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Medium Access Protocols for a Wireless Channel1

• In comparison with a fixed channel, a wireless channel is

– unreliable

– subject to fading phenomena (slow fading and fast fading)

– susceptible to interference from other channels and other kind of disturbances

• Bit error rate of a wireless channel is non-negligible

– this causes special problems for the TPC flow control protocol as this interprets packet

losses due to bit errors as a sign of congestion and reduces the window size

– this issue will be studied elsewhere

• Here we study performance problems that arise when several users attempt to use the

same channel.

• A distributed medium access (MAC) protocol is needed to coordinate the actions of

different users (nodes).

– if the number of nodes is large, a controlled protocol may not be feasible

– in such cases simple random MAC protocols are used

1Largely based on: A. Kumar, D. Manjunath, J. Kuri, Communication Networking, Elsevier, 2004; J. Hammond, P. O’Reilly, Local Computer

Networks, Addison-Wesley, 1986; L. Kleinrock, Queueing System, Vol. II, Addison Wesley, 1976.
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Aloha protocol

• Random access procedures were first developed for long radio links typical, e.g., in satellite

communications

– later they were adopted for communication in bus-type medium: the Ethernet

– today they are common in all kinds of wireless data communication systems

• The delay of getting feedback from the channel is long.

• It would be wasteful if the users had to wait to hear about the success of the transmission

before being able to transmit another packet.

• Pure Aloha is the simplest protocol one can imagine: If a node has a packet to transmit,

it transmits!

• The protocol does not exclude the possibility of collisions

– overlapping transmission cannot be decoded properly

– collided packets have to be resent

– however, not until a random waiting time; otherwise they would collide again
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Performance of pure Aloha

• To analyze the throughput performance pure Aloha we make the following assumptions

– all the packets have the same length

– for convenience, the transmission time of a packet is selected as the time unit so that

the transmission time of all the packets is 1

– the number of nodes is large and the traffic rate from each node is low

– the arriving fresh packet stream can then be modelled as a Poisson process

– resent packets are delayed for a random time long enough so that they are mixed with

the fresh packets without causing any noticeable correlation effect

– thus the total packet stream can be assumed Poissonian

• The number of transmission attempts in unit (transmission) time is Poisson distributed

with mean G (including both fresh and retransmitted packets).
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Performance of pure Aloha, cont.

• In pure Aloha, the contention or vulnerability period is two units long, see the figure.

• The transmission of a packet is successful if during the contention period no other packet

transmission attempts occur. This happens with the probability e−2G.

• Since the number of attempts per time is G the rate of successful transmission per unit

time or the throughput S is

S = Ge−2G

• One easily finds that the maximum throughput is obtained when G = 1
2

and yields

a very low maximum efficiency 1/2e ≈ 0.184; compare with the ideal maximum of 1

corresponding to successful transmission of packets back-to-back.

From L. Kleinrock, Queueing System, Vol. II, Addison-Wesley, 1976.
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Slotted Aloha (S-Aloha)

• Slotted Aloha is a refinement of pure Aloha to obtain a better performance.

• Time is segmented into slots of a fixed length, equal to the packet transmission time.

• Transmissions are forced to collide either completely or not at all

– transmission of a generated packet is delayed so that it will fit exactly in the next slot

– requires additional overhead to provide the time synchronization information

• The length of the vulnerability period is reduced from 2 to 1, improving the performance.

• Slotted Aloha is used in, e.g.,

– GSM systems for sending control messages from the mobile terminals to the base

station in so-called RACH channel (Random Access Channel)

– VSAT (Very Small Aperture Terminal) satellite network for sending channel reserva-

tion messages

– data transmission over cable-TV network using the DOCIS (Data Over Cable Service

Interface Specifications) standard for sending channel reservation requests from the

cable modem to the head end
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Slotted Aloha cont.

• In slotted Aloha, the vulnerability period is one unit long, see the figure.

• The mean number of packets intended to be sent (transmission attempts) in a slot is G;

the actual number is Poisson distributed with this mean.

• A successful transmission occurs when there is exactly one transmission attempt in a slot.

Therefore the throughput S is

S = Ge−G

• The maximum throughput is obtained when G = 1 and is still low 1/e ≈ 0.368.

• Throughput as a function of G is shown in the figure below.

From L. Kleinrock, Queueing System, Vol. II, Addison-Wesley, 1976.
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Instability of Aloha protocol

• A peculiar feature of the throughput curve of Aloha protocol is that it has a maximum

at a given value of G (G = 1
2

for pure Aloha and G = 1 for slotted Aloha).

