HELSINKI UNIVERSITY OF TECHNOLOGY
Networking Laboratory
S-38.3143 Queueing Theory, II/2007

Exercise 2

13.11.2007

Virtamo / Penttinen

1. Let $S=X_{1}+\ldots+X_{N}$, where $X_{i} \sim \operatorname{Exp}(\mu)$, be i.i.d. and N an independent geometrically distributed random variable, $\mathrm{P}\{N=k\}=(1-p) p^{k-1}, k=1,2, \ldots$. Determine the tail distribution of $S, G(x)=\mathrm{P}\{S>x\}$.
2. Prove (without using the generating function), that the sum of two Poisson random variables, $N_{1} \sim \operatorname{Poisson}\left(a_{1}\right)$ and $N_{2} \sim \operatorname{Poisson}\left(a_{2}\right)$, is also Poisson distributed: $\left(N_{1}+N_{2}\right) \sim$ Poisson $\left(a_{1}+a_{2}\right)$. Prove the same result with the aid of generating functions.
3. Let X be an exponential random variable. Without any computations, tell which one of the following is correct. Explain your answer.
a) $\mathrm{E}\left[X^{2} \mid X>1\right]=\mathrm{E}\left[(X+1)^{2}\right]$
b) $\mathrm{E}\left[X^{2} \mid X>1\right]=\mathrm{E}\left[X^{2}\right]+1$
c) $\mathrm{E}\left[X^{2} \mid X>1\right]=(1+\mathrm{E}[X])^{2}$
4. The transition probability matrix of a four state Markov chain is

$$
\mathbf{P}=\left(\begin{array}{cccc}
0 & 0 & 1 / 2 & 1 / 2 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) .
$$

Draw the state transition diagram of the chain and deduce which states are transient and which are recurrent.
5. Time to absorption. A three state Markov chain (with states $i=1, \ldots, 3$) has the state transition probability matrix:

$$
\mathbf{P}=\left(\begin{array}{ccc}
1 / 4 & 1 / 2 & 1 / 4 \\
1 / 2 & 1 / 4 & 1 / 4 \\
0 & 0 & 1
\end{array}\right)
$$

State 3 is an absorbing state. Let T_{i} denote the average time (number of steps) needed by a system in state i to reach the absorbing state $3\left(T_{3}=0\right)$. Write equations for $T_{i}, i=1,2$, based on the facts that the next transition $i \rightarrow j$ takes one step and due to the Markovian property it takes T_{j} steps on the average to reach the absorbing state from state j. Solve the equations.
6. Define the state of the system at the $n^{\text {th }}$ trial of an infinite sequence of $\operatorname{Bernoulli}(p)$ trials to be the number of consecutive succesful trials preceeding and the current trial, i.e. the state is the distance to previous unsuccesful trial. If the $n^{\text {th }}$ trial is unsuccesful, then $X_{n}=0$; if it succeeds but the previous one was unsuccesful, then $X_{n}=1$, etc. a) What is the state space of the system? b) Argue that X_{n} forms a Markov chain. c) Write down the transition probability matrix of the Markov chain (give its structure).

