Security building blocks: authentication

TkL Markus Peuhkuri 2007-03-27

Lecture topics

- Authentication
- Different methods to authenticate
- Caveats in authentication
- After this lecture, you should
 - be able to name four basic methods to authenticate
 - understand authentication as economic decision
 - be able to evaluate between
 - * passwords
 - * authentication tokens
 - * biometrics

How one authenticates

- What one knows
 - passwords, PIN
- What one has
 - keys, smartcards
- What one is
 - biometric identification
- ullet Where one is
 - terminal, geographic restrictions

Risks on authentication

- Masquerade
 - use of victim's resources
- Multiple identities
 - social benefits, voting, law enforcement
- Identity theft
 - victim's identity, attackers authentication
- Failed authentication

Attacks on authentication

- Trial and error
 - password guessing
 - token authenticator subverting
 - team attack on biometrics

⇒limit attack space: number of attempts. However, that may result a denial of service.

For example, Microsoft recommends using indefinite locking on accounts after 5 failed attempts. NSA recommendation is 15 hours after 3 failed attempts – some may argue that 48 hours (over weekend) would be better.

- Replication of authenticator
- Stealing of authenticator
- Playback attack

Deploying authentication

- Enrolment
 - trusted administrator \Leftrightarrow self-enrolment
- Maintenance
 - password aging, update of biometrics
- Revocation
 - lost token, disclosed secret key
- Operational problems
 - re-establishing authenticator

Economics of authentication

- Software
 - for organisation, system
- Hardware
 - for site, user, workstation
- Enrolment costs
 - administration, per user costs
- Usage costs
 - time spent by a user to authenticate
- Maintenance
 - time spent to maintain system: for system administration and user time to renew password.
- Problem recovery
 - lost devices, forgotten passwords, flu
- Availability
 - cost of lost access
- Revocation costs
 - removing rights from user, lost authenticators

Passwords

- The prevailing method to authenticate
- No extra hardware needed
- Can be as strong as wanted
 - 8-character password of printable ASCII characters \Rightarrow 52-bit key
 - -20-character \Rightarrow 128 bits
- In reality, the key space is much smaller
- User memory overloading with passwords
 ⇒ post-it password manager[™]

Study on password quality

• Students divided into 3 groups [2]

control group given traditional advice: Your password should be at least seven characters long and contain at least one non-letter.

random password group selecting randomly letters from a sheet passphrase group using a mnemonic phrase to aid remembering

	Cracked $\%$		Difficulty	
group	dictionary	+brute-force	1-5	weeks to learn
control	32	3	1.52	0.7
random	8	3	3.15	4.8
phrase	6	3	1.67	0.6
other	33	2		

Good password policy?

- Promote mnemonic-based passwords
 - easy to remember
 - difficult to guess
- Use long enough passwords¹
- Advice using non-alphanumeric characters²
- Not too frequent changes, not more often than every 3 month
- Enforce user compliance
 - does a bad password endanger system or other users?³
 - random assigned passwords a method to enforce quality, providing risk of write-down

Password storage

- If stored in plain, system compromise leads to disclosure
 ⇒ possible large-scale compromise
- Most often stored in encrypted form: like a MD5 hash from password and salt
- Using external authentication server
 - is it possible to capture password on wire (e.g. PAP authentication)
- Distributed knowledge of the right authentication

¹Minimum 8 characters, more if case does not matter.

 $^{^2\}mathrm{Note},$ that those position differs in different keyboards.

³Or, should users be protected from themselves.

Using passwords

- Password recovery on web sites
 - a new password or a link to reset the password emailed to the user on one's request
 - possibly a verification question, like what is mother's maiden name
 - all rely on the mail password
 - low-cost, self-service mostly ok
- Initial passwords
 - often badly chosen
 - opens window of attack before user changes
 - latent accounts: accounts that are created but newer used

Authentication tokens

- A device with a cryptographic processor
 - the key is kept on device, only results communicated
 - may be in several physical forms: card, USB key
- GSM SIM module
- Challenge-response calculators
- Time-based tokens
- Should be tamper-resistant
- Ancient signet ring was an authentication token

Using authentication token

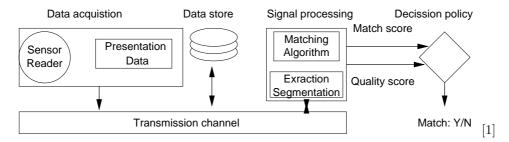
- Separates the authentication from a larger device
 - revocation costs less
 - class compromise may not be fatal
- Strictly controlled environment easier to analyse
- Less trust on third-party devices
- Less trust on software
- Provides keys for network communications

