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Network Protocols need to be robust… 
  During normal operation 
  Against simple failures 

  Packets being dropped (of course!) 
  Link going down 
  Node going down (and taking its memory = state with it) 

  Against malfunctions 
  Hardware problems causing incorrect operation 

  Link errors occur often enough that we use checksums to reduce their probability 
  Implementation errors (bugs, ambiguities in the specification) 
  Heterogeneity 
  Configuration errors 

  Against malice 
  Attacks intending to cause damage (“Denial of Service”) 
  Attacks intending to subvert access control 
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Robustness against simple failures 
  Bit errors are converted into dropped packets 

  CRCs are pretty good checksum, if used correctly 

  Dropped packets are retransmitted 
  Reliability at L4 (and possibly L2). 

  Link and node failures are typically handled at L3 
  Job of the routing protocol to find an alternate path 

  Applications on failed nodes don’t need the network 
  “Fate sharing”: Application and transport state go away at the same time 

  Distributed applications need to recover from node failures 
  This is its own subject in CS: Distributed Systems 
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Robustness against malfunctions and malice 
  Much harder! 

  We can no longer think in “probabilities” 
  An “improbable” malfunction may become the “preferred” attack vector 

  Generalized CS approach: “Byzantine Generals” 
  Theoretical results show that system breaks down if > 1/3 of nodes malfunction 
  Solutions are typically very heavyweight 
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Robustness During 
Normal Operation 
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Traffic Surges in Multiparty Environments 
  Need not be multicast protocols 

  Meshes of point-to-point relationships do as well 
  As do individual relationships with the same peer (e.g., some server) 

  Synchronization 
  Coupled systems tend to synchronize 
  Explicitly care for randomization/dithering 

  Implosion 
  Positive or negative acknowledgements, state change notifications, … 

  Transients 
  E.g. rebooting after failures 
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Case Study 
  University of Wisconsin NTP server was hard-coded in ~700K 

appliances (routers, firewalls) 
  Implementation bug: request is retransmitted after only 1s 
 Surge after non-reachability of server 

  ~500 Mbit/s request traffic 
  Mitigation: 

  (a) Software update 
  Problem: is rarely deployed in private homes 

  (b) Replying to all requests to silence requester 
  Problem: reverse path may be fogged 

  (c) Remove hard-coded IP address from BGP routing system 
  Practical policy problem: can’t eliminate a single IP address from routing tables 

  Lesson learned: Want to have back-off mechanism! 
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Soft state:  
Don’t allow bad information to stick around 

  Hard state approach: Agree on each state change, try to keep 
state in sync 
  Can always be made more efficient than soft state — if network conditions are 

known in advance 

  Soft state approach: Keep desired state alive 
  State returns to default value after prolonged silence 
  “return to default value” message not even  

strictly required 
  Requires more base traffic 
  Less likelihood to go wrong in times of  

extreme stress 

Soft 
State 
Proto

col 

Normal 
Operating 

Regime 
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Design: Don’t overoptimize 
  Premature optimization is the root of all evil 

      — Tony Hoare/Donald Knuth 

  Optimization should be based on measurements 

  (Of course, algorithms with exponential complexity etc. should be 
avoided from the outset, this is about micro-optimization…) 
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Robustness against 
Simple Failures 

Beyond dealing with packet losses and the like 
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Timeouts 
  Timeouts of the involved peers need to “match” 

  May be subject to misconfiguration 

  Timeouts should be adaptive (see scalability) 
  Issue: independent measurements 

  Timeouts may need to account for repeated packet loss 

  Timeouts should be handled only on one side 
  Otherwise: if a timeout occurs, there is little point in saying so 

  Issue: Slowness of application vs. problem to be handled 
  Application may be “swapped out”, computer may experience high load, … 
  Leads to delayed response 

  Can exacerbate server load 
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Notifying Timeout Not Necessarily Useful 

64*T1 

64*T1 

UAC UAS 

Timeout 

Request 

408 Request Timeout 

(If the requester has its own timer…) 

