem
  Understanding the requirements

  Functional: features, security, …
  Non-functional: scale, operational aspects, time-to-market, cost

  Understanding the constraints
  Functional: operational environment
  Non-functional: cost, weight, energy consumption, memory, CPU, …

  Understanding the acceptable tradeoffs
  Must vs. nice-to-have

  Is this some special case of a more general problem?
  If so: does the problem become simpler by generalizing?

 If not, is the more general problem worth solving?

© 2010 Jörg Ott & Carsten Bormann 19

Some General Protocol Design Aspects (1)
  Design scope

  Part of a specific application design
  Creation of a platform for a competitive environment

  Design target
  Complete solution, e.g., for an application
  Creation of building blocks targeted at flexible re-use
  Use of building blocks or technologies to create a particular solution

  Important design decision: Make or take
  Re-use existing technologies (accept less than 100% match)

  Benefit from experience, code, etc.
  But: who has change control, how long will the technology be supported,

does it really fit, will both protocols evolve in parallel, …?
  Create new technology from scratch (accept higher risk, longer time to market)

© 2010 Jörg Ott & Carsten Bormann 20

Some General Design Aspects (2)
  Learning from solutions to related problems

  Borrow concepts and mechanisms – but only where applicable!
  Avoid mistakes. Look at real-world deployments before borrowing
  Yet avoid the “second system syndrome”

  Remember requirements during the design phase

  Some simplified meta rules (“protocol folklore”)
  Optimize for the common case (if at all)
  Don’t overengineer – Keep it simple stupid (KISS)
  Avoid options and parameters
  Remember that it needs to be implemented in the end
  80 – 20 rule

(we will address these and more such issues during the course)

© 2010 Jörg Ott & Carsten Bormann 21

Some General Protocol Design Aspects (3)
  Separation of concerns

  Treat and solve independent aspects independently
  Caveat: what is really independent?

  (Strict) layering
  Block box, well-defined service access points (SAPs) with layer-internal protocols
  Intends to completely shield lower layers and communication details from higher layers

  Leaky abstraction
  Strict layering will not always work, particularly if things go wrong
  Expose issues rather than trying to conceal them at any cost
  Applies to protocol design, to coding (and code generation), and others

  Cross-layer optimization gaining importance
  Deal with dependencies on the lower layers
  Limit: your system is not always directly connected to the weakest link (layer)

© 2010 Jörg Ott & Carsten Bormann 22

Design Validation
  Protocol design is relevant to later protocol validation

  From a correctness perspective
  From a performance perspective
  (from a market perspective)

1.  Correctness of a specification
  May involve formal specification as design methods

  Using your favorite modeling or specification language

  May involve formal proofs
  Mostly for “simple” protocols and problems

2.  Performance of a specification
  Mathematical modeling and analysis
  Evaluation by means of “implementation” and simulation

  Both validations provide important feedback for the design process

© 2010 Jörg Ott & Carsten Bormann 23

Implementation & Validation
  Protocol implementations need to be correct and interoperable

  Beware of specification complexity!
  In some cases, code may be generated from specifications using tools

  Again: validation
  Limited functional validation through testing

  Test cases may be generated from specifications
  Usually cover only usage scenarios of limited complexity (explosion of number of tests)

  Performance validation through emulation and field tests with measurements

  Difficulty: getting even close to the real-world conditions (in the lab)
  True validation will only occur through real world deployment (“in the wild”)
  Different platforms, different implementations, different user behavior, different

environmental conditions, (different interpretations of the spec), …
  Will also tell something about the impact on the network at large

  Implementation experience provides most important feedback

© 2010 Jörg Ott & Carsten Bormann 24

Conformance vs. Interoperability
  Traditional thinking:

  All implementations must conform to specification
  If specification is good, this ensures interoperability
  Tools developed to turn formal specifications into code

  Let’s not talk about efficiency…

  Modern thinking:
  Implementations have errors
  Specifications have errors and ambiguities
  Interoperability is actually more important than conformance

  This includes interoperability with erroneous, but deployed systems

© 2010 Jörg Ott & Carsten Bormann 25

Operations and Maintenance
  Rollout

  Deployment, configuration

  Monitoring
  Protocol and device operation
  Its impact on its environment
  Real feedback about the suitability of a protocol

- 

  Diagnosis, Debugging

  Protocol evolution over time
  To fix bugs
  To meeting changing or new requirements

  To get rid of unnecessary requirements and constraints

  To deal with changing environmental conditions

© 2010 Jörg Ott & Carsten Bormann 26

A Note on Protocols in the Real World
  Protocol design usually makes assumptions

  About the environment it will operate in
  Technical terms: packet network, delay, packet loss, MTU, range of data rate, etc.
  Organization terms: trust, common management, configuration, interaction, etc.