• Beyond that value the throughput is a decreasing function of G rendering the system

unstable:

– a small increase in the transmission attempt rate decreases the throughput, leading

to more backlogged packets, more retransmissions thus further increasing G and dec-

reasing the throughput. . .

– ultimately the throughput goes to zero and the backlog grows indefinitely; all slots

are wasted by colliding transmissions of the retransmitted packets

• In the following we study this instability in more detail for slotted Aloha and discuss some

methods designed to stabilize the algorithm.
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Instability of slotted Aloha

• In order to analyze the instability we have to consider the dynamic behaviour of the

system, i.e., how the queue of backlogged packets behaves in time.

• A packet that has suffered a collision stays in the network and makes retransmission

attempts until successful; such packets are called backlogs.

• Assume that

– fresh arrivals during a slot will always attempt a transmission at the beginning of the

next slot

– backlogs attempt a retransmission in each slot with probability pr; that is, the time

to retransmission attempt is geometrically distributed

• Denote


























Bk = backlog at the beginning of slot k

Ak = number of new arrivals in slot k; Ak ∼Poisson(λ)

Dk = number of departures in slot k, Dk ∈ {0, 1}

• Obviously

Bk+1 = Bk + Ak − Dk,

and Bk constitutes a discrete time Markov chain.
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Instability of slotted Aloha, cont.

• Consider the drift d(n) defined as the expected change in the backlog given that the

current backlog is n,

d(n) = E [Bk+1 − Bk |Bk = n] = E [Ak − Dk |Bk = n] .

• Given that the current backlog is n, the backlog

– decreases by 1, if no new arrival occurs and if only one of the backlogs attempts

transmission

– increases by one if exactly one arrival occurs and if at least one of the backlogs

attempts transmission

– increases by amount m ≥ 2 if the number of new arrivals is m

– remains unchanged in all other cases



J. Virtamo 38.3141 Teletraffic Theory / MAC protocols for wireless channel 10

Instability of slotted Aloha, cont.

• Thus we can write






















































P{Bk+1 − Bk = −1 |Bk = n} = e−λ n pr (1 − pr)
n−1

P{Bk+1 − Bk = +1 |Bk = n} = λ e−λ (1 − (1 − pr)
n)

P{Bk+1 − Bk = m |Bk = n} =
λm

m!
e−λ, for m ≥ 2

• Using these and simplifying we get

d(n) = E [Bk+1 − Bk |Bk = n] =
∞
∑

m=−1
m P{Bk+1 − Bk = m |Bk = n}

= (−1) e−λ n pr (1 − pr)
n−1 + (+1) λ e−λ (1 − (1 − pr)

n) +
∞
∑

m=2
m

λm

m!
e−λ

= λ − e−λ (1 − pr)
n



λ +
n pr

1 − pr





• Because of the factor (1 − pr)
n, the second term becomes negligible for large n; thus the

mean drift for all large values of n (beyond a finite threshold) is positive. For large n the

network has a tendency to increase the backlog rather than decrease it. It can develop a

large backlog that may never be cleared. Thus Aloha protocol with fixed retransmission

probability pr is unstable.
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Stabilizing the Aloha algorithm

• Several protocols have been devised that stabilize the Aloha system.

• The idea in these protocols is to make the retransmission probability adaptive, decreasing

it when the backlog (either directly observed or indirectly inferred) grows.

• We first consider one such strategy, a rather theoretical one, and then discuss a more

practical approach.
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Ideal retransmission policy

• A successful transmission occurs either a) if one packet arrives and none of the n backlogs

attempt retransmission or b) if no new packet arrives and exactly one of the n backlogs

attempts retransmission.

• The probability of success, Ps, is thus

Ps = λ e−λ (1 − pr)
n + e−λ n pr (1 − pr)

n−1

• The optimal, state-dependent retransmission probability pr(n) that maximizes this is

pr(n) =
1 − λ

n − λ

• So, if we assume (unrealistically) that each node knows the size of backlogs n and the

arrival rate λ, this is the best choice for the retransmission probability.

• If this adaptive retransmission probability is used, the drift becomes

d(n) = λ − e−λ





n − 1

n − λ





n−1

• It is easily seen (exercise) that d(n) → λ−1/e when n → ∞. This means that for arrival

rates λ < 1/e the system is stable.
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Realistic retransmission policy – back-off mechanism

• It is not practical for the nodes to know the size of the backlog.

• In many random access protocols, nodes use their transmission history to adapt retrans-

mission protocols.

• In particular, an unsuccessful transmission attempt leads to a decrease in the retransmis-

sion probability – so-called back-off.