Example: SIP  

[Robert Sparks, 59th IETF] 
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64*T1 

64*T1 
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Proxy Proxy UAS 
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The 408 Cascade “Storm” 

[Robert Sparks, 59th IETF] 
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Fate Sharing 
  If the application crashes, the network cannot help much 

  If some random network element fails, the application should not 
need to care 

  Couple / store application state only with the application 
  One aspect of the end-to-end principle 

 “The fate-sharing model suggests that it is acceptable to lose the 
state information associated with an entity if, at the same time, the 
entity itself is lost.” 
        [Dave Clark] 
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Case study: NFS (beyond fate sharing) 
  NFS provides file service to a client 

  The files are persistent (by definition), the server state may be not! 

  If client crashes: application went with it (fate sharing) 
  If server crashes: application should be able to continue after 

server reboot 

  NFS operates with a stateless server 
  All state is on the client 
  Handles handed out as intermediate result survive a server reboot 

  Note: stateless ≠ connectionless 
  Modern NFS variants use TCP 
  Client can simply reconnect after a failure 
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Case Study: OSPF 
  Broadcast networks: 

  Everyone would need to form an adjacency with everyone else 
  N × (N-1) / 2 adjacencies 

  Traffic 
  State 

  Scalability: 
  Elect a Designated Router (DR) 
  Form adjacencies from everyone to DR only 

  Robustness: 
  Also elect a Backup Designated Router (BDR) 
  Form adjacencies from everyone to BDR as well 
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Case Study: SIP 
  Separates application from transport state 

  TCP connections may go up and down without harming dialog state 
  (Unlike: SMTP, POP3, IMAP4, FTP, Telnet) 

  May separate dialog state (“in the network”) from media flow 

  Allows for stateless operation of intermediaries 
  SIP stateless proxies 
  Forwarding decision is taken per request message 
  Response routing is done based upon Via: path in message 
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And the Hard Failures? 
  Robustness requirements are application-specific 

  Safety-critical applications 
  Banking, transportation, emergency responders, … 
  Stronger demand for synchronization, failover mechanisms, fail-safe properties, 

etc. 

  Fault tolerance is a (CS) discipline of its own. 
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Robustness against 
Malfunctions 
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Case study: Arpanet 1980-10-27 (RFC 789) 
  IMPs (routers) were 100 % busy handling routing updates 

  At a much higher rate than they “could” have been produced 

  IMPs “could” only produce one routing update every 5 seconds 
  Sequence number in 6-bit window made sure only the newest one 

would be sent on 
  Hardware error created three copies with numbers 8, 40, 44 

  Each of these is “newer” than the previous one ➡ tight loop 

  System was not self-stabilizing 
  Patched code had to be deployed to remove just the looping updates 
  Once system had stabilized, patch had to be removed again to resume normal 

operation 
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What can be learned from RFC 789? 
  Systems should be self-stabilizing 

  Removing a malfunctioning system should return normal operation 
  Bad information, however it got into the system, should not survive indefinitely 

  Assertions valid at one point in the system don’t necessarily 
transfer to other points 
  If an IMP cannot generate more than one routing update every 5 seconds, 

this does not mean data of this kind cannot turn up in the network 
  Always consider the case that data might be bad: does the system stabilize? 
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Brittleness: Misconfiguration 
  If two systems both have to be configured in a certain way to 

communicate successfully, brittleness ensues. 
  Misconfiguration is likely 
  Misconfiguration can lead to “half-working” states that are hard to detect 

  Detect misconfiguration 
  Incompatible systems should refuse to appear to be talking 

  Avoid misconfiguration 
  Remove options from protocols! 
  Use negotiation to agree on critical options 
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Negotiation: Ethernet 
  Ethernet can be configured in dozens of variants 

  10baseT, 100baseTX, 1000baseT 
  Half duplex, full duplex 
  Flow control options 

  Different speeds just don’t talk: good! 