  Lower layer services and characteristics to build upon
  Higher layer applications using it

  Protocols may be successful or even “hyped”
  Examples today: HTTP, SIP, XML, to some extent SOAP, …

  If they are, they will be used outside their specified limits
  In different environments, at different scales, for different purposes, …

  People will blame the designer if they don’t work properly then
  Applicability statements are not necessarily read or adhered to

© 2010 Jörg Ott & Carsten Bormann 27

Some Examples for who does Protocol Design

  A (formal) standards body
  Without link to reality: driven by formal processes and voting
  With link to reality: driven by perceived needs, usually well-defined deliverables
  Worry about network and protocol architecture at large

  An industry consortium to make the market grow
  Driven by (artificial, perceived) deadlines and limited by compromise
  Worry about system architecture in a given market segment (to suit their needs)

  A group in an enterprise trying to get a specific problem solved
  Driven by immediate (and mid-term) customer needs
  Worry about product architecture and environmental constraints

  Researchers/scientists
  Driven by solving complex problems in an elegant way

  May be tempted to get 110% of a solution for some problem aspect (not necessarily for all)
  Biggest potential for long-term architectural thinking (often not considered)

© 2010 Jörg Ott & Carsten Bormann 28

Subject Areas of Protocol Design

  General design space
  Functional building blocks
  Meta design aspects

© 2010 Jörg Ott & Carsten Bormann 29

Protocol Design is about Trade-Offs…
…given sets of requirements and environmental constraints.

  “Good, fast, cheap – pick two, you cannot have all three.”

  Examples
  Reliability vs. delay
  Functionality vs. bandwidth
  Extensibility vs. efficiency
  Functionality vs. simplicity

  Virtually any design decision taken to achieve one goal will
counteract another
  Need to find a reasonable compromise to achieve desired function at

acceptable cost

© 2010 Jörg Ott & Carsten Bormann 30

Where Theory meets Practice…
  Many design rules for protocols can be found

  Mechanisms to achieve certain functionality
  Keep it flexible and extensible
  Make it effective and efficient (optimize)
  Make it resilient
  …

  To be applied wisely (not blindly)
  Considering the trade-offs
  No single rule set will fit all circumstances

  Beware of complexity
  People will blame the their device or technology if the stuff doesn’t (inter)work

  Regardless of where the problem is
  Too expensive or too difficult to use

  Premature [micro-]optimization is the root of all evil (Hoare/Knuth)
  …

© 2010 Jörg Ott & Carsten Bormann 31

Communicating Partners and their Roles (1)
  Point-to-point vs. multipoint communications

  How many parties are involved in the protocol (from a semantics perspective)?

  Unicasting vs. group-overlays vs. multicasting
  What type of information exchange is assumed?

  Client-server vs. peer-to-peer communications
  Are the involved parties “equal” or do they have different responsibilities

  Note: peer-to-peer is more general than today’s widespread “P2P” applications

  In case of groups: are some more important than others?
  More than just two different classes of peers

  Communication among end systems vs. among network elements
  Transport and application vs. routing, network, maintenance protocols

  End-to-middle communications

© 2010 Jörg Ott & Carsten Bormann 32

Communicating Partners and their Roles (2)
  End-to-end vs. intermediaries vs. router-assist

  What kind of entities may, are, or must be involved? Are they “visible” or not?

