
Amsterdam-Wash. DC August-Sep, 2002
Kolkman

DNSSEC

Operational HOWTO.

Olaf M. Kolkman∗

RIPE NCC
November 12, 2002

Revision : 1.3

Contents

1 Introduction 3
1.1 On this document . 3
1.2 State of DNSSEC . 4

I DNSSEC Tutorial 4

2 Securing Zone Transfers 4
2.1 Task at hand . 4
2.2 Configuring TSIG Keys . 5
2.3 Primary servers configuration of TSIG 7
2.4 Secondary servers configuration of TSIG 8
2.5 Troubleshooting TSIG configuration 8
2.6 TSIG signing of Notifies . 9
2.7 Possible problems . 9

3 Configuring a caching forwarder as verifier 9
3.1 Task at hand . 9
3.2 Configuring the caching forwarder 10
3.3 Troubleshooting a verifier . 11

4 Setting up a locally secured zone 11
4.1 Task at hand . 11
4.2 Creating a key pair . 12
4.3 Zone signing . 15
4.4 Caching forwarder configuration 16
∗ (OKolkman@ripe.net)

DNSSEC operations HOWTO Page 1

Amsterdam-Wash. DC August-Sep, 2002
Kolkman

4.5 Zone resigning . 16
4.6 Troubleshooting zone signing . 18
4.7 Possible problems . 19

5 Delegating of Signing authority; becoming globally secure. 19
5.1 Task at Hand . 20
5.2 Key exchange, signing and securing. 21
5.3 Possible problems . 21

6 Rolling over keys 22

7 Emergency Rollover 24

8 How to proceed 25
8.1 Information . 25
8.2 Development Tools . 26

8.2.1 lwres . 26
8.2.2 Net::DNS::SEC . 26

II Demo Specifics 26

9 The ’DEMO’ environment 26
9.1 Domain name setup . 26

10 example files 27
10.1 named.conf . 27
10.2 example zone file . 29

11 References, Acknowledgments and Copyright 30

III Appendix 31

A The RIPE NCC and DNSSEC 31
A.1 The RIPE NCC DISI project . 31
A.2 DNSSEC . 32

DNSSEC operations HOWTO Page 2

Amsterdam-Wash. DC August-Sep, 2002
Kolkman

1 Introduction

1.1 On this document

This document has been produced as part of the RIPE NCC DNSSEC course.
The DNSSEC course consist of two parts. An ’Introduction to DNSSEC’

and an ’real-life’ demonstration.
The demonstration is presented by means of a slide show and is accompanied

by this document. ’The Introduction’ is presented using slides only. For this
document it is assumed that the reader is familiar with the basic principles of
DNSSEC, as presented in ’The Introduction’.

This document is tailored towards the course, but we have tried to write
it in such a way that it can also be useful as a ”HOWTO” when setting up
DNSSEC in ones own environment.

In this HOWTO we will concentrate on the following tasks:

• Securing Zone Transfers. (section 2)

• Securing Zones for local use; how to secure your organization (section 4).
When you learned and implemented this, you can be sure that DNS data
in your organization is not tampered with. If you have a locally secured
zone it is a small step to become part of a chain of trust.

• Delegating Signing authority; building a chain of trust (section 5). You
will learn how to exchange keys with your parent and with your children.

• Rolling over keys. (section 6)

In every section we describe the task at hand, the tools that are needed,
some troubleshooting techniques and possible problems one might encounter.
We have used BIND version 9.3.0s200207221 during the production of this doc-
ument, there will be minimal differences with respect to newer versions of BIND
since the availability and functionality of tools may differ.

In the text we will refer to zone and system administrators. A zone admin-
istrator is the person that is responsible for zone data maintenance. A system
administrator is responsible for maintaining the nameserver system. These 2
functions may be united in one person.

The examples given here are based on an example environment (section 9)
from one of our workshops setup. In the workshop network (isolated from the
Internet) we run our own root with one top level domain: tld. The tld top
level domain does not exist on the Internet.

The material for the DNSSEC course is available from www.ripe.net/disi/.
We are trying to improve the material wherever we can, so, comments or sug-
gestions for format of the HOWTO, the slides or this text are welcomed by the
author.

DNSSEC operational procedures are a moving target and tools for key man-
agement and rollover are not yet available. Therefore updates of this document
may be expected in the near future. (See www.ripe.net/disi/.).

1Bleading edge technology at the time of writing.

DNSSEC operations HOWTO Page 3

Amsterdam-Wash. DC August-Sep, 2002
Kolkman

1.2 State of DNSSEC

DNSSEC[rfc2535] is on the IETF standards track and has been implemented
in the ’BIND’ nameserver software (versions 9.0 to 9.2). The operational ex-
perience by early deployers, among which the RIPE NCC, has indicated that
the DNSSEC protocol needs to be modified to be able to cope with operational
problems that occur with delegation of authority.

Solutions for these scaling problems have been proposed and have been
implemented in ’snapshot’ versions of BIND 9.3. This document follows the
assumes DNSSEC as in RFC2535 but with DS. Issues like NXT, OPT-IN and
the exact semantics of the AD bit are still under discussion. As soon as IETF
concensus on these issues is reached and supporting software is available, we’ll
update this HOWTO.

Part I

DNSSEC Tutorial

2 Securing Zone Transfers

2.1 Task at hand

Secure zone transfers are achieved by providing authentication of the servers
and by providing data integrity during transfer.

The mechanism used to enable this is referred to as TSIG [rfc2845] and
is based on a shared secret. The shared secret is used to sign the content of
each DNS packet. The signature can be used for both authentication and for
integrity checking of the data. In order to prevent a malicious third party to
retransmit captured data (replay attack) a time stamp is included in the data.
The TSIG mechanism can also be used to prevent unauthorized zone transfers;
only owners of the secret key are able to do a zone transfer2

We will describe how primary server pri.ws.disi and secondary server sec.ws.disi
need to be configured to enable TSIG for zone transfers.

To configure TSIG one has to perform the following steps:

• Synchronize clocks.

• Create and distribute a shared secret.

• At the primary server, create an access list specifying which keys are
allowed transfer.

• At the secondary server, tell which keys to use when contacting which
primary servers

2The data in the DNS is public data; disabling zone transfers does not guarantee your DNS
data to become ’invisible’.

DNSSEC operations HOWTO Page 4

Amsterdam-Wash. DC August-Sep, 2002
Kolkman

The first item is a pre-requisite for DNSSEC. If you do DNSSEC you should
be in sync with the rest of the world: Use NTP. Time zones can be confusing.
Use date -u to verify if your machine has the proper UTC time.

TSIG configuration is a task for system administrators.