• A typical back-off algorithm is as follows:

– after a collision is detected, a new transmission is attempted only after a back-off

period x

– the length x of the back-off period is drawn uniformly in the interval (0, B − 1)

– B is updated at every transmission attempt:

B =











min (a × B, Bmax) if transmission collides

max (B − b, Bmin) if transmission is successful

where a, b, Bmin, Bmax are predefined constants

– often a = 2, whence this is called binary exponential back-off
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Carrier Sense Protocols, CSMA (Carrier Sense Multiple Access)

• Here we consider networks having small propagation delays compared with the packet

transmission time

– compact terrestrial radio network (as opposed to, e.g., satellite communication)

– wired bus type network, like the Ethernet

• It is feasible for a station to “listen” to the channel to determine whether it is busy before

a transmission is attempted and defer the transmission until the channel is sensed idle.

– additional hardware is needed for this, though

• CSMA-type protocols are more efficient than Aloha or S-Aloha.

• Basically CSMA protocol works in continuous time

– or, if slotted, the slot granularity is much finer than the packet transmission time, so

that in effect it looks almost like a continuous time system

• The efficiency of the CSMA protocol stems from the facts that

– the vulnerability (collision) period is much shorter than with Aloha or S-Aloha

– the packet does not have to wait for the next slot boundary in order to be transmitted

as in S-Aloha; less time is wasted
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Carrier Sensing Protocols cont.

• As with the Aloha, there is a vulnerability period during which a collision may occur.

• The length of the vulnerability period is equal to τ , the one-way propagation delay

– as shown in the figure, when a station starts to transmit, because of the propagation

delay, in the worst case it may take time τ before other stations get informed about

the on-going transmission; all packets whose transmission starts during this period

collide with the initial packet

• In CSMA, once the transmission is started, the whole packet is sent

– the sending station does not “know” if other packets collide

– the contrary is true in systems with collision detection (CD), as discussed later

• After the last of the collided packets has ended, it takes again time τ until all stations

sense the channel idle and can attempt transmitting again

• To summarize:

– collision occurs if during the initial period τ at least one transmission is attempted

– once a collision occurs, the system is useless for a total time of P + 2τ , where P is

the packet transmission time



J. Virtamo 38.3141 Teletraffic Theory / MAC protocols for wireless channel 16

Carrier Sensing Protocols cont.

Components of a cycle containing an unsuccessful busy period for nonpersistent CSMA.

From J. Hammond and P. O’Reilly, Local Computer Networks, Addison-Wesley, 1986.
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Variations of the CSMA Protocol

• When a packet collides (ultimately learned by a missing ack), the transmission is always

rescheduled to a later time using some specified back-off algorithm.

– after the back-off, the station again senses the channel and repeats the algorithm

• At some point, the station has a packet ready to transmit

– the station is called ready, irrespective whether the packet is a new or a retransmission

• There are some variations of the CSMA protocol depending what a ready station does in

finding the channel busy/idle

– nonpersistent CSMA

– p-persistent CSMA
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Nonpersistent and p-persistent CSMA Protocols

• The nonpersistent CSMA works as follows

– if the channel is sensed idle, the packet is transmitted

– if the channel is sensed busy, the node waits a random amount of time (back-off),

senses the channel again and the algorithm is repeated

• The p-persistent CSMA works as follows

– if the channel is sensed idle, then with probability p the node transmits the packet;

with the probability (1 − p), the node waits time τ (propagation delay), and the

algorithm is repeated

– if the channel is sensed busy, the node persists in sensing the channel until it becomes

idle operates as in the previous step (channel sensed idle)

• A special case of the p-persistent CSMA protocol is 1-persistent CSMA, where a ready

station always begins transmission when sensing the channel idle; persistently senses a

busy channel and starts transmitting immediately when sensing the channel idle

– the Ethernet and the IEEE 802.3 LAN and IEEE 802.11 WLAN MAC protocols are

1-persistent
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Performance of the CSMA Protocols

• The performance analysis of the CSMA protocols is straight-forward but somewhat te-

dious and not very illustrative.

• Here we only give some results without derivation.

• Throughput of nonpersistent CSMA

S =
Ge−τG

G(1 + 2τ ) + e−τG

• Throughput of 1-persistent CSMA

S =
G[1 + G + τG(1 + G + τG/2)]e−(1+2τ )G

G(1 + 2τ ) − (1 − e−τG) + (1 + τG)e−(1+τ )G

• Note that, as before, time is measured in terms of the packet transmission time,

– τ is the ratio of one-way propagation delay to the packet transmission time

– this parameter is assumed small when CSMA is used

– G is the traffic load, average number of arrivals in the transmission (service) time
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Throughput of nonpersistent CSMA for different values of τ
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Comparison of the throughput performance of different CSMA protocols

• In these comparisons value τ = 0.01 is assumed for the one-way propagation delay.