  Intermediaries: notion depends on the application
  Hidden vs. visible
  Facilitating rendezvous

  SIP servers, mail servers
  Relaying / forwarding functions

  Mail servers, SIP servers, web proxies (firewall traversal)
  Necessary or useful application functions

  Mail servers: storage, protocol conversion, virus checking, …
  Optimization application functions

  Web caches
  Lower layer functions (hidden)

  Firewalls, NATs, …

© 2010 Jörg Ott & Carsten Bormann 33

Identifying Communication Partners
  Names

  Human readable identifiers that can be remembered!
(e.g., DNS name, URI, URN)

  Identifiers
  Machine-processable identifier (e.g., Host Identity, HI)

  Addresses
  Protocol-level identifier (e.g., IP address)

  Locators
  Information about the location of a partner in the network topology

  Different levels: interfaces vs. machines vs. applications vs. users

  Need to be managed (unique assignment)
  Or chosen randomly (and defended) in ad-hoc environments (☇birthday paradox)

  One needs to resolved into the other
  Address books, (distributed) data bases (e.g., DNS, DHTs), protocol exchanges,

caching, (manual) configuration, …

© 2010 Jörg Ott & Carsten Bormann 34

Functional Building Blocks (1)
  Naming and addressing
  Rendezvous or invocation mechanisms

  Semantics and properties of protocol operations
  Idempotent operations, delta vs. full state updates, synchronization, …

  Interaction paradigms
  Synchronous, asynchronous, both
  RPC-style operation vs. event notifications at any time

  Degree of coupling
  How closely have protocol entities to stay in sync?

  Degree of “Reliability”
  Includes flow control, sequence preservation, etc.
  How probable is it that a certain operation will not fail.

© 2010 Jörg Ott & Carsten Bormann 35

Functional Building Blocks (2)
  Multiplexing

  Within the application protocol vs. using lower/requiring higher layer mechanisms

  “Multi-threading”
  Allowing multiple ongoing interactions at the same time
  E.g. lock-step vs. “windowing”

  Security
  Authentication, integrity, non-repudiation (sender, receiver), confidentiality
  Authorization of operations

  (Auto)configuration
  How to get a system into a working condition

  (Mechanics: specification format, notation, syntax, encoding, …)

© 2010 Jörg Ott & Carsten Bormann 36

Meta Aspects of Protocol Design (1)

  Adaptivity
  Capability of adapting to different environmental conditions (typically “QoS”)

(graceful degradation of service as long as acceptable)
  Example: playout delay and codec adaptation with IP multimedia

  Scalability
  Capability of working across a wide range of environmental parameters

  Typical example: Number of operational nodes
  Data rate, error rate, path length, delay (see above)
  Number and size of data items

  Efficiency
  Maintaining a reasonable level of overhead

  Example: protocol encoding, protocol headers

Independent of specific functions, yet to be provided in line with the respective protocol

© 2010 Jörg Ott & Carsten Bormann 37

Meta Aspects of Protocol Design (2)
  Performance

  Number of protocol interactions, packets, bits, processing
  But don’t optimize (too early in the process)!

  Security (again!)
  Deployability

  One special case: robustness (against DoS, single point of failure, etc.)
  Another special case: ability for stepwise introduction into the real world

  Evolvability
  Backward and forward compatibility

  Operability and manageability

© 2010 Jörg Ott & Carsten Bormann 38

Some Environmental Factors
  Fixed nodes vs. nomadic nodes vs. mobile nodes

  Impact on routing, reachability, …

  Wireline vs. wireless communications
  Implications of different link layer technologies in general

  Infrastructure-based vs. ad-hoc/autonomous communications
  What types of infrastructure are assumed? (e.g., routing, naming)

  Security within the protocol vs. relying on security elsewhere
  Which implications (e.g., for required infrastructure such as PKI)

  …

© 2010 Jörg Ott & Carsten Bormann 39

Environmental Factors
  Stateful vs. stateless operation

  How much information is preserved across information exchanges
  Notion of an “association” or a “connection”

  Where is this state kept (one or both peers in the point-to-point case)?

  Fixed nodes vs. nomadic nodes vs. mobile nodes
  impact on routing, reachability, …

  Wireline vs. wireless communications
  Implications of different link layer technologies in general

  Infrastructure-based vs. ad-hoc/autonomous communications
  What types of infrastructure are assumed? (e.g., routing, naming)

  Security within the protocol vs. relying on security elsewhere
  Which implications (e.g., for required infrastructure such as PKI)

