HELSINKI UNIVERSITY OF TECHNOLOGY

Networking Laboratory
S-38.3143 Queueing Theory, II/2007

Exercise 3

20.11.2007

Virtamo / Penttinen

1. Determine the probability distribution in equilibrium for birth-death processes (state space $i=0,1,2, \ldots$, which transition intensities are a) $\lambda_{i}=\lambda, \mu_{i}=i \mu$, b) $\lambda_{i}=\lambda /(i+1), \mu_{i}=\mu$, where λ and μ are constants.
2. In a game audio signals arrive in the interval $(0, T)$ according to a Poisson process with rate λ, where $T>1 / \lambda$. The player wins only if there will be at least one audio signal in that interval and he pushes a button (only one push allowed) upon the last of the signals. The player uses the following strategy: he pushes the button upon the arrival of the first (if any) signal after a fixed time $s \leq T$.
a) What is the probability that the player wins?
b) What value of s maximizes the probability of winning, and what is the probability in this case?
3. It has been observed that in the interval $(0, t)$ one arrival has occurred from a Poisson process, i.e. $N(0, t)=1$. Prove that conditioned on this information, the arrival time τ is uniformly distributed in $(0, t)$. Hint: determine the conditional cumulative distribution function of the arrival time $\mathrm{P}\{\tau \leq s \mid$ one arrival during $(0, t)\}$.
4. Customers arrive at the system according to a Poisson process with the intensity λ. Each customer brings in a revenue Y (independently of other customers), which is assumed be an integer with the distribution $p_{i}=\mathrm{P}\{Y=i\}, i=1,2, \ldots$. Let X_{t} denote the total revenue gained during the time interval $(0, t)$.
a) Derive expressions for $\mathrm{E}\left[X_{t}\right]$ and $\mathrm{V}\left[X_{t}\right]$.
b) Deduce that $X_{t} \sim E_{1}+2 E_{2}+3 E_{3}+\cdots$, where the E_{i} are independent random variables with the distributions $E_{i} \sim \operatorname{Poisson}\left(p_{i} \lambda t\right)$.
5. Million $\left(10^{6}\right)$ data packets per second arrive at a network from different sources. The lengths of routes, defined by the source and destination addresses, vary considerably. The time a packet spends in the network depends on the length of the route, but also on the congestion of the network. The distribution of the time a packet spends in the network is assumed to have the following distribution: $1 \mathrm{~ms}(90 \%), 10 \mathrm{~ms}(7 \%), 100 \mathrm{~ms}(3 \%)$. How many packets there are in the network on average?
6. The states of some irreducible Markov-process, which steady state probabilities π_{i} are assumed to be known, can be partioned into two disjoint sets, $A=\{1,2, \ldots, n\}$ and $B=$ $\{n+1, n+2, \ldots\}$, so that the transition rates between the sets are non-zero only from state n to state $n+1$ and the opposite direction, i.e. $q_{n, n+1}=\lambda$ and $q_{n+1, n}=\mu$.
Using the Little's result write down an equation for the average time it takes from the transition $n \rightarrow n+1$ to the time the system returns back to set A (transition $n+1 \rightarrow n$), i.e. for the average time the system spends at set B.