  Duplex mismatches appear to work until load becomes significant 

  Ethernet has a negotiation protocol (“link pulses”) 
  Can be switched off (another source of mismatches!) 
  Has been implemented in numerous incorrect ways 
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When failing hard is good 
  A bad link may be worse than a dead link 

  Routing protocol may have a perfect alternative 
  But hello protocol may still make the link appear to work 

  Links that turn bad look like they go down and up: “Flapping” 
  Can cause significant traffic (bits and CPU) in routing protocol 

  If 10 % of 200 000 routes flap… 
  Overloading CPU of routers can cause cascading failures 

  BGP implementations have route flap damping to suppress flapping 
  Parameters hard to tune, though (bad settings made damping controversial) 

Other Countermeasures: 
  UDLD (Unidirectional Link Detection) 
  LQM (Link Quality Monitoring, part of PPP) 
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Negotiation: TLS 
  TLS (“SSL”) peers need to negotiate crypto parameters 

  This needs to be done before full crypto is in effect 

  Attack: interfere with negotiation 
  Mismatches result in interesting behavior 
  E.g., “negotiate-down” attack: convince both sides the other side has only 

limited crypto capabilities (“export version”) 

  Solution: 
  Agree on the exact result by exchanging signed statements about all 

handshake messages at the end of negotiation 

  “Bidding down” attacks may occur in all kinds of security protocols 
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Negotiation: PPP 
  PPP is probably the most configurable protocol 
  Also very interoperable! 
  Secret: LCP, NCPs negotiate all the options 

  Interoperable baseline (must implement) 

  ConfigReq list all options desired 
  If not acceptable, peer can ConfigNAK, ConfigRej 
  Original proposer has to present another complete set in another ConfigReq 
  Peer echoes back the complete accepted set in an ConfigAck 

  Occasional bugs in the negotiation convergence 
  Very few bugs in misunderstanding of resulting configuration 
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Dealing with implementation differences 
  IEN 111 (August 1979):    

 The implementation of a protocol must be robust.  Each 
implementation must expect to interoperate with others created 
by different individuals.  While the goal of this specification is to 
be explicit about the protocol there is the possibility of differing 
interpretations.  In general, an implementation should be 
conservative in its sending behavior, and liberal in its 
receiving behavior.  That is, it should be careful to send well-
formed datagrams, but should accept any datagram that it can 
interpret (e.g., not object to technical errors where the meaning is 
still clear). 

  “should” became “must” in RFC 791 (September 1981) 
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Dealing with implementation differences 
  RFC 1122 (October 1989), 1.2.2  Robustness Principle: 

 At every layer of the protocols, there is a general rule whose application can 
lead to enormous benefits in robustness and interoperability [RFC791]: 
 "Be liberal in what you accept, and conservative in what you send" 
 Software should be written to deal with every conceivable error, no matter 
how unlikely; sooner or later a packet will come in with that particular 
combination of errors and attributes, and unless the software is prepared, 
chaos can ensue.  In general, it is best to assume that the network is filled with 
malevolent entities that will send in packets designed to have the worst 
possible effect.  This assumption will lead to suitable protective design, 
although the most serious problems in the Internet have been caused by 
unenvisaged mechanisms triggered by low-probability events; mere human 
malice would never have taken so devious a course! 
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Dealing with implementation differences 
  Adaptability to change must be designed into all levels of Internet host 

software.  As a simple example, consider a protocol specification that contains 
an enumeration of values for a particular header field -- e.g., a type field, a port 
number, or an error code; this enumeration must be assumed to be 
incomplete.  Thus, if a protocol specification defines four possible error codes, 
the software must not break when a fifth code shows up.  An undefined code 
might be logged (see below), but it must not cause a failure. 