2.2 Configuring TSIG Keys

To secure a zone transfer the primary server and the secondary server admin-
istrators have to configure a TSIG key in named.conf. The TSIG key consists
of a secret and a hashing algorithm and are identified by domain names. We
recomend that you maintain the list of secret keys in a separate file which is
readable by root only and included in the named.conf file (e.g. by include
/var/named/shared.keys).

The key statement has the following syntax:

key key_id {
algorithm string;
secret string;

};

This statement needs to be exactly the same for the two parties involved.

The key id is a domain name uniquely identifying the key. If you have a
large number of secret keys to maintain you should use a fully qualified domain
name to avoid name clashes. We recommend you use a key id that identifies
both ends such as pri-sec.ws.disi.. For the algorithm string you have no
choice; Currently the only supported algorithm in the TSIG specification is
’hmac-md5’. The secret string is the shared secret in a base-64 encoded string.

One can use dnssec-keygen to generate a truly random secret or use a
pass-phrase - we describe both methods below.

Generating a TSIG secret with dnssec-keygen

dnssec-keygen is the tool that we use to generate keys (see figure 1, page 13
for the syntax and arguments).

We will use dnssec-keygen to generate a base64 encoded random number
that will be used as the secret string. The arguments that we have to provide
dnssec-keygen to generate a TSIG key are:

DNSSEC operations HOWTO Page 5

Amsterdam-Wash. DC August-Sep, 2002
Kolkman

-a HMAC-MD5 the algorithm used
-b bitsize The length of the key generated, 128 bit

is recommended in [rfc2845]
-n HOST The nametype, HOST is used for this

purpose. The nametype is not re-
ally relevant when generating shared se-
crets.

name the domain name you will be using to
identify this key.

Optional Arguments
-r /dev/urandom This option is needed if /dev/random

is not provided with sufficient entropy.
Use /dev/urandom on FreeBSD sys-
tems (4.4-STABLE and before) or when
experience ’time-outs’ without this op-
tion.

The command produces two files3 as output. The name of the files con-
tain relevant information: Kdomain name+algorithm id+key id.extension. The
domain name is the name specified as the name of the key. The algorithm id
identifies the algorithm used: 5 for HMAC-MD5 (1 and 3 are for RSA and DSA
respectively see section ??). The key id is an identifier for the key material,
it is not of relevance for symmetric keys. The extension is either ”key” or
”private”, the first one is the public key and the second one is the private key.

The format of these files differs a bit but they contain exactly the same
information; a base64 encoded random number that you are going to use as a
shared secret. Do not be misdirected by the extensions “private” and “key”,
both the files should be kept secure4!

Note that the -n HOST and the name are not used for the generation of the
base64 encoded random number. It is a convention to use the unique domain-
name label that is used to identify the key as the name.

dnssec-keygen -r /dev/urandom -a HMAC-MD5 -b 128 \\
-n HOST pri-sec.ws.disi
Kpri-sec.ws.disi.+157+12274

cat Kpri-sec.ws.disi.+157+12274.key
pri-sec.ws.disi. IN KEY 512 3 157 gQOqMJA/LGHwJa8vtD7u6w==

cat Kpri-sec.ws.disi.+157+12274.private
Private-key-format: v1.2
Algorithm: 157 (HMAC_MD5)
Key: gQOqMJA/LGHwJa8vtD7u6w==

3Two files are overkill if one only needs one random number.
4Since the secret material is copied to the configuration files and these files are not used

in production, you may consider to delete them.

DNSSEC operations HOWTO Page 6

Amsterdam-Wash. DC August-Sep, 2002
Kolkman

The base64 encoded random number is: gQOqMJA/LGHwJa8vtD7u6w==, it
should be inserted in the secret of the key definition:

key pri-sec.ws.disi.{
algorithm hmac-md5;
secret "gQOqMJA/LGHwJa8vtD7u6w==";

};

This key definition should be included in both primary and secondary name-
server configuration file. It is recommended to generate a secret for every differ-
ent party you are involved with and you will need to maintain as many secrets
as zones you are secondary for.

Other ways to generate secrets

The dnssec-keygen command provides you with a truly random bit sequence.
It might be difficult to communicate the secret to your colleague running a
secondary server on the other side of the world. In those cases you may want
to choose to fall back to a pass-phrase that can be communicated over the
telephone.

You can use any base64 encoder to convert the pass-phrase to a valid string
in the key-definition.

echo "Crypto Rules" | mmencode
Q3J5cHRvIFJ1bGVzCg==

or if mmencode is not available maybe this perl script can assist you.

#!/usr/bin/perl
use MIME::Base64;
print encode_base64("@ARGV") ;

Actually any string that can be base64 decoded will do.
ThisIsAValidBase64String can also be used as secret string.

2.3 Primary servers configuration of TSIG

Both the primary and secondary server should have shared secret configured
by using the key definition in a file included in named.conf (see above).

The primary server can now use the key in what BIND calls an
address match list. These lists appear in the allow-notify, allow-query,
allow-transfer and allow-recursion statements which controls access to
the server.Also see sec-

tion 6.1.1 and
6.2.14.3 of the
online BIND
documentation

Relevant at this point is the allow-transfer in the zone definition. Us-
ing the key generated above the primary server for ws.disi would have the
following statement in named.conf:

DNSSEC operations HOWTO Page 7

Amsterdam-Wash. DC August-Sep, 2002
Kolkman

zone "ws.disi" {
type master;
file db.ws.disi;
\\ allow transfer only from secondary server that has
\\ key pri-sec.ws.disi.
allow-transfer { key pri-sec.ws.disi. ; };
notify yes;

};

2.4 Secondary servers configuration of TSIG

Both the primary and secondary serve should have shared secret configured by
using the key definition in named.conf (see above).

The server definition in named.conf is used to instruct the nameserver to
use a specific key when contacting another nameserver.

\\ secondary for ws.disi
\\ primary server pri.ws.disi is on 10.1.1.2
server 10.1.1.2 {

keys { pri-sec.ws.disi.;};
};

2.5 Troubleshooting TSIG configuration

You can check the format of your named.conf using the named-checkconf
program. This program reads the configuration file using the same routines as
named itself.

To troubleshoot your configuration you have the log file and dig at your
disposal.

Before adding the allow-transfer { key pri-sec.ws.disi. ; }; you
should be able to transfer the domain from any machine. dig @pri.ws.disi
ws.disi AXFR should be successful. After key configuration the same command
should give you output similar to:

; <<>> DiG 9.2.0rc1 <<>> @pri.ws.disi ws.disi AXFR
;; global options: printcmd
; Transfer failed.

You can test if the key is configured correctly in two ways.

