
© 2008 Jörg Ott & Carsten Bormann 1

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Robustness

Protocol Design

© 2008 Jörg Ott & Carsten Bormann 2

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Network Protocols need to be robust…
  During normal operation
  Against simple failures

  Packets being dropped (of course!)
  Link going down
  Node going down (and taking its memory = state with it)

  Against malfunctions
  Hardware problems causing incorrect operation

  Link errors occur often enough that we use checksums to reduce their probability
  Implementation errors (bugs, ambiguities in the specification)
  Heterogeneity
  Configuration errors

  Against malice
  Attacks intending to cause damage (“Denial of Service”)
  Attacks intending to subvert access control

© 2008 Jörg Ott & Carsten Bormann 3

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Robustness against simple failures
  Bit errors are converted into dropped packets

  CRCs are pretty good checksum, if used correctly

  Dropped packets are retransmitted
  Reliability at L4 (and possibly L2).

  Link and node failures are typically handled at L3
  Job of the routing protocol to find an alternate path

  Applications on failed nodes don’t need the network
  “Fate sharing”: Application and transport state go away at the same time

  Distributed applications need to recover from node failures
  This is its own subject in CS: Distributed Systems

© 2008 Jörg Ott & Carsten Bormann 4

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Robustness against malfunctions and malice
  Much harder!

  We can no longer think in “probabilities”
  An “improbable” malfunction may become the “preferred” attack vector

  Generalized CS approach: “Byzantine Generals”
  Theoretical results show that system breaks down if > 1/3 of nodes malfunction
  Solutions are typically very heavyweight

© 2008 Jörg Ott & Carsten Bormann 5

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Robustness During
Normal Operation

© 2008 Jörg Ott & Carsten Bormann 6

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Traffic Surges in Multiparty Environments
  Need not be multicast protocols

  Meshes of point-to-point relationships do as well
  As do individual relationships with the same peer (e.g., some server)

  Synchronization
  Coupled systems tend to synchronize
  Explicitly care for randomization/dithering

  Implosion
  Positive or negative acknowledgements, state change notifications, …

  Transients
  E.g. rebooting after failures

© 2008 Jörg Ott & Carsten Bormann 7

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Case Study
  University of Wisconsin NTP server was hard-coded in ~700K

appliances (routers, firewalls)
  Implementation bug: request is retransmitted after only 1s
 Surge after non-reachability of server

  ~500 Mbit/s request traffic
  Mitigation:

  (a) Software update
  Problem: is rarely deployed in private homes

  (b) Replying to all requests to silence requester
  Problem: reverse path may be fogged

  (c) Remove hard-coded IP address from BGP routing system
  Practical policy problem: can’t eliminate a single IP address from routing tables

  Lesson learned: Want to have back-off mechanism!

© 2008 Jörg Ott & Carsten Bormann 8

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Soft state:
Don’t allow bad information to stick around

  Hard state approach: Agree on each state change, try to keep
state in sync
  Can always be made more efficient than soft state — if network conditions are

known in advance

  Soft state approach: Keep desired state alive
  State returns to default value after prolonged silence
  “return to default value” message not even

strictly required
  Requires more base traffic
  Less likelihood to go wrong in times of

extreme stress

Soft
State
Proto

col

Normal
Operating

Regime

© 2008 Jörg Ott & Carsten Bormann 9

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Design: Don’t overoptimize
  Premature optimization is the root of all evil

 — Tony Hoare/Donald Knuth

  Optimization should be based on measurements

  (Of course, algorithms with exponential complexity etc. should be
avoided from the outset, this is about micro-optimization…)

© 2008 Jörg Ott & Carsten Bormann 10

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Robustness against
Simple Failures

Beyond dealing with packet losses and the like

© 2008 Jörg Ott & Carsten Bormann 11

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Timeouts
  Timeouts of the involved peers need to “match”

  May be subject to misconfiguration

  Timeouts should be adaptive (see scalability)
  Issue: independent measurements

  Timeouts may need to account for repeated packet loss

  Timeouts should be handled only on one side
  Otherwise: if a timeout occurs, there is little point in saying so

  Issue: Slowness of application vs. problem to be handled
  Application may be “swapped out”, computer may experience high load, …
  Leads to delayed response