  The second part of the principle is almost as important: software 
on other hosts may contain deficiencies that make it unwise to 
exploit legal but obscure protocol features.  It is unwise to 
stray far from the obvious and simple, lest untoward effects 
result elsewhere.  A corollary of this is "watch out for misbehaving hosts"; 
host software should be prepared, not just to survive other misbehaving hosts, 
but also to cooperate to limit the amount of disruption such hosts can cause to 
the shared communication facility. 
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Dealing with implementation differences 
  Jon Postel’s “Robustness Principle”: be conservative in what 

you do, be liberal in what you accept from others. [RFC793] 
  Paradoxical result: Tag Soup! [See also RFC3117] 

  Formalisms such as XML Schemas can help pinpoint and thus 
minimize deviant behavior 
  Harder to do for behavior beyond syntax, though 

  In the end, it’s interoperability, not conformance, that counts 
  Early implementations leave an imprint that is best documented in an 

“implementer’s guide”; can later go into draft standard 
  RTP ROHC, 168 pages, has implementer’s guide with 24 pages (including 2 pages code) 

  RFC standards process is intended to weed out features where interoperability 
hasn’t been demonstrated 

  Interop events rather than compliance certification! 
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Robustness against Malice 
(“Security”) 
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The four phases of an attack 
  Reconnaissance 
  Intrusion (using an “exploit”) 

  May involve gaining initial access + escalation of privilege 

  Consolidation, Cover up, Plant Backdoors (e.g., rootkit) 
  Employment for objective 

  Good security looks at all these phases: 
prevent, detect, contain 
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Spoofing 
  Instead of subverting access control: 

Just pretend to be authorized 

  Some systems only check source IP address 
  UDP: very easy to fake 
  TCP: more difficult, but in some cases still possible 

  Session hijacking: take over connection after authentication 
  Simple countermeasures are part of TCP 

  Only protect against off-path attackers (subverted by eavesdropping) 
  Real protection requires cryptography 
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(D)DoS attack 
  Denial-of-Service: Attacking the security objective availability 

  Make a server crash 
  Use programming mistakes (e.g., unchecked buffers) 

  Cause a system to go into circle-of-wagons mode 
  E.g., when accounts get closed after three wrong passwords 

  Overload server (or network) 
  DDoS: Distributed DoS: Farm of “Zombies”, Botnet 
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Reflection/Amplification: Aiding in DDoS 
  Reflection: Sending a “reply” to an unverified address 

  Can be used by attacker to hide identity 

  Amplification: sending “back” more 
  Attacker needs less capacity to mount powerful DDoS attack 

  Classic example: Smurf 
  Directed broadcast 
  Source address = victim 
  All destination hosts send “back” ICMP “port not reachable” 
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SYN-flood attack 
  Objective: clog server 

  Bonus: do this without giving hints about identity of attacker 

  TCP: protected by three-way-handshake 
  Connection only is completed when peer answers with correct sequence 

number 
  Cannot easily fake source address 

  Idea: just send SYN packet only 
  Easy to fake source address 
  Server needs to establish state (Timeout after several minutes) 

  1 Gbit/s ≈ 3106 packets/s ≈ 0.5109 half-open connections 
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Countering Resource Depletion 
  Attackers attempt to bind more resources on the target system 

than required to mount the attack 
  Make your system perform many and/or expensive computational operations 

  Particularly relevant with security checks (e.g., signature or certificate validation) 
  Make your system create state information 
  (Make your system transmit data, preferably to somebody else) 

  Issue: distinguishing legitimate work from attack 
  There is not necessarily a well-defined user behavior 
  Example HTTP: Botnet fetching pages, search crawlers, site replication (wget) 

  Some web sites inspect the HTTP User-Agent: header and deny access to bots 

  General Approach 
  Avoid creating (much) state early on the server side 
  Make the client work harder (client-side easier to scale anyway) 
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Example: TCP SYN Cookies (1) 
  Normal TCP operation when a SYN packet comes in 

  Create protocol control block (PCB), choose random initial sequence number, 
set cleanup timeout (in case you never get an ACK), send SYN-ACK back 

  State will last until timeout expires 

  TCP SYN Cookie idea (D. J. Bernstein, 1996) 
  Do not create state 
  Encode the local state you would create in 32-bit sequence number 