1. You ask the zone administrator to increase the SOA serial and to have
the zone reloaded on the primary server. The secondary server should
pick up the changes.
The log file of the secondary server will have entries like:

... general: info: zone ws.disi/IN: transfered serial 2001082801

... xfer-in: info: transfer of ’ws.disi/IN’ from 10.1.1.2#53: end of transfer

DNSSEC operations HOWTO Page 8

Amsterdam-Wash. DC August-Sep, 2002
Kolkman

2. You use dig to test the key by using dig with the -k file:
dig @pri.ws.disi ws.disi AXFR -k Kpri-sec.ws.disi.+157+12274.key

Alternatively you can use the -y switch and specify the key-name and the
secret5 with the -y switch;
dig @pri.ws.disi ws.disi AXFR -y pri-sec.ws.disi.:gQOqMJA/LGHwJa8vtD7u6w==

should do the trick.
The log file of the primary server you tried this against will have entries
similar to the following if the key did not match.

.. security: error: client 10.1.1.6#1379: zone transfer ’ws.disi/IN’ denied

2.6 TSIG signing of Notifies

TODO: add server directive for master, add allow-notify directive for slave.

2.7 Possible problems

Timing problems Machines that are involved in a TSIG signed transaction
need to have their clocks synchronized within a few6 minutes. Use ’NTP’ to
synchronize the machines and make sure the time zones are properly configured.
A wrong time-zone configuration can lead to hard to spot problems; use date
-u’ to check what your machine thinks is the ’UTC’ time.

Multiple server directives TSIG is a mechanism to protect communication
on a per machine basis. Having multiple server directives for the same server
or multiple keys in one server directive might lead to unexpected results... as a
matter of fact it most certainly will lead to unexpected results.

3 Configuring a caching forwarder as verifier

3.1 Task at hand

We want to configure a caching server as a verifying cache. Users that use
this cache as their nameserver will in this way only receive data that is either
verifiable secure or verifiable insecure any spoofed data (marked ’bad’) will not
find it’s way to the the users.

By configuring a public key for a specific zone we tell the caching forwarder
that all data coming from that zone should be signed with the private key of
that key pair. The zone acts as a secure entry point of the DNS tree and the
key configured in the verifiable caching nameserver acts as the start for a chain
of trust. In an ideal situation you have only one key configured as a secure
entry point: the key of the root zone.

5Take care when using secrets on the command line of multi-user systems: on most Unix
system command line arguments are visible on the output of ps -auxwww or via the /proc/

file system
6BIND has 5 minutes hard coded

DNSSEC operations HOWTO Page 9

Amsterdam-Wash. DC August-Sep, 2002
Kolkman

We assume you have a nameserver that has been configured as a caching-
only nameserver and that another nameserver in your organization has been
configured to run as an authoritative server for a secured zone called sub.tld..
Notes on how to setup a secured zone can be found below in section 4.

3.2 Configuring the caching forwarder

First you have to get hold of the public key that you want to configure. It is
possible to get it from the DNS, but you will need to verify the key you obtained
by an off-line mechanism. There are several possible ways that this can be done
and it all depends on the policy of the zone administrator. The key could be
published in the national newspaper, it can be published on a website that can
be authenticated by a (trusted) 3rd party certificate. Make sure that you do
not use the DNS to verify the key and you will be OK.

Besides that you have to verify the keys you obtaied out of band you have
to make sure that the key you configure is the so called ’key signing key’. If
the zone maintainer so decides he or she may make a destinction between keys.
Some of them may be used to only sign key RR sets, others may be used to sign
all the data in the zone. This distinction can only be communicated off-band
since the KEY RR data provides no information on the operational use of the
keys.

We assume you have obtained the key-signing key of sub.tld..
Once you obtained the key you have to include the following statement in

the named.conf of the caching forwarder.

trusted-keys {
"sub.tld.’’ 256 3 3 ‘‘CLGc9Re9I3pg7QAqx ...

VL24iYygAbSu3’’

};

The format lookes like an entry in a zone file but note the quotes around
the label and the public key material, they are not to be forgotten. There is no
CLASS and TTL.

As soon as a trusted-key has been configured, data from that zone or its
sub zones will be verified by the caching forwarder. If data is verified by the
caching forwarder the ad-bit7 will be set by the forwarder (see the ’flags’ in the
following example).

; <<>> DiG 9.3.0s20020722 <<>> +dnssec +retry=1 @10.0.53.204 sub.tld SOA

;; global options: printcmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 36689

;; flags: qr rd ra ad; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 5

....

7The ad bit is defined in [rfc2535] section 6.1, the semantics of the AD bit are being fine
tuned and may be subject to change in the near future[WG].

DNSSEC operations HOWTO Page 10

Amsterdam-Wash. DC August-Sep, 2002
Kolkman

3.3 Troubleshooting a verifier

It is important that you check on the proper working of the verifyer. This can
be done by turning on the logging for the veryfining nameserver by using a
channel (dnssec log in the example below) to which the errors of the ’dnssec’
category are directed. Make sure you log at least at ’severity debug 3’ that way
you will be able to see the chains of trust being validated.

logging{

channel dnssec_log { // a DNSSEC log channel

file "log/dnssec" size 20m;

print-time yes; // timestamp the entries

print-category yes; // add category name to entries

print-severity yes; // add severity level to entries

severity debug 3; // print debug message <= 3 t

};

category dnssec { dnssec_log; };

}

The output in the logfile will look similar to the output below. The attempt
for positive response validation shows how the verifyer tries to prove that the
RR set is trusted by following the chain of trust to the appropriate secure entry
point, your trusted-key statement.

debug 3: client 10.0.53.204#1164: request is not signed

debug 3: client 10.0.53.204#1164: recursion available

debug 3: client 10.0.53.204#1164: query (cache) approved

debug 3: validating sub.tld SOA: starting

debug 3: validating sub.tld SOA: attempting positive response validation

debug 3: validating sub.tld KEY: starting

debug 3: validating sub.tld KEY: attempting positive response validation

debug 3: validating sub.tld KEY: verify rdataset: success

debug 3: validating sub.tld KEY: signed by trusted key; marking as secure

debug 3: validator @0x81e8800: dns_validator_destroy

debug 3: validating sub.tld SOA: in fetch_callback_validator

debug 3: validating sub.tld SOA: keyset with trust 7

debug 3: validating sub.tld SOA: resuming validate

debug 3: validating sub.tld SOA: verify rdataset: success

debug 3: validating sub.tld SOA: marking as secure

debug 3: validator @0x81e0000: dns_validator_destroy

4 Setting up a locally secured zone

4.1 Task at hand

The purpose of this exercise is to protect the DNS data as published by the
zone administrator. Once we have configured the organization’s resolvers and
signed the zones DNS data, we can be sure that data is not tampered with; not
while the DNS data is on the wire, not while the data lives on the master or
slave servers’ disks.

DNSSEC operations HOWTO Page 11

Amsterdam-Wash. DC August-Sep, 2002
Kolkman

We will configure a caching forwarder to verify the DNS data that ex-
ists within our organization. If somebody tampered with that data the for-
warder will notice this. Resolvers using this caching forwarder (it sits in
/etc/resolv.conf) will only receive secure or verifiable unsecured data.