  Can exacerbate server load

© 2008 Jörg Ott & Carsten Bormann 12

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Notifying Timeout Not Necessarily Useful

64*T1

64*T1

UAC UAS

Timeout

Request

408 Request Timeout

(If the requester has its own timer…)

Example: SIP

[Robert Sparks, 59th IETF]

© 2008 Jörg Ott & Carsten Bormann 13

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

64*T1

64*T1

UAC Proxy

Request

408

Proxy Proxy UAS

Request
Request

Request

408

408

408

408

408

408

408

408
408

The 408 Cascade “Storm”

[Robert Sparks, 59th IETF]

© 2008 Jörg Ott & Carsten Bormann 14

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Fate Sharing
  If the application crashes, the network cannot help much

  If some random network element fails, the application should not
need to care

  Couple / store application state only with the application
  One aspect of the end-to-end principle

 “The fate-sharing model suggests that it is acceptable to lose the
state information associated with an entity if, at the same time, the
entity itself is lost.”
 [Dave Clark]

© 2008 Jörg Ott & Carsten Bormann 15

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Case study: NFS (beyond fate sharing)
  NFS provides file service to a client

  The files are persistent (by definition), the server state may be not!

  If client crashes: application went with it (fate sharing)
  If server crashes: application should be able to continue after

server reboot

  NFS operates with a stateless server
  All state is on the client
  Handles handed out as intermediate result survive a server reboot

  Note: stateless ≠ connectionless
  Modern NFS variants use TCP
  Client can simply reconnect after a failure

© 2008 Jörg Ott & Carsten Bormann 16

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Case Study: OSPF
  Broadcast networks:

  Everyone would need to form an adjacency with everyone else
  N × (N-1) / 2 adjacencies

  Traffic
  State

  Scalability:
  Elect a Designated Router (DR)
  Form adjacencies from everyone to DR only

  Robustness:
  Also elect a Backup Designated Router (BDR)
  Form adjacencies from everyone to BDR as well

© 2008 Jörg Ott & Carsten Bormann 17

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Case Study: SIP
  Separates application from transport state

  TCP connections may go up and down without harming dialog state
  (Unlike: SMTP, POP3, IMAP4, FTP, Telnet)

  May separate dialog state (“in the network”) from media flow

  Allows for stateless operation of intermediaries
  SIP stateless proxies
  Forwarding decision is taken per request message
  Response routing is done based upon Via: path in message

© 2008 Jörg Ott & Carsten Bormann 18

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

And the Hard Failures?
  Robustness requirements are application-specific

  Safety-critical applications
  Banking, transportation, emergency responders, …
  Stronger demand for synchronization, failover mechanisms, fail-safe properties,

etc.

  Fault tolerance is a (CS) discipline of its own.

© 2008 Jörg Ott & Carsten Bormann 19

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Robustness against
Malfunctions

© 2008 Jörg Ott & Carsten Bormann 20

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Case study: Arpanet 1980-10-27 (RFC 789)
  IMPs (routers) were 100 % busy handling routing updates

  At a much higher rate than they “could” have been produced

  IMPs “could” only produce one routing update every 5 seconds
  Sequence number in 6-bit window made sure only the newest one

would be sent on
  Hardware error created three copies with numbers 8, 40, 44

  Each of these is “newer” than the previous one ➡ tight loop

  System was not self-stabilizing
  Patched code had to be deployed to remove just the looping updates
  Once system had stabilized, patch had to be removed again to resume normal

operation

© 2008 Jörg Ott & Carsten Bormann 21

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

What can be learned from RFC 789?
  Systems should be self-stabilizing

  Removing a malfunctioning system should return normal operation
  Bad information, however it got into the system, should not survive indefinitely

  Assertions valid at one point in the system don’t necessarily
transfer to other points
  If an IMP cannot generate more than one routing update every 5 seconds,

this does not mean data of this kind cannot turn up in the network
  Always consider the case that data might be bad: does the system stabilize?

