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Basic Purpose of a Protocol
Synchronize state information across two or more nodes

State can be anything
Some data item
Existence and parameters of a communication relationship
Parameters for and result of an operation
Contents of a database or file

State synchronization should be “reliable”…
To be achieved with a minimal number of message exchanges

State S
A B

State S

Some information
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Distributed Systems Fundamentals
In a distributed system, each node has their own view of reality

Information takes time in transit
Not all information arrives intact
Information does not arrive in order

There is no global view
There is no global concept of “simultaneous”
Entities are independent and may operate in parallel

Uncertainty what the other peer(s) do or believe at a given point in time
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Distributed System Fundamentals (2)
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Some System Setup Alternatives

A B1) Direct link

A BR R R2) Multiple hops

A BR R
3) Multiple hops

with intermediary
support

I
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Multi-Hop Scenario 2

A

B
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Multi-Hop Scenario 3

A

B
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What can go “wrong”?
Effects of a link

Bit errors (individual vs. bursty bit errors)
Frame losses (individual vs. bursty losses)
Latency (physical propagation delay and serialization delay)
Frame reordering (e.g., due to individual losses and retransmissions or multiplexing)

Effects caused in a router or due to routing
Packet losses (even distribution, burstiness – depends on queuing)
Packet corruption
Packet duplication (typically due to routing along different paths)
Packet delay (varies depending on queue size, i.e., offered load)
Packet reordering (typically due to load sharing along different paths)

Errors in the network
Routing loops (causing packet loss)
Router crashes or link unavailability (causing temporary unreachability and variation in 
QoS, packet loss)
Unidirectional or otherwise asymmetric links 
Congestion (from legitimate traffic or DoS: causing packet loss and latency)
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What can go “wrong”? (2)
Effects in the end system

Packet losses due to buffer overflow (too many interrupts, CPU overload, …)
Application failure or crashes
Malfunctions (partial or complete, malicious or accidental)
Failures (silent or reported/observable, byzantine, …)
Overload (DoS or just plain heavy load)

Effects due to mobility
Rerouting leads to different latencies and other transmission characteristics)
Rerouting may lead to packet loss
Temporary unavailability
(possibly changes in identification)

And other things you may and those you may not expect…
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Reliability is Probabilistic
Variety of mechanisms available to deal with things that go wrong to achieve 
reliability

Checksums, CRCs, MACs to detect bit errors or frame errors in packets
Avoid processing an incorrect frame (which may lead to confusion in the state machine)

Sequence numbers to detect missing packets

Implicit assumption: errors are of temporary nature
E.g., retransmissions will work after several attempts
Depending on the error probability this may be sooner or later
Protocols define their own “patience” (aka timeout), i.e., how long or how often they are 
willing to try

Most reliable protocols fail if the error condition persists long enough
A reliable protocol need not fail if it just tries long enough

Even if peer breaks and the communication context is lost
(in which case this would need to re-established, which will take even longer)
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Reliability is a Tradeoff
Reliability (probability) vs. delay
Reliability (probability) vs. overhead

Processing, bandwidth consumption, local state, …
Efficiency depends on reliability mechanisms in use
Probability depends on reliability mechanisms in use

Reliability mechanisms chosen depending on
Application and its semantics
Operational environment (types of errors, error/loss rate, RTT, b/w, …)
Communication setup (including number of peers)
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Reliability Mechanisms



© 2007 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

13

Some Questions for Reliability Protocols
What is the overhead incurred?

What type of overhead is incurred?
More bits per packet? More packets?  …?

When is the overhead incurred?
Always vs. only in case of failures?

What type of errors to deal with?

How much does the sender (want to) know about the receiver(s)?
Reception status: (when) did data really arrive (and can a buffer be freed)?

How many receivers can the protocol support?
How heterogeneous can the receiver group be?

What does the achievable performance depend upon?
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Sample Communication Model: TCP

Sender ReceiverApp. App.

