Protocol Design

Assignment 3: Protocol Analysis

```
helsinki university of technology
```

department of communication and networking

How robust is your protocol design...? (1)

Analyze your design with respect to:

- Robustness to extended error conditions along the path
- How many packets lost in a row can you deal with? Error rate?
- What are the implications of increased loss rate?
- How much (variation in) latency is acceptable?
- Try to come up with situations in which your protocol will be less than perfect
- Have you considered all boundary cases (zero-length files etc.)?
- Can you handle all error cases (losses, duplications, ...)?
- What kinds of failures do you get:
- Crash
- Lack of progress
- Incorrect result
- Livelock, Jabbering
helsink university of technology
DEPARTMENT OF COMMUNICATIONS AN
department of communications and networking

How robust is your protocol design...? (2)

- Robustness of the sender to a cheating receiver?
- Concerning congestion control
- E.g.: Can the receiver make the sender create and sustain congestion on the path?
- Robustness against DoS attacks from men at the side?
- Can overhear and inject traffic in both directions, but cannot suppress
- Like another node in a wireless LAN
- Three attacks:
- Pretend successful reception
- Mess up received files
- Tamper with congestion control to cause link overload
- Sketch remedies for your protocol design (no complete spec needed)

For fun: how robust is your implementation?

- What happens...
- In case of inopportune packet losses
- In case of borderline parameters
- After injection of damaging packets
- After injection of random packets
- When sending *many* packets (like > 100 Mbit/s)
- Google keyword: Fuzzer...