  Part of this is protected cryptographically 
  Send SYN-ACK 
  If ACK comes back: recreate state from acknowledgement number 
  If no ACK comes back: nothing lost except for a few CPU cycles 
  Equalizes the burden 

  Attacker needs to respond and thus bind local resources 
  Attacker can no longer use random source addresses  
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Example: TCP SYN Cookies (2) 

  Issues: limits TCP option negotiation capabilities 
  E.g., large windows, SACK 

24 

31 0 

5 3 

Timer t % 32 (increments every 64 s) 

Encodes response to received MSS 

Cryptographic part: secret function 
(e.g., strong keyed hash function) 
F (server IP address + port number, 
     client  IP address + port number, t) 
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Example: SCTP Association Initialization 
  A: choose verification tag Ta, send INIT 

  also: window size, TSN, other param.s 
  B uses Ta in all responses 

  B: choose verification tag Tb, send ACK 
  returns local association state in cookie 

  e.g. state+check+lifetime+…+MAC(key,…) 

  do not keep local state 
  Cookie is variable length 

  A: returns cookie to Tb 
  may include user data 

  B: re-creates state from cookie 
  considers association established 
  responds with ACK 
  may include data as well 

COOKIE ECHO (tag=Tb,c=x) 
+ optional DATA 

A B 

INIT ACK (tag=Ta,vtag=Tb) 
+ COOKIE (c=x) 

INIT (vtag=Ta) 

COOKIE ACK (tag=Ta) 
+ optional DATA C

on
ne

ct
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n 
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Related approaches taken for Internet Key Exchange (IKE) [RFC 4306], DCCP, DTLS. 
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IP 

Link A Link B 

A B 

TCP 

Application 

TCB: A+X, Src+Dst Port 

DNS -> IP address 

IP 

Link A Link B 

A B 

TCP 

Application 
DNS -> HI 

TCB: H+X, Src+Dst Port 

HIT H 

Example: Puzzles in the Host Identity Protocol (HIP) 
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Initiator I Responder R 

I1: Trigger Message: HIT (I), HIT (R) 

R1: puzzle, D-H, key, signature 
Select 

pre-computed R1 

Check signature 
Solve puzzle I2: solution, D-H, {key}, signature 

R2: signature 

Check cookie 
Check puzzle 

Check signature 

Example: Puzzles in the Host Identity Protocol (HIP) 

Also being explored for use in anti-spam protocols 
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  Puzzle example 
  Configurable complexity level K 

(chosen depending on assumed trust level of initiator) 
  Responder supplies a random number I (8 bytes) 
  Initiator must find a matching number J (8 bytes) 

  Compute SHA1 ( Concatenate ( I, HIT (Initiator), HIT (Responder), J )) 
  So that the lowest order K bits of the result must be zero 

  Can only be done by repeatedly choosing J and trying 
  Responder can easily check by one-time calculation upon receipt of J 

  CPU-bounded approach 
  Alternative: memory-bounded left for future study 

Example: Puzzles in the Host Identity Protocol (HIP) 
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Bad Example: HTTP Prefetching w/ MHTML 
  Many small end-to-end interactions (GET – 200 OK) may slow 

down retrieving a web page over long delay links 

  Idea 1: create some “wget -p” type of GET request 
  Shall return all resources of a web page 
  Send them multipart/related body (MHTML, RFC 2557) 
  Causes server load upon a single request 

  Idea 2: Use transactional TCP (T/TCP) 
  T/TCP avoids initial 3-way handshake assuming that only a single message 

exchange will take place 
  Eliminates the protection available by means of TCP SYN cookies 
  Allows an attacker to use an arbitrary source address 
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Robustness Issues 
with Protocol Implementations 
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Implementation Robustness 
  Of course, your code shouldn’t crash… 

  But there is a deeper problem: 
  Most ways your code can be made to crash can be used for an attack 