Send buffer Receive buffer

sent rcvdavailable
DATA DATADATA

ACK ACK

receive window
(rwin) Data in flight

receive window
(rwin)

“Pipe” of a
certain capacity

(bandwidth x delay)
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Dealing with Ordering and Overload
Ordering: Sequence numbers (or timestamps)

Sequence numbers (count messages, packets, bytes) 
Issue: avoid wrap around in fast networks

Overload in the endpoint
Flow control

Typical windowing protocols (using seq numbers): receiver reports available buffer space
Issue: update frequency and ability to “keep the pipe full”

Rate control
(Predetermined) agreement between receiver and sender
May be updated (occasionally)

Overload in the network: drop packets
Congestion control later
Rate control peered with resource reservations

Allows to influence the drop probability and delay in favor of the application
Reliability mechanisms need to be applied nevertheless
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1. Simple Lock-Step Protocol
Send data and wait for acknowledgement
Timeout to trigger retransmission
Trivial but very limited
Example: Trivial File Transfer Protocol (TFTP)
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2. Cumulative ACK with Go-back-N
Window-based mechanism allows multiple outstanding packets

constrained by sequence number space and buffer size

Timeouts or out-of-order reception trigger retransmissions
Variants: HDLC (LAPB/D/F), X.25 layer 3, plain old TCP, …
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3. Selective Acknowledgements
Window-based but explicit acknowledgment of received packets
Receiver keeps out-of-order packets

A B

ACK (1, 3)

D (1), …, D (4)

ACK (1,3, 4)
D (2)

ACK (1 – 4)
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4. Simple NACK Protocol
Optimistic assumption: packets will arrive

Report only failures: negative acknowledgement

Specific mechanisms needed for last packet (e.g. ACK)
Specific mechanisms needed for flow control and buffer mgmt
A B

D (1), …, D (10)

ACK (13)

NACK (9)

D(11), D(12), D(13,L),D(9)

A B
D (1), …, D (9,L)

ACK (9)
D (9,L)Ti

m
eo

ut
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5. Forward Error Correction (1)
Basic assumption: errors will occur

Increase reception probability up front: 
Send packets + parity packets

Simple XOR-based (parity) FEC
P_fec = P1 XOR P2 XOR P3 XOR … XOR Pn

More complex FEC: e.g., Reed-Solomon codes
Generate N packets out of K packets: copes with losing up to N–K  packets

Trading off overhead for delay
No need to wait for a NACK or a timeout

#1 #2 #3 #4

F(1,2) F(3,4)

Data packets

FEC packets + +

#1 #2

F(1,2)

#2+

Issue: Increases
bandwidth requirements
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6. Forward Error Correction (2)
Interleaving

Make simple FEC schemes work better with burst losses

Distribute packets or packet contents for transmission
Avoid consecutive packet erasures in case of (burst) losses
Avoid loss of large consecutive data portions in case of single packet losses

Drawbacks
Re-ordering causes additional delay at the receiver
Increases buffer space requirements

1 2 3 4 5 6 7

1 4 7 2 5 8 3

8 9

6 9
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7. Forward Error Correction (3)
Application-specific FEC
Example: Fully redundant transmission

Primarily suitable for small pieces of information

Repeat complete pieces of information in other packets
Adjacent or spread out
Maintains the packet rate but increases data rate
Dependent on regular packet transmission

6 7 8 9

6 5 3 7 6 4 8 7 5 9 8 6
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8. Unequal Error Protection
Observation: not all parts of a packet are equally important

Beginning of packet contains headers/parameters, more relevant contents
Holds for both audio and video

Uneven Level Protection (ULP)
Create independent parity packets for different parts of packets
Allows for selectively more overhead for the more important parts

Related thoughts: partial checksums
Live with bit errors in the less important parts (rather than dropping a packet)

Packet A

Packet B

Packet C

Packet D

Level 0 Level 1

Level 0

Level 0 Level 1

50% FEC

25% FEC
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9. Soft State
Reliability is typically about “hard state”

Explicitly created and successful creation is confirmed
Needs to be explicitly changed or removed

Alternative: “soft state”
State is created upon packet reception
Needs to be refreshed periodically
Times out otherwise

Disappears automatically in case of peer failure

Feedback may be provided
E.g. Negative if state creation or modification fails

Issue: request or response lost vs. operation successful
The sender never really knows!

Workable for small piece of information
May or may not change

Examples: RSVP, some routing protocols, watchdogs

A B
State (1)

State (1)

State (1)

State (2)

State (2)

State (2)

State (4)

State (3)

Ti
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A fails or
terminates

B discards state
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Issues with Reliability
Shared state needed between sender and receiver

Receiver window, sequence number, last acknowledgement, timeout, …
Implicitly provided at connection setup time for connection-oriented 
communications
What about stand-alone transactions?