© 2008 Jörg Ott & Carsten Bormann 22

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Brittleness: Misconfiguration
  If two systems both have to be configured in a certain way to

communicate successfully, brittleness ensues.
  Misconfiguration is likely
  Misconfiguration can lead to “half-working” states that are hard to detect

  Detect misconfiguration
  Incompatible systems should refuse to appear to be talking

  Avoid misconfiguration
  Remove options from protocols!
  Use negotiation to agree on critical options

© 2008 Jörg Ott & Carsten Bormann 23

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Negotiation: Ethernet
  Ethernet can be configured in dozens of variants

  10baseT, 100baseTX, 1000baseT
  Half duplex, full duplex
  Flow control options

  Different speeds just don’t talk: good!

  Duplex mismatches appear to work until load becomes significant

  Ethernet has a negotiation protocol (“link pulses”)
  Can be switched off (another source of mismatches!)
  Has been implemented in numerous incorrect ways

© 2008 Jörg Ott & Carsten Bormann 24

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

When failing hard is good
  A bad link may be worse than a dead link

  Routing protocol may have a perfect alternative
  But hello protocol may still make the link appear to work

  Links that turn bad look like they go down and up: “Flapping”
  Can cause significant traffic (bits and CPU) in routing protocol

  If 10 % of 200 000 routes flap…
  Overloading CPU of routers can cause cascading failures

  BGP implementations have route flap damping to suppress flapping
  Parameters hard to tune, though (bad settings made damping controversial)

Other Countermeasures:
  UDLD (Unidirectional Link Detection)
  LQM (Link Quality Monitoring, part of PPP)

© 2008 Jörg Ott & Carsten Bormann 25

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Negotiation: TLS
  TLS (“SSL”) peers need to negotiate crypto parameters

  This needs to be done before full crypto is in effect

  Attack: interfere with negotiation
  Mismatches result in interesting behavior
  E.g., “negotiate-down” attack: convince both sides the other side has only

limited crypto capabilities (“export version”)

  Solution:
  Agree on the exact result by exchanging signed statements about all

handshake messages at the end of negotiation

  “Bidding down” attacks may occur in all kinds of security protocols

© 2008 Jörg Ott & Carsten Bormann 26

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Negotiation: PPP
  PPP is probably the most configurable protocol
  Also very interoperable!
  Secret: LCP, NCPs negotiate all the options

  Interoperable baseline (must implement)

  ConfigReq list all options desired
  If not acceptable, peer can ConfigNAK, ConfigRej
  Original proposer has to present another complete set in another ConfigReq
  Peer echoes back the complete accepted set in an ConfigAck

  Occasional bugs in the negotiation convergence
  Very few bugs in misunderstanding of resulting configuration

© 2008 Jörg Ott & Carsten Bormann 27

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Dealing with implementation differences
  IEN 111 (August 1979):

 The implementation of a protocol must be robust. Each
implementation must expect to interoperate with others created
by different individuals. While the goal of this specification is to
be explicit about the protocol there is the possibility of differing
interpretations. In general, an implementation should be
conservative in its sending behavior, and liberal in its
receiving behavior. That is, it should be careful to send well-
formed datagrams, but should accept any datagram that it can
interpret (e.g., not object to technical errors where the meaning is
still clear).

  “should” became “must” in RFC 791 (September 1981)

© 2008 Jörg Ott & Carsten Bormann 28

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Dealing with implementation differences
  RFC 1122 (October 1989), 1.2.2 Robustness Principle:

 At every layer of the protocols, there is a general rule whose application can
lead to enormous benefits in robustness and interoperability [RFC791]:
 "Be liberal in what you accept, and conservative in what you send"
 Software should be written to deal with every conceivable error, no matter
how unlikely; sooner or later a packet will come in with that particular
combination of errors and attributes, and unless the software is prepared,
chaos can ensue. In general, it is best to assume that the network is filled with
malevolent entities that will send in packets designed to have the worst
possible effect. This assumption will lead to suitable protective design,
although the most serious problems in the Internet have been caused by
unenvisaged mechanisms triggered by low-probability events; mere human
malice would never have taken so devious a course!

© 2008 Jörg Ott & Carsten Bormann 29

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Dealing with implementation differences
  Adaptability to change must be designed into all levels of Internet host

software. As a simple example, consider a protocol specification that contains
an enumeration of values for a particular header field -- e.g., a type field, a port
number, or an error code; this enumeration must be assumed to be
incomplete. Thus, if a protocol specification defines four possible error codes,
the software must not break when a fifth code shows up. An undefined code
might be logged (see below), but it must not cause a failure.

