Exercise 3 20.11.2007 Virtamo / Penttinen

- 1. Determine the probability distribution in equilibrium for birth-death processes (state space i = 0, 1, 2, ...), which transition intensities are a) $\lambda_i = \lambda$, $\mu_i = i\mu$, b) $\lambda_i = \lambda/(i+1)$, $\mu_i = \mu$, where λ and μ are constants.
- 2. In a game audio signals arrive in the interval (0, T) according to a Poisson process with rate λ , where $T > 1/\lambda$. The player wins only if there will be at least one audio signal in that interval and he pushes a button (only one push allowed) upon the last of the signals. The player uses the following strategy: he pushes the button upon the arrival of the first (if any) signal after a fixed time $s \leq T$.
 - a) What is the probability that the player wins?

b) What value of s maximizes the probability of winning, and what is the probability in this case?

- 3. It has been observed that in the interval (0, t) one arrival has occurred from a Poisson process, i.e. N(0, t) = 1. Prove that conditioned on this information, the arrival time τ is uniformly distributed in (0, t). Hint: determine the conditional cumulative distribution function of the arrival time $P\{\tau \le s \mid \text{one arrival during } (0, t)\}$.
- 4. Customers arrive at the system according to a Poisson process with the intensity λ . Each customer brings in a revenue Y (independently of other customers), which is assumed be an integer with the distribution $p_i = P\{Y = i\}, i = 1, 2, ...$ Let X_t denote the total revenue gained during the time interval (0, t).

a) Derive expressions for $E[X_t]$ and $V[X_t]$.

b) Deduce that $X_t \sim E_1 + 2E_2 + 3E_3 + \cdots$, where the E_i are independent random variables with the distributions $E_i \sim \text{Poisson}(p_i \lambda t)$.

- 5. Million (10⁶) data packets per second arrive at a network from different sources. The lengths of routes, defined by the source and destination addresses, vary considerably. The time a packet spends in the network depends on the length of the route, but also on the congestion of the network. The distribution of the time a packet spends in the network is assumed to have the following distribution: 1 ms (90 %), 10 ms (7 %), 100 ms (3 %). How many packets there are in the network on average?
- 6. The states of some irreducible Markov-process, which steady state probabilities π_i are assumed to be known, can be particulated into two disjoint sets, $A = \{1, 2, ..., n\}$ and $B = \{n+1, n+2, ...\}$, so that the transition rates between the sets are non-zero only from state n to state n + 1 and the opposite direction, i.e. $q_{n,n+1} = \lambda$ and $q_{n+1,n} = \mu$.

Using the Little's result write down an equation for the average time it takes from the transition $n \to n+1$ to the time the system returns back to set A (transition $n+1 \to n$), i.e. for the average time the system spends at set B.