Messages need to be self-contained
All responsibility is with the sender
(since the receiver does not even know that communication is imminent)

Initialization is a potential for Denial-of-Service (DoS) attacks

Timeout: choosing proper values
Overhead: choosing the right combination of mechanisms
Ideal: adapt everything dynamically to the (changing) environment
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Reliable Transport Summary (1)
State creation (aka Connection Setup)

N-way handshake (TCP: 3-way, SCTP: 4-way, other: 2-way)
Create shared state at senders and receivers
Issue: Denial-of-service attacks

Error detection
CRC for bit errors
Sequence numbers against packet losses

Error correction
Positive or negative acknowledgements, FEC, soft state, application-specific
Timeout + retransmissions
Different mechanisms can be combined
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Reliable Transport Summary (2)
Ordering

Sequence numbers, buffering at the receiver
Optional in some cases (e.g. SCTP, TCP urgent data)

Flow control
Sliding window mechanism (explicit setting of window size)
Implicit flow control (delayed ACKs): not relevant in the Internet

Reliability =
Error detection + error handling (+ ordering) + flow control

There is no such thing like reliable communications
Bit errors, packet losses and network partitioning may not be repairable
Peers are notified of communication failures (e.g. connection teardown)

Degree of reliability defined by probability of communication failure
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Reliable Transport Summary (3)
Congestion Control

TCP-style mechanisms: quick response to congestion, high variation
Rate-based mechanisms (e.g. TFRC): slower adaptation, smoother
To be discussed later
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Issues with Group Communications
Potentially redefines the semantics of reliability
One-to-many (single sender) vs. many-to-many (multiple senders)

Need not be IP multicast: transport/application layer replication (overlays) suffice

“Connection” semantics: When has a “connection setup” succeeded?
When all intended members have joined?
When a quorum of intended members have joined?
When a certain subset of the intended members have joined?

Orderly “connection” release can be signaled in-band
What are failure criteria for “connections”?

If any one member fails?
If a quorum of members is no longer available?
If any of or all of a certain subset of members fails?

Can/should unicast-derived transport layer semantics be applied?
Reliable multicast semantics much more dependent on the application!
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Error Detection
Checksum (CRC) against bit errors

Similar to unicast transport

Sequence numbers to detect packet losses
Multi-sender case: per sender sequence numbers

e.g. pairs of (transport address, sequence number)
Requires additional state in receivers
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Error Correction (1)

Positive acknowledgements do not scale!
ACK implosion problem at the sender
Different approaches needed

Negative Acknowledgements (NACKs)
Cumulative or selective NACKs
Issue: when to release buffered data at the sender

Tradeoff between reliability and buffer size

Issue: hard to determine final state at the receivers
Issue: NACK implosion in case of correlated losses

Retransmissions
Via multicast or via unicast
From the sender or some other receiver (router assist?)

Extensive use of FEC mechanisms
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Unicast Topology: Sender and Receiver
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Multicast Topology: Senders and Receivers
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Multicast Topology: Senders and Receivers
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Error, Flow, and Congestion Control

A sender is supposed to throttle its transmission rate to match 
reception capabilities of the receiver and the network path to it.

Which receiver?
All receivers?
A certain (subset of) receiver(s)?
A quorum of receivers?

Adjusting to the worst receiver will inevitably stall the transmission
Compromises needed

Bad receivers drop out, NACKs from bad receivers are not honored, ...

Group communication parameters used to define minimum requirements
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Reliability
Again: reliability is probabilistic!

Depends on many factors
Packet losses, their pattern and correlation, congestion on the path
Buffering at the sender and time window available for retransmissions
FEC and other transport parameters

Individual vs. group reliability

Sample reliability semantics:
A receiver will receive packets after joining a group and before leaving
The receiver will receive packets ordered per sender
The receiver will most likely receive all packets
The receiver will be notified about each packet missed
The receiver will be forced to leave the group if reception rate drops under a 
certain threshold
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Ordering
Per sender ordering trivial

Individual sequence numbers

Multi-sender ordering more difficult
Different semantics conceivable
Often pushed to the application layer for efficiency

Causal ordering
All dependent messages are delivered to all receivers in the same order

Msg B depends on Msg A if Msg A was received at a host before B is sent by this host

Global ordering
All messages are delivered to all receivers in the same order
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New Issues
Scalability

What group sizes does a multicast transport protocol support?