We want to sign the zone data for our own organization (say sub.tld.)
and configure the caching forwarders on our organizations network to verify
data against the public key of our organization. In terms of [rfc3090] this is
called a locally secured zone. Note that in the text below, the assumption holds
that your organization’s domain names are maintained in one zone. If domain
name administration is delegated to sub zones things get more complicated, see
section 5.

At this moment the caching forwarder is the only architectural element for
which DNSSEC verification is implemented. There are no applications that
will do their own verification yet, nor are there stub-resolvers that are able of
retrieving and verifying SIG resource records.

To establish this we need to create a public key pair, sign our zones and
publish the data. We also need to configure the caching forwarders with the
public key.

Signing the zone data is the task of the zone administrator, configuring the
caching forwarder is a task of system administrators.

The examples are based on the example zone in section 10.2 on page 29.

4.2 Creating a key pair

dnssec-keygen is the tool that we use to generate keys (see figure 1, page 13
for the syntax and arguments).

We will use dnssec-keygen to generate a private-public key pair. The
arguments that we have to provide dnssec-keygen are:

-a RSA,
RSAMD5,
DH, DSA,
RSASHA1

the algorithm used

-b bitsize The length of the key generated, seizes
between 512 and 4096 bits depending
on the algorithm.

-n ZONE The nametype, ZONE is used for
DNSSEC.

name the domain name of the zone you will
sign with this key.

Optional Arguments
-r /dev/urandom This option is needed if /dev/random

is not provided with sufficient entropy.
Use this option on FreeBSD systems
(4.6-Stable and before) or when expe-
rience ’time-outs’ without this option.

DNSSEC operations HOWTO Page 12

Amsterdam-Wash. DC August-Sep, 2002
Kolkman

Usage:

dnssec-keygen -a alg -b bits -n type [options] name

Required options:

-a algorithm: RSA | RSAMD5 | DH | DSA | RSASHA1 | HMAC-MD5

-b key size, in bits:

RSAMD5: [512..4096]

RSASHA1: [512..4096]

DH: [128..4096]

DSA: [512..1024] and divisible by 64

HMAC-MD5: [1..512]

-n nametype: ZONE | HOST | ENTITY | USER

name: owner of the key

Other options:

-c <class> (default: IN)

-e use large exponent (RSAMD5/RSASHA1 only)

-g <generator> use specified generator (DH only)

-t <type>: AUTHCONF | NOAUTHCONF | NOAUTH | NOCONF (default: AUTHCONF)

-p <protocol>: default: 3 [dnssec]

-s <strength> strength value this key signs DNS records with (default: 0)

-r <randomdev>: a file containing random data

-v <verbose level>

Output:

K<name>+<alg>+<id>.key, K<name>+<alg>+<id>.private

Figure 1: dnssec-keygen arguments

The output resides in two files. The name of the files contain relevant
information: Kdomain name+algorithm id+key id.extension. The domain name
is the name you specified on the command line, it is used by other BIND
DNSSEC tools, if you use a name different from the domain name you might
confuse those tools. The algorithm id identifies the algorithm used: 1 for RSA,
3 for DSA, and 5 for HMAC-MD5 (TSIG only). The key id is an identifier
for the key material. This key id is used by the SIG Resource Record. The
extension is either ”key” or ”private” the first one is the public key, the second
one is the private key.

We create an RSASHA1 keyset for sub.tld:

dnssec-keygen -r/dev/urandom -a RSASHA1 -b 1024 -n ZONE sub.tld
Ksub.tld.+005+28124

Lets have a look at the content of these file (we truncated the base64 key
material):

cat Ksub.tld.+005+28124.key
sub.tld. IN KEY 256 3 5 AQO9+CFJ7j...

The public key (.key extension) is exactly as it would appear in your zone
file. Note that the TTL value is not specified. The private key (.private
extension) contains all the parameters that make an RSASHA1 private key.

DNSSEC operations HOWTO Page 13

Amsterdam-Wash. DC August-Sep, 2002
Kolkman

Usage:

dnssec-signzone [options] zonefile [keys]

Options: (default value in parenthesis)

-c class (IN)

-d directory

directory to find keyset files (.)

-s YYYYMMDDHHMMSS|+offset:

SIG start time - absolute|offset (now)

-e YYYYMMDDHHMMSS|+offset|"now"+offset]:

SIG end time - absolute|from start|from now (now + 30 days)

-i interval:

cycle interval - resign if < interval from end ((end-start)/4)

-v debuglevel (0)

-o origin:

zone origin (name of zonefile)

-f outfile:

file the signed zone is written in (zonefile + .signed)

-r randomdev:

a file containing random data

-a: verify generated signatures

-p: use pseudorandom data (faster but less secure)

-t: print statistics

-n ncpus (number of cpus present)

-k key_signing_key

Signing Keys: (default: all zone keys that have private keys)

keyfile (Kname+alg+tag)

Figure 2: dnssec-signzone arguments

The private key of a RSA key contains different parameters then DSA. Here is
the private key (with base64 material truncated):

cat Ksub.tld.+005+28124.private
Private-key-format: v1.2
Algorithm: 5 (RSASHA1)
Modulus: vfghSe400Lvrii83V4mZboA2PaEUgvhU1Oi...
PublicExponent: Aw==
PrivateExponent: fqVrhp7N4H1HsXTPj7EQ9FV5fmt...
Prime1: 9/TIUIQQTfAEbKNNlHQPWjZSKYuAAs5iunEG...
Prime2: xCHHpFj8LExLz9arlUB5W8o+eGQXAkRcAWFS...
Exponent1: pU3a4FgK3qAC8xeJDaK05s7hcQeqrImXJ...
Exponent2: gsEvwuX9ct2H3+RyY4BQ59wppZgPVtg9V...
Coefficient: laKLjRAKVqXoxmDynjYa1NvzKivzvnc...

This private key should be kept secure8i.e.the file permissions should be set
so that the zone administrator will be able to access them when a zone needs

8At the RIPE NCC we are working on a dedicated signing server that has SSH based access
control. Based on which key is used to login a dedicated shell is opened; Zone maintenance
shell that allows signing of zones; A key maintenance shell for key maintenance. Only system
administrators have privileges to access the key-material itself.

DNSSEC operations HOWTO Page 14

Amsterdam-Wash. DC August-Sep, 2002
Kolkman

to be signed. Besides, the BIND tools will, by default9, look for the keys in the
directory where signing is performed, and that might not be the most secure
place on your OS.

4.3 Zone signing

A locally secured tree must have a it’s apex KEY RRs included[rfc3090] so
before you sign your zone you have to add the public keys to your zone. You
can do this by simply including the keys into your zone file.