  The second part of the principle is almost as important: software
on other hosts may contain deficiencies that make it unwise to
exploit legal but obscure protocol features. It is unwise to
stray far from the obvious and simple, lest untoward effects
result elsewhere. A corollary of this is "watch out for misbehaving hosts";
host software should be prepared, not just to survive other misbehaving hosts,
but also to cooperate to limit the amount of disruption such hosts can cause to
the shared communication facility.

© 2008 Jörg Ott & Carsten Bormann 30

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Dealing with implementation differences
  Jon Postel’s “Robustness Principle”: be conservative in what

you do, be liberal in what you accept from others. [RFC793]
  Paradoxical result: Tag Soup! [See also RFC3117]

  Formalisms such as XML Schemas can help pinpoint and thus
minimize deviant behavior
  Harder to do for behavior beyond syntax, though

  In the end, it’s interoperability, not conformance, that counts
  Early implementations leave an imprint that is best documented in an

“implementer’s guide”; can later go into draft standard
  RTP ROHC, 168 pages, has implementer’s guide with 24 pages (including 2 pages code)

  RFC standards process is intended to weed out features where interoperability
hasn’t been demonstrated

  Interop events rather than compliance certification!

© 2008 Jörg Ott & Carsten Bormann 31

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Robustness against Malice
(“Security”)

© 2008 Jörg Ott & Carsten Bormann 32

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

The four phases of an attack
  Reconnaissance
  Intrusion (using an “exploit”)

  May involve gaining initial access + escalation of privilege

  Consolidation, Cover up, Plant Backdoors (e.g., rootkit)
  Employment for objective

  Good security looks at all these phases:
prevent, detect, contain

© 2008 Jörg Ott & Carsten Bormann 33

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Spoofing
  Instead of subverting access control:

Just pretend to be authorized

  Some systems only check source IP address
  UDP: very easy to fake
  TCP: more difficult, but in some cases still possible

  Session hijacking: take over connection after authentication
  Simple countermeasures are part of TCP

  Only protect against off-path attackers (subverted by eavesdropping)
  Real protection requires cryptography

© 2008 Jörg Ott & Carsten Bormann 34

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

(D)DoS attack
  Denial-of-Service: Attacking the security objective availability

  Make a server crash
  Use programming mistakes (e.g., unchecked buffers)

  Cause a system to go into circle-of-wagons mode
  E.g., when accounts get closed after three wrong passwords

  Overload server (or network)
  DDoS: Distributed DoS: Farm of “Zombies”, Botnet

© 2008 Jörg Ott & Carsten Bormann 35

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Reflection/Amplification: Aiding in DDoS
  Reflection: Sending a “reply” to an unverified address

  Can be used by attacker to hide identity

  Amplification: sending “back” more
  Attacker needs less capacity to mount powerful DDoS attack

  Classic example: Smurf
  Directed broadcast
  Source address = victim
  All destination hosts send “back” ICMP “port not reachable”

© 2008 Jörg Ott & Carsten Bormann 36

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

SYN-flood attack
  Objective: clog server

  Bonus: do this without giving hints about identity of attacker

  TCP: protected by three-way-handshake
  Connection only is completed when peer answers with correct sequence

number
  Cannot easily fake source address

  Idea: just send SYN packet only
  Easy to fake source address
  Server needs to establish state (Timeout after several minutes)

  1 Gbit/s ≈ 3106 packets/s ≈ 0.5109 half-open connections

© 2008 Jörg Ott & Carsten Bormann 37

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Countering Resource Depletion
  Attackers attempt to bind more resources on the target system

than required to mount the attack
  Make your system perform many and/or expensive computational operations

  Particularly relevant with security checks (e.g., signature or certificate validation)
  Make your system create state information
  (Make your system transmit data, preferably to somebody else)

  Issue: distinguishing legitimate work from attack
  There is not necessarily a well-defined user behavior
  Example HTTP: Botnet fetching pages, search crawlers, site replication (wget)

  Some web sites inspect the HTTP User-Agent: header and deny access to bots

  General Approach
  Avoid creating (much) state early on the server side
  Make the client work harder (client-side easier to scale anyway)

© 2008 Jörg Ott & Carsten Bormann 38

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Example: TCP SYN Cookies (1)
  Normal TCP operation when a SYN packet comes in

