
HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2007 Jegadish. D 1

Introduction to Network
Programming using C/C++

Slides mostly prepared by Joerg Ott (TKK) and Olaf Bergmann (Uni Bremen TZI)

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

2

Would be giving brief introduction on...
 Parsing Command line
 Socket Related Address Structures
 Host Name / IP Address resolution
 Socket Creation
 Making TCP and UDP Connection
 Sending and Receiving Data
 Mulitcasting
 Multiplexing I/O
 Handling Timeouts
 Packet Pacing
 Random Number Generators
 Suggestions & Hints for the Assignment

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

3

Parse Command Line
int getopt(cnt,argv,optstring)

int oc;
while((oc=getopt(argc,argv,"a:bi:sl:D:t:")) != -1)
{
 switch(oc) {
 case 'a' : addAddress(optarg); break;
 case 'b' : usage(); exit(0);
 case 'i' : addInterface(optarg); break;
 case 's' : summary = true; break;
 case 'l' : dumplen = GetInt(optarg); break;
 case 't' : controlAddress(optarg); break;
 case 'D' : duration = GetInt(optarg); break;
 default :
 opterr(oc);
 }
}

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

4

Address Structures
 struct sockaddr_in {

 uint8_t sin_len; /* length of structure (16) */

 sa_family_t sin_family; /* AF_INET */

 in_port_t sin_port; /* 16-bit TCP or UDP port number */

 struct in_addr sin_addr; /* 32-bit IPv4 address */

 char sin_zero[8];

 };

 struct in_addr {

 in_addr_t s_addr; /* 32-bit IPv4 address */

 };

 struct sockaddr {

 uint8_t sa_len;

 sa_family_t sa_family; /* address family: AF_xxx value */

 char sa_data[14]; /* protocol-specific address */

 };

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

5

Address Structures Contd...
 bind(), recvfrom() and sendto() function uses sockaddr structure

 A normal practice is to fill the stuct sockaddr_in and cast the pointer to
struct sockaddr while socket operartions

struct hostent {
char *h_name; // Official name of the host
char **h_aliases; // Alternative names
int h_addrtype; // Address Type (AF_INET)
int h_length; // Length of each address
char **h_addr_list; // Address List
char *h_addr; // h_addr_list[0]
};

gethostbyname() returns the resolved address in struct hostent
format. A hostname may have multiple interfaces, so hostent
structure is designed to hold the multiple addresses of the
resolved hostname

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

6

Address Conversion functions (1)

Ipv4 Conversion:
in_addr_t inet_addr (char *buffer)
in_addr_t inet_aton (char *buffer)
char * inet_ntoa (in_addr_t ipaddr)

For Ipv6 Conversion:
 aaaa:bbbb:cccc:dddd:eeee:ffff:gggg:hhhh (IPv6)

int inet_pton(int af, const char *src, void *dst)
dst: in_addr or in6_addr

const char *inet_ntop
(int af, const void *src, char *dst, size_t)

src: in_addr bzw. in6_addr
char dst[INET_ADDRSTRLEN] bzw. char
dst[INET6_ADDRSTRLEN]

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

7

Conversion Functions (2)
Network vs. Host Byte Order:

All data in the network is sent as “Big Endian”
Conversion into little Endian representation required for Intel
Example: unsigned short var = 255; (0x00FF)
Little Endian: FF 00 (Host Byte Order)
Big Endian: 00 FF (Network Byte Order)

netshort = htons (hostshort)
netlong = htonl (hostlong)
hostshort = ntohs (netshort)
hostlong = ntohl (netlong)

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

8

Socket Types

 Socket Descriptor: similar to file i/o or stdin/stdout
 Each socket descriptor represents a connection or a particular IP

and Port address

 Supports different types of communications, u.a.
SOCK_STREAM: TCP
SOCK_DGRAM: UDP
SOCK_RAW: Raw IP
SOCK_PACKET: Link-Layer-Frames

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

9

Socket Creation

int socket(domain,type,proto)
int bind(sd,addr,addrlen)

int createSocket(const sockaddr_in &addr)
{
 int sd=socket(AF_INET,SOCK_DGRAM,0);
 if (sd<0) return -1;

 int yes = 1;
 setsockopt(sd, SOL_SOCKET, SO_REUSEADDR, (char*)&yes, sizeof yes);
 fcntl(sd,F_SETFL,O_NONBLOCK);
 if (bind(sd,(struct sockaddr *)(&addr),sizeof(struct sockaddr))<0) {
 std::cerr << strerror(errno) << std::endl;
 return -1;
 }
 return sd;
}

Socke t domain
 AF_INET, PF_INET6
Socke t type
 SOCK_STREAM, SOCK_DGRAM, …
Protocol
 0 (a ny), 6 (tcp), 17 (udp)

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

10

Creating UDP and TCP connections
 UDP:

 Create a socket with SOCK_DGRAM
 Bind the socket to a address (particular IP and port
number)

 Ex- bind (int sd, struct sockaddr *, socklen_t len);
 Now the socket can be used for send and receive operations