Include the public keys (.key extension) in your zone file. Taking the exam-
ple file from 10.2 we use the $INCLUDE directive to include the key. Of course,
we do not forget to increase the serial number in the SOA. Note that in the ex-
ample we include 3 keys. One RSAMD5 key (algorithm 1) one DSA (algorithm
3) and one RSASHA1 key (algorithm 5).

In the example below we will use the DSA key as the key signing key and the
RSA keys as zone signing keys. In practice you will probably not use different
algorithms but stick to only one (RSASHA1 is the preferred algorithm) and
you will probably only have 3 keys in your zone at key-rollover time.

$TTL 100

$ORIGIN sub.tld.

@ 100 IN SOA ns.registry.TLD. (

olaf.ripe.net.

2002050501

100

200

604800

100

)

; In this example zone we have include 3 keys.

; The DSA key +003+19854 is designated key-signing keys.

; the other two are designated zone signing keys.

$include Ksub.tld.+001+23495.key

$include Ksub.tld.+003+19854.key

$include Ksub.tld.+005+28124.key

;...$snip...

Once the key is included in the zone file we are ready to sign the zone using
the dnssec-signzone tool, see figure 2 for all the arguments. We use the -o
flag to specify the origin of the zone; normally the origin is deduce from the
zone file’s name.

With the ’-k <KEY>’ we specify which key is to be used as the Key signing
key. That key will only sign the KEY RR set in the apex of the zone. The keys
that come as arguments at the end of the command are used to sign all the RR
data for which the zone is authoritative.

/usr/local/sbin/dnssec-signzone -r /dev/urandom \
-k Ksub.tld.+003+19854.key \
sub.tld Ksub.tld.+001+23495.key Ksub.tld.+005+28124 \
db.ws.disi.signed

9It is possible to fully specify the path to the keys

DNSSEC operations HOWTO Page 15

Amsterdam-Wash. DC August-Sep, 2002
Kolkman

In the example above the DSA key with ID 19854 is the key signing key.
The RSA/MD5 key with ID 23496 and the RSA/SHA1 key with ID28124 are
zone signing keys.

The signed zone file is reproduced in figure 3. We’ve truncated all base64
representations and modified the output of dnssec-keygen a little bit to compact
the presentation somewhat. (It’s hard to make it really readable). Note that
the apex KEY RRset is the only RRset with 3 signatures, made with the zone
and key signing keys. The other RRsets are only signed with the zone signing
keys.

The signing process did the following:

• It sorted the zone in ’canonical’ order.

• Inserted NXT records for every label.

• Added the key-id as a comment to each KEY-record.

• Signed the KEY RR set with 3 keys; the key signing key and the zone
signing keys.

• Signed the other RRs with the two zone signing keys (algorithm 1 and
algorithm 5)

The signatures where created with a (default) lifetime of 30 days from the
moment of signing. If signatures have expired data can not be verified and your
zone will go ’bad’. Therefore you will have to resign your zone every 30 days.
Zone resigning is discussed below.

4.4 Caching forwarder configuration

Now that the DNS servers publish signed data we need to configure the ’clients’
to verify the data. The clients in this context are caching forwarders. To do this
just configure your caching forwarder with the public key you just generated
for the zone. How to do this is described in section 3 above.

4.5 Zone resigning

When the signature is almost expired or when you have added a few records
to your zone there are two ways to resign your zone data. You may choose
whichever option depending on the level of automation and the zone file you
have to sign and frequency you have to regenerate SIG records..

• You can regenerate the signed zone from the unsigned zone file. The
signer will need to sort the zone again, generate all the NXT records and
generate all SIG records.

If you generate your zone file from a back-end database this is probably
the preferred mechanism.

DNSSEC operations HOWTO Page 16

Amsterdam-Wash. DC August-Sep, 2002
Kolkman

; File written on Sun Aug 25 15:35:39 2002

; dnssec_signzone version 9.3.0s20020722

sub.tld. 100 IN SOA ns.registry.TLD. olaf.ripe.net. (

2002050501 ; serial

100 ; refresh (1 minute 40 seconds)

200 ; retry (3 minutes 20 seconds)

604800 ; expire (1 week)

100 ; minimum (1 minute 40 seconds)

)

100 SIG SOA 1 2 100 20020924133539 20020825133539 23495 sub.tld. T0K+XczqhuVjaQI9Jj7NUGiLqoBKXH ...

100 SIG SOA 5 2 100 20020924133539 20020825133539 28124 sub.tld. fFmSLmJU1mpTGniRxUEtETpruste27p ...

100 NS ns.sub.tld.

100 SIG NS 5 2 100 20020924133539 20020825133539 28124 sub.tld. p/3GONcMJ7xs9xDUeCFTWUvJwHPBN6D ...

100 KEY 256 3 1 AQPw02b9MnR8aJplOyI1CB0u1zBGi9x ... ; key id = 23495

100 KEY 256 3 3 (CLGc9Re9I3pg7QAqxPebTpbokbYb5nZ ...; key id = 19854

100 KEY 256 3 5 (AQO9+CFJ7jTQu+uKLzdXiZlugDY9oRSC ...; key id = 28124

100 SIG KEY 1 2 100 20020924133539 20020825133539 23495 sub.tld. TjpdtpH9g2fBHAxY4uKcAZjBp5qEIklu4Bqg

XPxdXDCDzQzWm4hG5yVb7Wq1Zqo43 ...