Multi-factor authentication

- Compromise of single factor does not endanger system
 - password on local terminal
 - ssh key authentication from a network (the private key protected by passphrase)
 - debit card and PIN
- Pluggable Authentication Modules (PAM)
 - possible to have any combination of authentication
 - for Unix and Windows

Biometrics

- 1997: year of biometrics... and since then
- The method used by humans

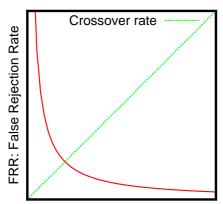

She put the skins of the kids of the goats on his hands, and on the smooth of his neck. . . . Jacob went near to Isaac his father. He felt him, and said, "The voice is Jacob's voice, but the hands are the hands of Esau." (Genesis 27:16)

- Why to use biometrics
 - convenient: the authenticator is always with you
 - need for a strong authentication: difficult to steal or lose however it may result in physical violence and injury on the person.
 - decreased cost of devices
 - government and industry adoption
 - embedded rfid tags

Trusted path

- How a user knows she is not talking to Trojan horse
 - attention key Crtl-Alt-Del
 - a small, external device with own keypad
- How the system knows there is a human
- Can someone record and replay the authentication tokens

Components of biometric system



$$FAR = \frac{False \ acceptance \ count}{total \ number \ of \ samples}$$
 (Type II error) (1)
$$FRR = \frac{False \ rejections \ count}{total \ number \ of \ samples}$$
 (Type I error) (2)

- failure rate [1, p. 29]
- insult rate

Identification \Leftrightarrow authentication

• Sheep \Leftrightarrow goats

FAR: False Acceptance Rate

- Identification
 - who is this person?
 - selecting one from a large group
 - \Rightarrow high error rate
 - birthday paradox
- Authentication
 - is this person N.N.?
 - checking if the person matches to one's records

Biometric characteristics based on

- Genetics
- Phenotype
- Behavioural
- Liveness testing an important part

Biometrics

- Fingerprint
 - used for thousands of years, crime 1870s
 - $-256-1200\,\mathrm{B}$
 - degeneration of fingerprints by age
 - $1-3\,\%$ of population has problems authenticating
- Hand geometry
 - hand, finger dimensions: length, width
 - -9B
 - injury
 - -1.5% error rate
- Facial
 - works best with "mug shots"
 - $-80-2000\,\mathrm{B}$
 - environmental factors
 - typical $10-25\,\%$ error rate

- Voice
 - $-70-80\,\mathrm{B/sec}$
 - illness, noise, communications
 - -2% error rate
- Signature
 - $-500-1000\,\mathrm{B}$
 - lots of variable factors
- Keystroke dynamics
 - continuous monitoring
 - high FRR

More than meets the eye

- Iris
 - $-256-512\,\mathrm{B}$
 - glasses, positioning
 - 10s authentication time
 - very low error rate
- Retina
 - -96B
 - illness
 - awkward method, difficult to record without user knowledge
 - very low error rate

Experimental biometrics

- Vein patterns back of hand
- Facial thermography
- DNA
- Sweat pores
- Hand grip
- Fingernail bed
- Body odour
- Ear shape
- Gait: body motion (VTT has developed mobile phone security mechanisms using acceleration sensors)
- Skin luminance
- Brain wave pattern
- Footprint, foot dynamics

Location security

- Physical security well understood
 - radio waves does not stop on walls⁴
- Many problems solved with a human monitoring
 - voting
 - biometrics
- Restricts possibility of an attacker
 - the administrator password can be entered from the connected console in secure machine room
- Use of GPS or other positioning method
- Enforcing communication delay limits

Summary

- Password is still good
- If it is man-made, a man can break it
- Selecting right compromise between FAR—FRR
- Beware denial of service

References

- [1] Jr. John D. Woodward, Nicholas M. Orlans, and Peter T. Higgins. *Biometrics*. McGraw-Hill/Osborne, 2003.
- [2] J. Yan, A. Blackwell, R. Anderson, and A. Grant. Password memorability and security: empirical results. *IEEE Security & Privacy Magazine*, 2(5):25–31, September 2004.

⁴Unless you want to extend coverage of your WLAN network.