 TCP:

 Create a socket with SOCK_STREAM
 Bind the socket to a address (particular IP and port
number

 If program need to accept any connection request, then
listen on the socket

 Listen() - allows to specify the number of backlogs of
connection requests that can be buffered

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

11

Connections (TCP) contd..
➔ Connecting to a listening end

connect (int sd, struct sockaddr *target, socklen_t
len);

Function call only complete when the connection is established, if a timeout
occurs without response (may be several minutes), or when ICMP error
messages indicate failure (e.g., destination unreachable)

➔ Accepting an incoming connection (cannot reject anyway:))

new_sd = accept (int sd, struct sockaddr *peer,
socklen_t *peerlen);

Creates a new socket descriptor for the new connection
The original one (sd) continues to be used for accepting further connections

➔ Closing a connection

shutdown (int sd, int mode)

 0: no further sending, 1: no further reception, 2: neither sending nor receiving
close(sd) to clean up – beware of data loss!

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

12

Sending Data
 Connection-oriented (TCP)

 write (int sd, char *buffer, size_t length);
 writev (int sd, struct iovec *vector, int count);

 List of buffers, each with pointer to memory and length

 send (int sd, char *buffer, size_t length, int flags)

 Connectionless (UDP)
 sendto (int sd, char *buffer, size_t length, int flags,

 struct sockaddr *target, socklen_t addrlen)
 sendmsg (int sd, struct msghdr *msg, int flags)

 Target address
 Pointer to the memory containing the data
 Control information

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

13

 Connection-oriented (TCP)
 read (int sd, char *buffer, size_t length);

 readv (int sd, struct iovec *vector, int count);
 List of buffers, each with pointer to memory and length

 recv (int sd, char *buffer, size_t length, int flags)

 Connectionless (UDP)
 recvfrom (int sd, char *buffer, size_t length, int flags,

 struct sockaddr *target, socklen_t addrlen)
 recvmsg (int sd, struct msghdr *msg, int flags)

 Sender address
 Pointer to the data
 Control information

Receiving Data

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

14

Further Functions
 getpeername (int sd, struct sockaddr *peer, size_t *len)

Obtain the address of the communicating peer
 getsockname (int sd, struct sockaddr *local, size_t *len)

Obtain the address of the local socket (e.g., if dynamically assigned)

 Modify socket parameters
 getsockopt (int sd, int level, int option_id, char *value, size_t length)
 setsockopt (int sd, int level, int option_id, char *value, size_t length)

 Examples:
 Buffer size, TTL, Type-of-Service, TCP-Keepalive, SO_LINGER, ...

 fcntl (int sd, int cmd [, long arg] [, ...]);

Non-blocking I/O

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

15

Multicast reception
➔ Multicast JOIN

setsockopt (sd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
struct ip_mreq *mreq, sizeof (ip_mreq));

struct ip_mreq {
struct in_addr imr_multiaddr; /* IP multicast address of

group */
struct in_addr imr_interface; /* local IP address of

interface */
};

➔ Multicast-LEAVE
setsockopt (sd, IPPROTO_IP, IP_DROP_MEMBERSHIP, struct
ip_mreq *mreq, sizeof (ip_mreq));

➔ Optional: Allow repeated use of an address (needed for multicasting)
char one = 1;
setsockopt (sd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof
(char))

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

16

I/O Multiplexing (select)

 socket descriptors specifed in the file descriptor set (FDSET)
 Determine earliest timeout
 Call select()
 Error?

 Fatal - Terminate
 Repairable (e.g. interrupted system call) - repeat

 Timeout?
 Timer handling; use struct timeval { … } to specify (sec, usec) pair
 NULL pointer == blocking (no timeout), (0, 0) == polling

 Success
 Determine active file descriptors and handle events

int select(maxfdset,read,write,ext,timer)

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

17

fd_set Makros used by select

fd_set base_set working_set;
FD_ZERO (&working_set);
FD_SET (fd, &base_set);
 .
 .
 .
if (FD_ISSET(fd, &working_set))
 . . .

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

18

Select() example
•

rc_select = select (max_sd + 1, &working_set, NULL, NULL, &select_timeout);
/* Check to see if the select call failed. */
if (rc_select < 0)
{
 perror("select() failed");
 check errorno and act accordingly
}
/* Check to see if the 'n' minute time out expired. */
if (rc_select == 0)
{
 fprintf(stderr, "\n select() timed out. \n");
 return -1;
}
.....

/* Check to see if there is a incoming connection request */
if (FD_ISSET(sd, &working_set))
{

.......

.......