100 SIG KEY 3 2 100 20020924133539 20020825133539 19854 sub.tld. CCfyqvBBycBfy+7e5n/ckKS9bGnunP ...

100 SIG KEY 5 2 100 20020924133539 20020825133539 28124 sub.tld. RdSsIVKjX16LOCeGGBARdludKZPI94N ...

100 NXT b1.sub.tld. NS SOA SIG KEY NXT

100 SIG NXT 1 2 100 20020924133539 20020825133539 23495 sub.tld. NRHRUSRZO6WRUq5RFQzYPPRmPWmsDPT ...

100 SIG NXT 5 2 100 20020924133539 20020825133539 28124 sub.tld. OE2ZV/7aGk3pRU+7BFSpgAPodD2dLbQ ...

b1.sub.tld. 100 IN A 10.0.2.1

100 SIG A 1 3 100 20020924133539 20020825133539 23495 sub.tld. Hgn+P4sySKPeH3k5UXtf18Em9NxWnBd ...

100 SIG A 5 3 100 20020924133539 20020825133539 28124 sub.tld. sBzmRe3s4HpPozyWwboggfmH+Ssv61j ...

100 NXT b2.sub.tld. A SIG NXT

100 SIG NXT 1 3 100 20020924133539 20020825133539 23495 sub.tld. NAWacUhKEDNKXAI8auoLTefJ1Cef2v8 ...

100 SIG NXT 5 3 100 20020924133539 20020825133539 28124 sub.tld. jSf/vyYw0+o+iRoq0RoWIgxv7mZPnEU ...

b2.sub.tld. 100 IN A 10.0.2.2

100 SIG A 1 3 100 20020924133539 20020825133539 23495 sub.tld. T7T1BNl16UC6guBzon9f04siJ90li ...

100 SIG A 5 3 100 20020924133539 20020825133539 28124 sub.tld. mgmBVLHlTzt0xTQYB1hpwdBiNTUXU ...

100 NXT b3.sub.tld. A SIG NXT

100 SIG NXT 1 3 100 20020924133539 20020825133539 23495 sub.tld. 68Gtt2KvIy1CIlOpmyNZCAU6HOK3bT3 ...

100 SIG NXT 5 3 100 20020924133539 20020825133539 28124 sub.tld. JJjaCoX3N3a5sHteULZmxTitp7adfLn ...

b3.sub.tld. 100 IN A 10.0.2.3

100 SIG A 1 3 100 20020924133539 20020825133539 23495 sub.tld. S4WbwAC537mymQamv9IB58qF/R5l7 ...

100 SIG A 5 3 100 20020924133539 20020825133539 28124 sub.tld. Lff5HcyvvZomZPDQ0g3BAaPvvFGmO ...

100 NXT b4.sub.tld. A SIG NXT

100 SIG NXT 1 3 100 20020924133539 20020825133539 23495 sub.tld. 48sFT+OWOPFNmRtiPP9tjeZDbACZ9pM ...

100 SIG NXT 5 3 100 20020924133539 20020825133539 28124 sub.tld. hx2E6rX4hF1gBt9/cHc6ewL2e7C+rWW ...

b4.sub.tld. 100 IN A 10.0.2.4

100 SIG A 1 3 100 20020924133539 20020825133539 23495 sub.tld. XB93jhZciRUsyqItmlkBfYlFzbbVf ...

100 SIG A 5 3 100 20020924133539 20020825133539 28124 sub.tld. XTGUKGbm9F7Fj8rJ3FpL+HgQS2f7r ...

100 NXT corrupt.sub.tld. A SIG NXT

100 SIG NXT 1 3 100 20020924133539 20020825133539 23495 sub.tld. sGA83aVU7TcJyUTzLs90a2OLhXh1Zu1 ...

100 SIG NXT 5 3 100 20020924133539 20020825133539 28124 sub.tld. rLVJtLH7yLvQfaiV8h/GuFfVFMb4MAU ...

corrupt.sub.tld. 100 IN A 10.0.4.1

100 SIG A 1 3 100 20020924140716 20020825140716 23495 sub.tld. P6c+Fz3Xyd4S7BrtcLV9ZpBDdLZF5gd ...

100 SIG A 5 3 100 20020924140716 20020825140716 28124 sub.tld. P6IZYe8LI1ttZE1LQfovtYPgrO1SBwR ...

100 NXT e.sub.tld. A SIG NXT

100 SIG NXT 1 3 100 20020924140716 20020825140716 23495 sub.tld. YXPzAQLFWB7Je13Zxltzjk3O1YFrIaLy ...

100 SIG NXT 5 3 100 20020924140716 20020825140716 28124 sub.tld. DF1nf536tCzcEJ7sg5wr+no75wnLhdfo ...

e.sub.tld. 100 IN A 10.0.3.1

100 SIG A 1 3 100 20020924133539 20020825133539 23495 sub.tld. t6YOdiH8Pn0LjObxG96Cc+mpDUaca ...

100 SIG A 5 3 100 20020924133539 20020825133539 28124 sub.tld. iF1CnqIER9DPvwKO0+YSfO1dfrVYz ...

100 NXT d.e.sub.tld. A SIG NXT

100 SIG NXT 1 3 100 20020924133539 20020825133539 23495 sub.tld. eP+ZdSgLQeLpEH9dSzQHZoNzMMlLkCo ...

100 SIG NXT 5 3 100 20020924133539 20020825133539 28124 sub.tld. HwWcau8MgUbGwFHrSqW9EOJ/qtzDzdb ...

d.e.sub.tld. 100 IN A 10.0.3.2

100 SIG A 1 4 100 20020924133539 20020825133539 23495 sub.tld. us8sloYEkr7LCx9QUYgBYyXJA3FMA ...

100 SIG A 5 4 100 20020924133539 20020825133539 28124 sub.tld. KNrQRvogTiFF+W0NdYHq3cmdiGDUw ...

100 NXT c.d.e.sub.tld. A SIG NXT

100 SIG NXT 1 4 100 20020924133539 20020825133539 23495 sub.tld. JnX3x/CTNfuAD26pQ4tVZ3OsKdLhsye ...

100 SIG NXT 5 4 100 20020924133539 20020825133539 28124 sub.tld. UNp4mGRrzW+22WmqIYNxVGruIuJH3Cp ...

c.d.e.sub.tld. 100 IN A 10.0.3.3

100 SIG A 1 5 100 20020924133539 20020825133539 23495 sub.tld. LIYCqFOBPZ5GwoXV9DzczD0R6776u ...

100 SIG A 5 5 100 20020924133539 20020825133539 28124 sub.tld. ZMvxWA7u0gLdlbCD1YarJt6j2ZpGY ...

100 NXT b.c.d.e.sub.tld. A SIG NXT

100 SIG NXT 1 5 100 20020924133539 20020825133539 23495 sub.tld. sB3G5/5/1iF7Zo6hzVXfMGaHMVJoM0Y ...

100 SIG NXT 5 5 100 20020924133539 20020825133539 28124 sub.tld. hv/d3WaDKnzYGt+o3uhtaiWeoNwB/2H ...

b.c.d.e.sub.tld. 100 IN A 10.0.3.4

100 SIG A 1 6 100 20020924133539 20020825133539 23495 sub.tld. rNvBRWSdu7JmR0ukTa4aru3Ih5JC3 ...

100 SIG A 5 6 100 20020924133539 20020825133539 28124 sub.tld. TGsJ6Anpmjc6lYwRcspHGwZUW2aJK ...

100 NXT ns.sub.tld. A SIG NXT

100 SIG NXT 1 6 100 20020924133539 20020825133539 23495 sub.tld. DtkxAFY8npe6oNhoPygG+SrC4wUuiaf ...

100 SIG NXT 5 6 100 20020924133539 20020825133539 28124 sub.tld. pC2xPNWmZkhjyrHGXm1pDn6qDEaCn88 ...

ns.sub.tld. 100 IN A 10.0.53.203

100 SIG A 1 3 100 20020924133539 20020825133539 23495 sub.tld. bk1rO9uAq3IkKmJIh9batBebPab90 ...

100 SIG A 5 3 100 20020924133539 20020825133539 28124 sub.tld. dT/8iVka5QhkUOYa/URZVGLrogxub ...

100 NXT sub.tld. A SIG NXT

100 SIG NXT 1 3 100 20020924133539 20020825133539 23495 sub.tld. ccUwRGjL9ESfr6StzoXr2CEEOqKyzOH ...

100 SIG NXT 5 3 100 20020924133539 20020825133539 28124 sub.tld. J+iYWN5pi0fP8BWDvHdlaVbZefIWYEA ...

Figure 3: Example of signed zonefile

DNSSEC operations HOWTO Page 17

Amsterdam-Wash. DC August-Sep, 2002
Kolkman

• You can add the new records to the already signed zone file and then run
that zone file through the signer. The signer will insert the new records
and associate NXTs in the already sorted zone file and will only sign the
new records and the records for which the signatures are reaching the end
of their validity period.