Atomicity
Did all the receivers receive the data?
Combination with ordering

Partitioning and recovery
Network topology changes may lead to a group being split
Which of those parts survives?
What happens if partitions merge, i.e. the group is being joined together again?
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Relaxing Reliability Requirements
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Examples for Relaxed Reliability (1)
Roles of nodes: Does everyone have to get everything?

Rather for group than for point-to-point communications
Some nodes may perform functions that require them to get all the data
Other nodes may drop out if they are not successful receiving everything

Nodes may also be considered equal and just a quorum is needed
For N communicating nodes, K-reliability means that only K out of 
N nodes need to receive the data

Useful and sufficient e.g. for replication
More difficult if the group attempts to obtain a coherent view

…
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Examples for Relaxed Reliability (2)
Is all information equally important?

Is correctness of all information equally important?
Is timeliness of all information equally important?

Unequal error protection
Protect certain pieces of information better than others

Example 1: bits and bytes:
Provide a CRC and/or FEC only for parts of a packet (typically the beginning)

Allow less important parts of contents to contain bit errors (e.g., for audio)
But protect the parts essential for reproduction

Will result in lower frame loss rate, e.g., in wireless networks
Example 2: packets

Provide FEC and/or retransmissions only for certain packets
The more essential part of the contents (e.g., video I frames, information changing rarely)
Accept losses for information that is updated frequently anyway or less important
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Relaxed Reliability (3)
How long is the information transmitted valid or useful?

Somewhat related to the soft state discussion

Observation: once data is passed to the TCP layer, the data is 
doomed to be retransmitted until confirmed (or connection loss)

Regardless of whether the data is still useful at this point
Nice to have: allow to remove data again once no longer needed

Cross-layer interaction

Example: meter readings
A complete log of readings (temperature, load, etc.) may be useful
But regular measurements (e.g., once every 100ms) will invalidate old data

Just transmit periodically; possibly support limited retransmissions

Yet capturing exceptional conditions may be important
So that this may be combined with more reliability depending on the values
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Further Relaxations
Sequencing

Reliability but no sequential delivery for all the data
Distinguishing multiple independently sequenced data streams

Mixing reliable and unreliable transmission
IETF: Stream Control Transmission Protocol

Origin: telephony signaling but now much more widespread applicability

Congestion control without reliability
IETF: Datagram Congestion Control Protocol (DCCP)
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Discussion: Semantics of Reliability
Semantics of reliability ultimately depends on the application

Hop-by-hop
Support by network elements on the path (such as routers)

Pro: More efficient retransmissions (not always all the time)
Con: Routes may change

Support by intermediaries (hopefully) near the path (“overlays”)
Issues: Introduces additional points of failure, may cause suboptimal routing, …

Regardless of hop by hop support (optimization): the application is only 
interested in the end-to-end result of an operation

End-to-end
Implementation exclusively on the end systems
Other elements may optimize but should not be able to have a negative impact 

What does end-to-end mean? (or: what is the end?)
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Example: Careful File Transfer
Move a file from a disk attached to machine A to a disk connected 
to machine B via some network
Ensure complete and identical availability of the file on B’s disk 
afterwards

Proper reception, processing, and storage can only be assured by
the application itself

It is the only entity aware of the real requirements
Needs to implement proper validation mechanisms anyway

Transport and lower layer protocols can help performance
The proper tradeoff requires careful thought!
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Example: Careful File Transfer
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Low- vs. High-Level Implementation
Lower layer implementation

May simplify applications or perform functions more efficiently
May be shared by numerous applications
But may be enforced on applications that do not need it
But may also operate on incomplete information (less efficient)

Higher layer implementation
May be tailored to an application‘s needs
But may require the application (protocol) designer to deal with the issue

Choice of several layers (network, transport, application)

Trade-off is important!
Implies properly identifying “the ends”
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How much Reliability is needed?
Again: Reliability semantics ultimately depend on the application

Design and engineering tradeoff
Rely on existing transport protocols (TCP, more flexible now with SCTP)

Do not have to worry about getting the specification and the implementation right
Application protocol is often sufficient hassle already
Considerations on application-specific end-to-end reliability is required nevertheless

Do-it-yourself
Ultimate flexibility (and effort required)
Combine the mechanisms tailored to the application needs
Application Layer Framing (ALF)

- Coined in the context of application-protocol-aware reliable multicast

There is typically no single right solution