  Denial-of-Service Attacks 
  Crash 
  Loop 
  Performance problem 

  Subversion of access control 
  Buffer overflows! 
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Buffer  Overflows 
  Most popular attack on server software 

  Age-old problem (known since the 1960s) 

  “Attack of the decade” (Bill Gates) 

  Most Worms use Buffer Overflows (Morris Worm, Code Red, 
Blaster) 

  Goal: smuggle in malicious code 

  Based on your programming mistakes 
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SQL-Slammer/Sapphire 

  25 January 2003: Korea practically offline 
  UDP Packet with 376 Bytes payload

  Transmitted at maximum rate towards 
randomly chosen target IP addresses

  Warhol worm: infected most of the   
≥ 75 000 victims within 10 minutes
  Doubling every 8.5 seconds
  Despite bug in PRNG

  Basis: Vulnerability in MSSQL server
  Known since 24.07.2002
  Attack targeted at MSSQL server

  Remedy: Close port 1434 (MSSQL)
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Incorrect checks of input 

 char buf[42]; 

 gets(buf); 

  Problem:  
  C function gets does not check the length of the input  

(“unchecked buffer”) 
  For input longer than 41 characters (null termination!): some memory 

around the variable “buf” is overwritten 
  Local Variables live on the Call Stack 

  Solution: fgets(buf,42,stdin) 
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A local “unchecked buffer” 

  UNIX Version 6 (ca. 1975), login program: 

char user[100], passwd[100], correct[100]; 
gets(user); getpwnam(…); strcpy(correct, …); 
gets(passwd);  
if (strcmp(crypt(passwd, …),correct)) … 

  Entering an 108 character password overwrites memory beyond 
the end of passwd, replacing the comparison value correct 
from the password file 

  Fabricated password that encrypts into its own last 8 characters 
serves as master key! 
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Call stack 
  Local variables of C functions live on the call 

stack 
  Example: Function call stack of the x86 CPU 
  RET: return address  
  SFP: Stack Frame Pointer  

4 

4 

... 

local  
variables  
(e.g., buf) 

SFP 

RET 

parameters 

... 

low 

high 
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Overwriting the 
return address 

  If the code can be tricked into writing beyond buf: 
  Supply special input string that manipulates RET in such a way 

that the return jump leads into exploit code 
  Easiest approach: put exploit code on the stack, too: 
  Example for exploit code for Linux/Unix:   

execl to replace the running program with a Unix shell 
  Shell then runs with privileges of server process and waits for 

input from the network 
  Particularly useful if the server process had root rights 

4 

4 

... 

local  
variables  
(e.g., buf) 

SFP 

RET 

... 

low 

high 
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Preparing the input string 

Padding 

Start End 

Build a Landing Pad out of NOPs:  

The exact address of the stack pointer may depend on hard-
to-predict factors (e.g., total length of environment variables)  

New return  
address (possibly 

 repeated) 
NOPs 

Exploit code 
(e.g., shell) 
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A little more work for the attacker 

  Not enough space on the stack? 
  Machine code is compact 
  Many functions can be called, or simply use existing services: 

  E.g., Windows: many libraries (DLLs) are already linked into the process 
space of the victim server process 

  Can use API functions,  
e.g., LoadLibrary: get the libraries needed 

  No data transparency in the protocol? 
  Just avoid characters like '\0' or '\n' — there are many ways to code the same 

function 
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Counter measure: NX-Bit 
  Idea: Disallow running code on the stack 

  No way to do this in base x86 architecture 
  Extensions in current processors (AMD64: NX) 
  Windows: Data Execution Prevention (DEP) 

  Need to be careful with data areas that carry shared libraries 
  Need to allow code generation (JIT compilers!) 
  Some programs legitimately use the stack to run code 

  Counter-counter measure: “Return” to library 
  Choosing the right parameters can have the same effect as your own code on 

the stack 
  But complex attacks get a bit harder to mount 
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Counter measure: Canaries 
  Function prologue stores a special value (Canary) immediately 

besides the return address 
  Function epilogue checks that the canary is still intact 

  If not: abort! (there is nothing to save…) 

  Windows: Stack Cookies 

  Disadvantage: a couple more instructions for a procedure call/
return (may double cost) 
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Summary: Buffer-Overflows 
  Main cause for buffer overflows: programming errors:  

 use of predefined library functions in programming languages such as C or C+
+ without boundary checking: 
  strcpy(), strcat(), gets()  in C 
  There are alternatives: strncpy(), strncat(), fgets(). 