You should build tools to maintain your signed zones, cron, perl and make
are your friends. We are planning to build a repository of DNSSEC maintenance
tools at the RIPE NCC, please also make your tools publicly available.

4.6 Troubleshooting zone signing

You can check the format of your named.conf using the named-checkconf
program. The named-checkzone program can be used to check zone files. These
programs use the same routines as named itself.

One can use dig and a nameserver configured with a trusted-key to verify
your setup. If data cannot be cryptographically verified the forwarder will
return with a SERVFAIL status. You can test this by intentionally corrupting
a resource record in the signed zone file. This is typical output of dig when
querying for corrupted data10:

; <<>> DiG 9.3.0s20020722 <<>> +dnssec @verifyer corrupt.sub.tld
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: SERVFAIL, id: 36778
;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
;; QUESTION SECTION:
;corrupt.sub.tld. IN A

;; Query time: 14 msec
;; SERVER: 10.0.53.204#53(verifyer)
;; WHEN: Sun Aug 25 16:22:46 2002
;; MSG SIZE rcvd: 44

Note that a caching forwarder will not do cryptographic verification of zones
it is authoritative for. So if your caching forwarder is primary or secondary for
a particular zone you will always get an answer, it is assumed that data from
disk is secure.

Further troubleshooting would need to be done on a verifier. Below is an
example of the log output of the verifier when we queried for corrupted data.

debug 3: client 10.0.53.204#1206: request is not signed

debug 3: client 10.0.53.204#1206: recursion available

debug 3: client 10.0.53.204#1206: query (cache) approved

10We corrupted the data by modifying rdata in the signed zone-file

DNSSEC operations HOWTO Page 18

Amsterdam-Wash. DC August-Sep, 2002
Kolkman

debug 3: validating corrupt.sub.tld A: starting

debug 3: validating corrupt.sub.tld A: attempting positive response validation

debug 3: validating sub.tld KEY: starting

debug 3: validating sub.tld KEY: attempting positive response validation

debug 3: validating sub.tld KEY: verify rdataset: success

debug 3: validating sub.tld KEY: signed by trusted key; marking as secure

debug 3: validator @0x81e9800: dns_validator_destroy

debug 3: validating corrupt.sub.tld A: in fetch_callback_validator

debug 3: validating corrupt.sub.tld A: keyset with trust 7

debug 3: validating corrupt.sub.tld A: resuming validate

debug 3: validating corrupt.sub.tld A: verify rdataset: SIG failed to verify

debug 3: validating corrupt.sub.tld A: failed to verify rdataset

debug 3: validating corrupt.sub.tld A: verify failure: SIG failed to verify

debug 3: validating corrupt.sub.tld A: keyset with trust 7

debug 3: validating corrupt.sub.tld A: verify rdataset: SIG failed to verify

debug 3: validating corrupt.sub.tld A: failed to verify rdataset

debug 3: validating corrupt.sub.tld A: verify failure: SIG failed to verify

info: validating corrupt.sub.tld A: no valid signature found

debug 3: validator @0x81e0800: dns_validator_destroy

4.7 Possible problems

SOA serial If you forget to increase the serial number before resigning your
zone, secondary servers may not pick up the new signatures in time. Some
resolvers will be able to verify your signature while others will not.

’Zone signing key’ rollover If a zone administrator makes a distinction
between zone and key signing keys then the rollover of a zone signing key will
not involve any action of the administrators of the verifiers. If a key signing
key is to be changed care should be taken that all resolvers in the organization
have been supplied with a new trusted-key.

If the zone is only locally secured (i.e. is not part of a chain of trust)
then the rollover of a key signing key is relatively simple. Remember that to
verify data there has to be at least one signature that can be verified with the
trusted-keys in resolvers; During a limited time you use two key signing keys
to sign your zone: the old and new key. During that time you start reconfiguring
the resolvers in your organization with new trusted-keys. Once all resolvers
have the new key configured in their trusted-key statement, the zones should
be signed with the new key only.

Rollovers are described in more detail in section 6

5 Delegating of Signing authority; becoming glob-
ally secure.

This section is subject to change as the tools needed for this are being
modified/developed.

DNSSEC operations HOWTO Page 19

Amsterdam-Wash. DC August-Sep, 2002
Kolkman

5.1 Task at Hand

We have covered how to deploy DNSSEC in a single zone. We now want to
build a chain of trust so that once a client has securely obtained a public key
high in the DNS hierarchy, it can follow the chain to verify data in your or your
children’s zone.

To be able to delegate authority the parent has to sign data that securely
indicates which child key is to be used as the next step in the chain of trust.
[Gud] describes how this can be established by having the parent generate a
signature over the DS record that is generated from the childs KEY.

Below we will describe how to setup a zone that is globally secured based
on the parental signature over the DS record pointing to the child’s key signing
key.

In the example we use tld as parent and sub.tld as child. We assume that
the parent zone is already locally secure as described in the previous section.
This means that the parent has no DS RR for sub.tld. and that resolvers
that follow the chain of trust via tld will treat the sub.tld. zone as verifiable
insecure. The sub.tld. zone assumed not to be secure, much of the procedure
will be as described section 4, but, since keysets are used, some details are
different.

Apex data is data that has the same name as the origin of a zone. Some
resource records in the apex can appear at both the parent and the child. The
only data that is allowed at the parent and child side of the apex are NS, NXT,
KEY and SIG. In [rfc1034, rfc1035] it is stated that the child is authoritative
for data in the apex of a zone.

The DS RR is the only RR record that may only be published at the parent’s
apex and for which the parent is authoritative.

Therefore the key set signing keys, generated by the child, need to be ex-
changed with the parent to get the DS records generated from. Although you
could build tools to have the child generate DS records so that the parent can
include them in their zone file, the current tools use so called keysets.

Note that there is a command called dnssec-makekeyset available in most
BIND 9 versions. The command is used to generate a keyset. However, the use
of keyset has changed with the introduction of DS and the dnssec-makekeyset
command has been removed from the BIND 9.3s20020722 distribution. Al-
though the dnssec-makekeyset may reappear in later versions we describe the
procedure as if the tool is not available.