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

19

I/O Multiplexing (poll)

 struct pollfd {
 int fd; // file descriptor

 int events; // events to watch for
 int revents; // occurred events
};

 Poll events:
POLLIN input pending
POLLOUT socket writable (only needed with non-blocking i/o)
POLLHUP, POLLERR

 Timeout is specified in milliseconds
 -1 == no timeout, 0 == return immediately (perform real polling)

 Handling otherwise identical to select()

int poll(pollfd,n_fd,timeout)

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

20

Timeouts
 Protocols use many timeouts

 Some Examples of timeouts are, (i)timeouts used for packet pacing,
(ii)retransmission timeouts

 An occurrence of an event may change(set/reset/cancel) the timeout variables
 Must be implemented efficiently

 select () and poll () allow you to specify a timeout value
 In poll(), timeout is specified in milliseconds
 and select () provides microseconds resolution (uses struct timeval)

 Keep an ordered list of all your timeouts
 Store absolute time for the timeout
 Event this timeout is about (a timeout event may trigger a change in STATE of the

protocol)
 Before calling select/poll

 Determine current time (gettimeofday ())
 Determine first timeout in list and calculate delta

(if timeout has already passed initiate handling right away)
 Parameterize poll/select() with the delta

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

21

Timeouts ...contd

Example:
Timeout 200ms

struct timeval tv, delta, now;

/* some event occurs -> calculate absolute time in tv */
gettimeofday (&tv, NULL);
tv.tv_usec += 200*1000;
if (tv.tv_usec >= 1000000) {

tv.tv_usec -= 1000000;
tv.tv_sec++;

}

/* ... many other activities -> back in mainloop */
gettimeofday (&now, NULL);
delta.tv_usec = tv.tv_usec – now.tv_usec;
delta.tv_sec = tv.tv_sec - now.tv_sec;
if (delta.tv_usec < 0) {
 delta.tv_usec += 1000000;
 delta.tv_sec--;
}
if (delta.tv_sec < 0) {
 /* timeout has also passed -> handle now */
}
switch (n = select (..., ..., ..., ..., &delta) {
 ...
}

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

22

Packet pacing

 To achieve a target bit rate, need to send packets in regular
intervals

 Calculate your target packet interval from the packet size…
Your own header + 8 bytes UDP + 20 bytes IPv4 + 1024 bytes payload

 …and the target bit rate on the command line

 Use a recurring timer for transmission
 Important: calculate your transmission interval based upon a single initial

absolute time value
 E.g. calculate your initial transmission time based upon getttimeofday ()
 Always add your constant interval to the previous timeout value without calling

gettimeofday () again for this purpose

Do not do regular calculations
 This will lead to underutilization as it does not account for local processing time

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

23

Random number generators
 int rand() and void srand(unsigned int seed) ISO C

srand sets the seed value of the generating function
Call to rand() generates a random number between 0 and RAND_MAX

(using GNU C Library)
RAND_MAX: 2147483647(largest signed integer representable using 32 bits)

 long int random() and void srandom(unsigned int seed) BSD
Their working is very similar to the ISO C functions

 double drand48() and void srand48(long int seed) SVID
Uses a state of 48 bits of data, provides better randomness than ISO and

BSD functions
Call to drand48() generates a value in the range of 0.0 to 1.0 (exclusive)
srand48() can initialize only the 32 bits of the state data, but the function

unsigned short * seed48(unsigned short seed[3]) can be used initialize all the
48 bits of state data.

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

24

Beware of threads

 If your coding language allows you to avoid them
Will save you hassle (and overhead) in synchronizing access to internal

data structures

 Instead
Maintain your own state explicitly in some data structure
Remember what to do next

 E.g., send data at a certain time, wait for a response, etc.

 “Register” all socket descriptors for your mainloop
 “Register” all your timeouts
Process incoming events for all contexts one by one

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

25

Hints (1)

 Transport address(es) to receive data on
socket (SOCK_DGRAM, AF_INET, …)
Create and bind an individual UDP socket for every address
Remember host vs. network byte order

 Generation of artificial packet loss
Write your own small lossy_sendto (...)
Use drand48() instead of rand() or random()

double p_loss = ...;

lossy_sendto (int sd, void *msg, size_t len, ...) {
 if (drand48 () > p_loss)
 return sendto (sd, msg, len, ...);
 return len;
}

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

26

Hints (2)

 Timer handling
gettimeofday(2) yield detailed system clock reading as (sec, usec) pair
 If you work with timeout, calculate its absolute time
 In the mainloop, determine the time to wait based upon the current time

 This result is what you feed into poll() or select()
 Note that both use completely different time formats

 If poll()/select() returns 0, a timeout has occurred

 DO NOT USE SIGNALS FOR TIMING
Such as done by alarm()
This may just cause system call interruptions that you do not want or need
Better to stay in control all the time

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

27

Hints (3)

 Signals
You may need to catch at least SIGINT: signal (SIGINT, signalhandler);

 In this case, you would just set a global variable and return (terminate = 1;)
 Need to check the variable regularly even if no packets arrive

Will cause interrupted system calls (errno == EINTR)
 Need to check for this also in your main loop and behave accordingly

 File access
Regular i/o operation (open/close/read/write, fopen/fclose/fread/fwrite)
MS Windows: you may need O_BINARY to avoid end of line conversion
Use fstat () to obtain file attributes (including file size)