  Create protocol control block (PCB), choose random initial sequence number,
set cleanup timeout (in case you never get an ACK), send SYN-ACK back

  State will last until timeout expires

  TCP SYN Cookie idea (D. J. Bernstein, 1996)
  Do not create state
  Encode the local state you would create in 32-bit sequence number

  Part of this is protected cryptographically
  Send SYN-ACK
  If ACK comes back: recreate state from acknowledgement number
  If no ACK comes back: nothing lost except for a few CPU cycles
  Equalizes the burden

  Attacker needs to respond and thus bind local resources
  Attacker can no longer use random source addresses

© 2008 Jörg Ott & Carsten Bormann 39

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Example: TCP SYN Cookies (2)

  Issues: limits TCP option negotiation capabilities
  E.g., large windows, SACK

24

31 0

5 3

Timer t % 32 (increments every 64 s)

Encodes response to received MSS

Cryptographic part: secret function
(e.g., strong keyed hash function)
F (server IP address + port number,
 client IP address + port number, t)

© 2008 Jörg Ott & Carsten Bormann 40

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Example: SCTP Association Initialization
  A: choose verification tag Ta, send INIT

  also: window size, TSN, other param.s
  B uses Ta in all responses

  B: choose verification tag Tb, send ACK
  returns local association state in cookie

  e.g. state+check+lifetime+…+MAC(key,…)

  do not keep local state
  Cookie is variable length

  A: returns cookie to Tb
  may include user data

  B: re-creates state from cookie
  considers association established
  responds with ACK
  may include data as well

COOKIE ECHO (tag=Tb,c=x)
+ optional DATA

A B

INIT ACK (tag=Ta,vtag=Tb)
+ COOKIE (c=x)

INIT (vtag=Ta)

COOKIE ACK (tag=Ta)
+ optional DATA C

on
ne

ct
io

n
St

at
e

Related approaches taken for Internet Key Exchange (IKE) [RFC 4306], DCCP, DTLS.

© 2008 Jörg Ott & Carsten Bormann 41

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

IP

Link A Link B

A B

TCP

Application

TCB: A+X, Src+Dst Port

DNS -> IP address

IP

Link A Link B

A B

TCP

Application
DNS -> HI

TCB: H+X, Src+Dst Port

HIT H

Example: Puzzles in the Host Identity Protocol (HIP)

© 2008 Jörg Ott & Carsten Bormann 42

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Initiator I Responder R

I1: Trigger Message: HIT (I), HIT (R)

R1: puzzle, D-H, key, signature
Select

pre-computed R1

Check signature
Solve puzzle I2: solution, D-H, {key}, signature

R2: signature

Check cookie
Check puzzle

Check signature

Example: Puzzles in the Host Identity Protocol (HIP)

Also being explored for use in anti-spam protocols

© 2008 Jörg Ott & Carsten Bormann 43

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

  Puzzle example
  Configurable complexity level K

(chosen depending on assumed trust level of initiator)
  Responder supplies a random number I (8 bytes)
  Initiator must find a matching number J (8 bytes)

  Compute SHA1 (Concatenate (I, HIT (Initiator), HIT (Responder), J))
  So that the lowest order K bits of the result must be zero

  Can only be done by repeatedly choosing J and trying
  Responder can easily check by one-time calculation upon receipt of J

  CPU-bounded approach
  Alternative: memory-bounded left for future study

Example: Puzzles in the Host Identity Protocol (HIP)

© 2008 Jörg Ott & Carsten Bormann 44

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Bad Example: HTTP Prefetching w/ MHTML
  Many small end-to-end interactions (GET – 200 OK) may slow

down retrieving a web page over long delay links

  Idea 1: create some “wget -p” type of GET request
  Shall return all resources of a web page
  Send them multipart/related body (MHTML, RFC 2557)
  Causes server load upon a single request

  Idea 2: Use transactional TCP (T/TCP)
  T/TCP avoids initial 3-way handshake assuming that only a single message

exchange will take place
  Eliminates the protection available by means of TCP SYN cookies
  Allows an attacker to use an arbitrary source address

© 2008 Jörg Ott & Carsten Bormann 45

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Robustness Issues
with Protocol Implementations

© 2008 Jörg Ott & Carsten Bormann 46

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Implementation Robustness
  Of course, your code shouldn’t crash…

  But there is a deeper problem:
  Most ways your code can be made to crash can be used for an attack

  Denial-of-Service Attacks
  Crash
  Loop
  Performance problem

  Subversion of access control
  Buffer overflows!