  Note:  
Most OS services (Unix, Windows) are coded in C, C++. 
 (e.g., Windows XP: some 40 M lines of C code — 
 rough estimate: 5-50 bugs per 1000 lines of code!) 

  Almost all worms exploit buffer overflows 
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SQL Injection  
  Many web applications use a database backend to store 

persistent data (login information, customer addresses, …) 

  Data is entered via web forms 

  Web application languages such as PHP provide an easy-to-use 
database interface to move form input into the database 

  Oops, again: Attacker defines the data! 
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... Attacker defines the data 

Example:  
 Form field for entering an email address 

PHP application might then use SQL statement:   
SELECT email, passwd, login_id, name 
FROM members 
WHERE email='Data from the network' 

Attacker enters: 
bad@guy.fi'; DROP TABLE members;-- 

In SQL-Statement: 
...WHERE email ='bad@guy.fi'; DROP TABLE members;--'   
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SQL injection: summary  

  Again: non-validated input becomes program code 
  Variante: PHP- oder Perl-Code 

  SQL injection attacks may not be easy: 
  Where to get the names of database relations and columns? 

  Error messages might have leaked those 
  Much easier just to create damage than to subvert access control 

  Nonetheless: Bugtraq has news about new SQL injection 
attacks on a daily basis 
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Cross Site Scripting (XSS) 
1.  Web pages can contain scripts (e.g., JavaScript) 

  Scripts are executed on visitor’s browser 
  Can access the Cookies the Website uses for authentication 

2.  Web pages can also contain user-defined data 
  E.g., based on previous input of a different user 
  E.g., based on a URL parameter 

  Attacker can use (2) to foist a script on somebody else that is 
then executed during normal web page access (1) 
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A simple XSS attack 
  Example: 

 http://auction.example.com/filename.html returns an error 
message of the form:  

 404 page does not exist: filename.html. 

  Attacker might give victim a prepared link: 
 http://auction.example.com/<script>alert('hello')</script> 

  When the link is followed, the script within the link is executed on 
the browser of the victim 
  Script might compromise data in cookies 

  MySpace, Twitter and Justine.tv all have suffered XSS attacks 
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Summary: XSS attacks 
  Attacker can run JavaScript on visitor’s browser in the context of 

a different site (cross-site): 
  Read Cookies, store them elsewhere 
  Simulate password entry prompt 

  Can be used for session hijacking 

  Countermeasure: Website must validate all input (don’t let 
unwanted scripts go through) 
  Unfortunately, there is half a dozen ways to provide scripting in HTML 
  In the end, the website must make sure only known HTML constructs make it 

from one user to another 

  Many XSS attacks are possible because of bugs in the browser, 
i.e. when browsers try to be smart 



© 2008 Jörg Ott & Carsten Bormann 64 

HELSINKI UNIVERSITY OF TECHNOLOGY 
DEPARTMENT OF COMMUNICATIONS AND NETWORKING 

Summary Implementation Robustness 
  The root cause of Buffer Overflows, SQL Injection attacks and 

XSS attacks: unchecked input 

  So:  
Check your input! 
Check your input! 
Don’t trust that input! 

  Don’t just look for the known Problems 
  attackers have great new ideas all the time 

  Only allow positively healthy input! 
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Can we win? 

  Attacker needs only one security hole 
  Defense must find every hole and fix it 

  Real systems are too complex 
to be free of errors 

  Intrusions need to be  
prevented, detected, contained 