From J. Hammond and P. O’Reilly, Local Computer Networks, Addison-Wesley, 1986.
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CSMA with Collision Detection, CSMA/CD

• To further improve CSMA, the node can continue to monitor the channel after beginning

transmission to detect a possible collision

– again needs additional hardware

– is technically more demanding than just sensing that the channel is busy (may be

infeasible in wireless networks)

• If collision is detected, the transmission is immediately stopped to minimize the waste of

the channel capacity.

• CSMA/CD was invented for the popular Ethernet local area network (IEEE 802.3).

• The Ethernet uses the back-off scheme given before with the parameters a = 2 (binary

exponential back-off), b = B, Bmin = 2, Bmax = 1024

– the unit of back-off period in Ethernet is equal to twice the maximum round-tip delay

in the network (in 10 and 100 Mbps Ethernet equal to 512-bit transmission times).
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Hidden and exposed terminal problems

• Spatial reuse of frequency spectrum in wireless networks

– nodes in different parts of the network can send si-

multaneously (in the same band)

• So-called hidden and exposed terminals cause problems

for the MAC protocol.

• Hidden terminal refers to the case where a receiving

node c is within the transmission range of two nodes a

and b but these are unable to sense each other’s trans-

missions

– they may transmit simultaneously to c unaware of

collision occuring at c

– a is hidden from b and vice versa

• Exposed terminal refers to the case where node d wants

to transmit to node e (d → e) but an ongoing transmis-

sion a → c is sensed by d. Node d unnecessarily defers

its transmission even though reception at e would not

be interfered by a. Node d is exposed to node a.

1

2

2

1transmitting

receiving d senses busy channel and defers transmission

b senses idle channel and starts transmitting

b

X

time at a

time at b

time at c

time at d

collision due to a hidden node deferral by an exposed node

B A

a
c

D

d

e

collision

The transmission ranges of nodes a, b and d are shown
as (irregular, to be realistic) regions A, B and D.

From A. Kumar, D. Manjunath, J. Kuri,
Communication Networking, Elsevier, 2004.
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Collision avoidance by the RTS/CTS handshake

• A possible solution to the hidden terminal problem is the use of a busy tone

– a narrowband auxiliary signalling channel is defined

– a node actively receiving data transmits busy tone to let the potential other sending

nodes know about the ongoing transmission

• Dividing the available spectrum in two parts may be cumbersome. Therefore, in WLANs

a different strategy is adopted.

• Actual data transfer is preceded by a handshake between the transmitter and the receiver

– a node wanting to send data first transmits a short request to send (RTS) packet

– if the destination receives the RTS correctly and is free to accept data, it acknowledges

the request by a clear to send (CLS) packet

– if the CLS is not received within a specified timeout period, a retransmission is at-

tempted after a random back-off period

– after a successful RTS/CTS exchange, the channel is reserved for data transfer

• This called Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA).
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Discussion of the CDMA/CA scheme

• Packet length information (of data) is included in the RTS/CTS packets

– other nodes can determine the time to completion and schedule their transmissions

accordingly

– they must not try to send their RTS packets during the data transfer

• To completely eliminate the hidden terminal problem, the transmission range of the CTS

packet should be larger than the interference range of other nodes

– this may not be true in practice; some interfering nodes may not hear the CTS at all

or may hear it but not able to decode it

– such nodes may transmit their RTS packets during the data transfer causing a collision

• The RTS/CTS scheme does not at all address the exposed terminal problem

– the problem is indeed difficult to solve

– even if the exposed node would be allowed to send its RTS, it could not itself receive

the subsequent CTS

– does not prevent the wireless network operating but causes performance degradation
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Multiple Access in IEEE 802.11

• The 802.11 specifications define two modes

of operation

– Point Coordination Function (PCF),

centralized polling-based

– Distributed Coordination Function

(DCF), distributed MAC

• The DCF random access procedures are

based on the CSMA/CA mechanism with

RTS/CTS packets

• The figure shows the events during data

transfer between four nodes.
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From A. Kumar, D. Manjunath, J. Kuri, Communication

Networking, Elsevier, 2004.

• At the end of data transfer, there is a short interframe space (SIFS) to allow the receiving

node turn around its radio and send an ACK-packet.

• When channel is sensed idle, before sending RTS every node waits a time, DCF interframe

space (DIFS > SIFS), to allow the ACK to capture the channel.


