QUEUING SYSTEMS

General

- Queueing systems constitute a central tool in modelling and performance analysis of e.g. telecommunication systems and computer systems.

- Describes contention on the resources
 - in queueing systems the resources are called servers
 - in applications, the resources may be trunks, capacity . . .

- The “customers” arriving at a queue may be calls, messages, packets, tasks . . .

- Often the systems are complex (for instance communication network, operating system) and contains many queues, which form a network of queues, i.e. a queueing network.
 - in the beginning we focus on systems consisting of a single queue
 - there are many types of queues, giving rise to a rich theory

Example.

Single server queue
Differentiating factors in queueing systems

- Arrival process
 - interarrival times
 - group arrivals

- Service process
 - service times (requested service work)

- Number of servers

- Number of queues

- Number of waiting places
 - division of the waiting room between the queues

- Service discipline
 - FIFO, LIFO
 - shortest jobs first
 - most profitable jobs first

- Scheduling
 - round robin
 - processor sharing
 - priorities

- Information available
 - upon choice of a queue, does one know the lengths of queues, the service times of individual customers . . .

- Discrete time (slotted) / continuous time queues

- Other factors (in real life)
 - screening of the customers
 - bribing
 - . . .
The notation of queueing systems (Kendall)

For a unique definition of queueing systems, the following notation is usually used: $A/S/m/c/p$, where

\[
\begin{array}{cccc}
A & / & S & / \\
\text{arrival process} & & \text{service process} & \\
m & / & c & / \\
\text{number of servers} & & \text{number of system places} & \\
p & & & \\
\text{size of customer population} & \\
\end{array}
\]

- A and S are substituted by one of the commonly used symbols as the case may be.
- Usually the term queue length refers to the total number of customers in the system (including both waiting customers and those in service).
- The parameter c includes both waiting places and service places
 - may be omitted from the notation, whence by default its value is infinite
- The size of the customer population s also on optional parameter
 - may be omitted from the notation, whence by default its value is infinite
A \textit{(arrival process)}

- Defines the type of arrival process
- Often it is thought that the interarrival times are independent (renewal process), whence the process is determined by the type of interarrival distribution.

Commonly used symbols are

\begin{itemize}
 \item M exponential interarrival distribution ($M = \text{Markovian, memoryless}$); Poisson process
 \item D deterministic, constant interarrival times
 \item G general (unspecified)
 \item E_k Erlang-k distribution
 \item PH phase distribution
 \item Cox Cox distribution
\end{itemize}

- More abbreviations are introduced as needed.
\(S \) (service process)

- Defines the distribution of the customer’s service time

- The service time is affected by two factors
 - the required work requested by the customer (e.g. the size of a data packet to be sent, kB)
 - the service rate of the server (e.g. kB/s)
 - the service time is the ratio of these

- In Kendall’s notation, the type of the service time distribution is indicated by substituting an appropriate symbol for \(S \); commonly the same symbols (\(M, D, G \), etc.) are being used as for defining the type of the interarrival time distribution

Example 1. The queue \(M/M/1 \)
- Poisson arrival process
- exponential service time distribution
- single server
- unlimited number of waiting places

Example 2. The queue \(M/M/m/m \)
- Poisson arrival process
- exponential service time distribution
- \(m \) servers and \(m \) system places \(\Rightarrow \) no waiting room, so called loss system
Queueing discipline / scheduling

- Ordinary queue, service in the order of arrivals
 \[
 \begin{align*}
 &\text{FCFS} & \text{First Come First Served} \\
 &\text{FIFO} & \text{First In First Out}
 \end{align*}
 \]

- Stack, the latest arrival is being served first
 \[
 \begin{align*}
 &\text{LIFS} & \text{Last Come First Served} \\
 &\text{LIFO} & \text{Last In First Out}
 \end{align*}
 \]

- There are three sub-cases of a stack
 - **pre-emptive resume**
 the arriving customer pre-empts the ongoing service, which is then resumed when the interrupted customer is again taken into the server, continuing from the same point on as at the time of interruption

 - **pre-emptive restart**
 the arriving customer pre-empts the ongoing service; the service is started from the beginning when the interrupted customer is again taken into the server

 - **non-pre-emptive**
 the arriving customer waits until the ongoing service is finished before being taken into the server
Queueing discipline / scheduling (continued)

- Service in rotating order

 RR Round robin
 - each customer receives, in turn, a small “time slice” of service
 - polling

- Sharing the capacity of the server

 PS Processor sharing
 - all customers in the queue are receive service simultaneously
 - the capacity is shared evenly between the customers (the service rate received by each customer is inversely proportional to the number of customers in the queue)
 - an idealized form of RR (the time slices tend to zero)

Other service disciplines are e.g.

- **SIRO (Service In Random Order)**

- **SSF (Shortest Jobs First)**: the service time has to be known in advance; this minimizes the mean waiting time
Queueing discipline / scheduling (continued)

• A queueing discipline is called work conserving, if the capacity of the server / servers is not wasted, i.e. no server is idle if there is at least waiting customer in the system.

• Not all disciplines are work conserving, e.g.
 – LCFS / pre-emptive restart
 – systems, where the server can take a “vacation”