© 2008 Jörg Ott & Carsten Bormann 47

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Buffer Overflows
  Most popular attack on server software

  Age-old problem (known since the 1960s)

  “Attack of the decade” (Bill Gates)

  Most Worms use Buffer Overflows (Morris Worm, Code Red,
Blaster)

  Goal: smuggle in malicious code

  Based on your programming mistakes

© 2008 Jörg Ott & Carsten Bormann 48

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

SQL-Slammer/Sapphire

  25 January 2003: Korea practically offline
  UDP Packet with 376 Bytes payload

  Transmitted at maximum rate towards 
randomly chosen target IP addresses

  Warhol worm: infected most of the  
≥ 75 000 victims within 10 minutes
  Doubling every 8.5 seconds
  Despite bug in PRNG

  Basis: Vulnerability in MSSQL server
  Known since 24.07.2002
  Attack targeted at MSSQL server

  Remedy: Close port 1434 (MSSQL)

© 2008 Jörg Ott & Carsten Bormann 49

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Incorrect checks of input

 char buf[42];

 gets(buf);

  Problem:
  C function gets does not check the length of the input

(“unchecked buffer”)
  For input longer than 41 characters (null termination!): some memory

around the variable “buf” is overwritten
  Local Variables live on the Call Stack

  Solution: fgets(buf,42,stdin)

© 2008 Jörg Ott & Carsten Bormann 50

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

A local “unchecked buffer”

  UNIX Version 6 (ca. 1975), login program:

char user[100], passwd[100], correct[100];
gets(user); getpwnam(…); strcpy(correct, …);
gets(passwd);
if (strcmp(crypt(passwd, …),correct)) …

  Entering an 108 character password overwrites memory beyond
the end of passwd, replacing the comparison value correct
from the password file

  Fabricated password that encrypts into its own last 8 characters
serves as master key!

© 2008 Jörg Ott & Carsten Bormann 51

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Call stack
  Local variables of C functions live on the call

stack
  Example: Function call stack of the x86 CPU
  RET: return address
  SFP: Stack Frame Pointer

4

4

...

local
variables
(e.g., buf)

SFP

RET

parameters

...

low

high

© 2008 Jörg Ott & Carsten Bormann 52

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Overwriting the
return address

  If the code can be tricked into writing beyond buf:
  Supply special input string that manipulates RET in such a way

that the return jump leads into exploit code
  Easiest approach: put exploit code on the stack, too:
  Example for exploit code for Linux/Unix:

execl to replace the running program with a Unix shell
  Shell then runs with privileges of server process and waits for

input from the network
  Particularly useful if the server process had root rights

4

4

...

local
variables
(e.g., buf)

SFP

RET

...

low

high

© 2008 Jörg Ott & Carsten Bormann 53

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Preparing the input string

Padding

Start End

Build a Landing Pad out of NOPs:

The exact address of the stack pointer may depend on hard-
to-predict factors (e.g., total length of environment variables)

New return
address (possibly

 repeated)
NOPs

Exploit code
(e.g., shell)

© 2008 Jörg Ott & Carsten Bormann 54

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

A little more work for the attacker

  Not enough space on the stack?
  Machine code is compact
  Many functions can be called, or simply use existing services:

  E.g., Windows: many libraries (DLLs) are already linked into the process
space of the victim server process

  Can use API functions,
e.g., LoadLibrary: get the libraries needed

  No data transparency in the protocol?
  Just avoid characters like '\0' or '\n' — there are many ways to code the same

function

© 2008 Jörg Ott & Carsten Bormann 55

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Counter measure: NX-Bit
  Idea: Disallow running code on the stack

  No way to do this in base x86 architecture
  Extensions in current processors (AMD64: NX)
  Windows: Data Execution Prevention (DEP)

  Need to be careful with data areas that carry shared libraries
  Need to allow code generation (JIT compilers!)
  Some programs legitimately use the stack to run code

  Counter-counter measure: “Return” to library
  Choosing the right parameters can have the same effect as your own code on

the stack
  But complex attacks get a bit harder to mount

© 2008 Jörg Ott & Carsten Bormann 56

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Counter measure: Canaries
  Function prologue stores a special value (Canary) immediately

besides the return address
  Function epilogue checks that the canary is still intact

  If not: abort! (there is nothing to save…)

  Windows: Stack Cookies

  Disadvantage: a couple more instructions for a procedure call/
return (may double cost)

© 2008 Jörg Ott & Carsten Bormann 57

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Summary: Buffer-Overflows
  Main cause for buffer overflows: programming errors:

 use of predefined library functions in programming languages such as C or C+
+ without boundary checking:
  strcpy(), strcat(), gets() in C
  There are alternatives: strncpy(), strncat(), fgets().

  Note:
Most OS services (Unix, Windows) are coded in C, C++.
 (e.g., Windows XP: some 40 M lines of C code —
 rough estimate: 5-50 bugs per 1000 lines of code!)

  Almost all worms exploit buffer overflows

© 2008 Jörg Ott & Carsten Bormann 58

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

SQL Injection
  Many web applications use a database backend to store

persistent data (login information, customer addresses, …)

  Data is entered via web forms

  Web application languages such as PHP provide an easy-to-use
database interface to move form input into the database

  Oops, again: Attacker defines the data!

© 2008 Jörg Ott & Carsten Bormann 59

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

... Attacker defines the data

Example:
 Form field for entering an email address

PHP application might then use SQL statement:
SELECT email, passwd, login_id, name
FROM members
WHERE email='Data from the network'

Attacker enters:
bad@guy.fi'; DROP TABLE members;--

In SQL-Statement:
...WHERE email ='bad@guy.fi'; DROP TABLE members;--'

© 2008 Jörg Ott & Carsten Bormann 60

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

SQL injection: summary

  Again: non-validated input becomes program code
  Variante: PHP- oder Perl-Code

  SQL injection attacks may not be easy:
  Where to get the names of database relations and columns?

  Error messages might have leaked those
  Much easier just to create damage than to subvert access control

  Nonetheless: Bugtraq has news about new SQL injection
attacks on a daily basis

© 2008 Jörg Ott & Carsten Bormann 61

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Cross Site Scripting (XSS)
1.  Web pages can contain scripts (e.g., JavaScript)

  Scripts are executed on visitor’s browser
  Can access the Cookies the Website uses for authentication

2.  Web pages can also contain user-defined data
  E.g., based on previous input of a different user
  E.g., based on a URL parameter

  Attacker can use (2) to foist a script on somebody else that is
then executed during normal web page access (1)

© 2008 Jörg Ott & Carsten Bormann 62

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

A simple XSS attack
  Example:

 http://auction.example.com/filename.html returns an error
message of the form:

 404 page does not exist: filename.html.

  Attacker might give victim a prepared link:
 http://auction.example.com/<script>alert('hello')</script>

  When the link is followed, the script within the link is executed on
the browser of the victim
  Script might compromise data in cookies

  MySpace, Twitter and Justine.tv all have suffered XSS attacks

© 2008 Jörg Ott & Carsten Bormann 63

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Summary: XSS attacks
  Attacker can run JavaScript on visitor’s browser in the context of

a different site (cross-site):
  Read Cookies, store them elsewhere
  Simulate password entry prompt

  Can be used for session hijacking

  Countermeasure: Website must validate all input (don’t let
unwanted scripts go through)
  Unfortunately, there is half a dozen ways to provide scripting in HTML
  In the end, the website must make sure only known HTML constructs make it

from one user to another

  Many XSS attacks are possible because of bugs in the browser,
i.e. when browsers try to be smart

© 2008 Jörg Ott & Carsten Bormann 64

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Summary Implementation Robustness
  The root cause of Buffer Overflows, SQL Injection attacks and

XSS attacks: unchecked input

  So:
Check your input!
Check your input!
Don’t trust that input!

  Don’t just look for the known Problems
  attackers have great new ideas all the time

  Only allow positively healthy input!

© 2008 Jörg Ott & Carsten Bormann 65

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Can we win?

  Attacker needs only one security hole
  Defense must find every hole and fix it

  Real systems are too complex
to be free of errors

  Intrusions need to be
prevented, detected, contained