The sequence of events will be:

1. The child gets it’s key signing key to the parent.

2. The parent creates a keyset file in a special directory.

3. The dnssec-signzone command finds the keysets and automatically gen-
erates and signs DS records.

We will describe the steps in more detail below.

DNSSEC operations HOWTO Page 20

Amsterdam-Wash. DC August-Sep, 2002
Kolkman

5.2 Key exchange, signing and securing.

We assume the child is secured and works locally. So we have created zone
signing and key signing keys as described in section 4.2 and signed our zones
as described in 4.3.

The parent will now need to obtain our key signing key.
The easiest way to upload the key is tho have the child cut and paste the

key into an email and sending it to the parent.
In an operational environment it is extremely important that the authen-

ticity and the integrity of the KEY is established11. The zone administrator12

of the parent will need to verify that the key came from the zone administra-
tor of the child zone. If possible this should be confirmed by an out-of-DNS
mechanism. The parent could use it’s customers database to verify if key was
actually sent by the zone administrator. If a wrong key is signed the child zone
will be vulnerable for attacks; signing the wrong key breaks DNSSEC.

The parent will need to create a keyset file. This is done by putting the key
material in a file called keyset-<child-domainname>.

The parent stores the keysets in a directory that is to be specified with the
-d flag of dnssec-signzone. The signzone tool will automatically generate
the appropriate DS records if a keyset-<child-domainname>. file is found
containing one or more KEY RRs for the <child-domain>. Note that although
the keyset generated by the child contains signatures the SIG RRs do not need
to be available in the keyset-<child-domain>. file at the parent, the sign tool
will not do signature verification.

Below is an example on how you could ivoke the command:

dnssec-signzone -r /dev/urandom -d /registry/tld-zone/child-keys
-o tld -f tld.signed db.tld

5.3 Possible problems

Public Key Algorithm To be globally secure one needs to use at least one
key of an algorithm that is mandatory to implement. Mandatory to implement
are RSA/SHA1 and DSA keys. We recomend the use of RSA/SHA1 keys only13.

Parent indicating child security It is important that the KEY with that
is sent to the parent is in use as key signing key (or as zone and key signing key
if there is no distinction made) before the parent includes a signed DS RR for
that key.

If the parent includes a DS RR while the child has not yet signed with the
key then the child will go ’bad’; By not having a DS RR for the child the parent
indicates the child to be in-secure.

11Tools to for verification of selfsigned keys are not yet available. There is work done in this
area.

12The person who is responsible for publishing the zone data
13This document is not consistent with respect to that advise. We will update the document

in a later version

DNSSEC operations HOWTO Page 21

Amsterdam-Wash. DC August-Sep, 2002
Kolkman

As a parent you should always verify that the child publishes signed KEY
before including a DS RR.

6 Rolling over keys

Roll over is the process where a zone decides to change their key. Since keys
have a limited lifetime — If only because of Moore’s law – they will need to
be changed occasionally. Care needs to be taken that existing chains of trust
are not broken during the change of key. In general this means that during a
limited period two keys, the old and the new key are being used.

If the rollover is planned we refer to it as scheduled rollover. If the rollover
is the result of a (suspected) compromise or loss of private key it is called a
unscheduled or emergency key rollover.

If a zone rolls over a key it will need to contact it’s it’s parents. The children
will not notice a rollover.

The middle-zone ’sub.tld’ wants to change its key signing key. The old
key has tag=1, the new key has tag=2. The sub.tld zone uses key 10 as zone
signing key. These are the steps that need to be taken. The parent’s key has
tag=123 and the child key has tag=789. These two keys do not change during
the process.

step 0 The initial situation is the following:

The middle-zone has key ’1’ published signed by itself and the parent.
The child has it’s key signed by key ’1’ and publishes the signature over
it’s key made by the middle zone.

; published by the parent

sub.tld DS <tag=1>

sub.tld SIG (DS) <signkey=tld tag=123>

; Published in middle zone:

sub.tld. KEY <tag=1> ; key signing key

sub.tld. KEY <tag=10> ; zone signing key

sub.tld. SIG(KEY) <signkey=sub.tld, tag=1>

sub.tld. SIG(KEY) <signkey=sub.tld tag=10>

child.sub.tld DS <tag=789>

child.sub.tld SIG(DS) <signkey=sub.tld tag=10>

; Published in child zone:

child.sub.tld.. KEY <tag=789>

child.sub.tld. SIG(KEY) <signkey=child.sub.tld tag=789>

The child should query one of the authoritative servers for it’s DS RR
and store the TTL it commes in handy in step 3.

DNSSEC operations HOWTO Page 22

Amsterdam-Wash. DC August-Sep, 2002
Kolkman

step 1 The middle-zone now starts the rollover by uploading key 2 to it’s
parent and by publishing all keys in the DNS.

; published by the parent

sub.tld DS <tag=1>

sub.tld SIG (DS) <signkey=tld tag=123>

; published by the middle zone

sub.tld. KEY <tag=1>

sub.tld. KEY <tag=2>

sub.tld. KEY <tag=10>

sub.tld. SIG(KEY) <signkey=sub.tld, tag=1>

sub.tld. SIG(KEY) <signkey=sub.tld, tag=2>

sub.tld. SIG(KEY) <signkey=sub.tld, tag=10>

child.sub.tld DS <tag=789>

child.sub.tld SIG(DS) <signkey=sub.tld tag=10>

step 2 Key 2 has been received by the parent. The parent now knows which
key to use as secure entrypoint. They will be able to verify the new key
against the existing chain of trust by using the KEY RR set from the
DNS and know that key 2 is uploaded by the child because it is signed
with key 2 alone, something that only the child can do.

The parent generates a new DS RR for pointing to key 2 of the middle
zone.

; published by the parent

sub.tld. DS <tag=2>

sub.tld. SIG (DS) <signkey=tld tag=123>

; Published by middle zone

sub.tld KEY <tag=1>

sub.tld KEY <tag=2>

sub.tld SIG(KEY) <signkey=sub.tld, tag=2>

sub.tld SIG(KEY) <signkey=parent, tag=123>

child.sub.tld DS <tag=789>

child.sub.tld SIG(DS) <signkey=sub.tld tag=10>

If there are any resolvers with trusted-keys set to 1 than they should
be replaced by key 2.

step 3 After a given time the middle zone needs to remove the old key. It does
that by creating a key RR set with only the new key:

DNSSEC operations HOWTO Page 23

Amsterdam-Wash. DC August-Sep, 2002
Kolkman

; published by the middle zone

sub.tld. KEY <tag=2>

sub.tld. KEY <tag=10>

sub.tld. SIG(KEY) <signkey=sub.tld, tag=2>

sub.tld. SIG(KEY) <signkey=sub.tld, tag=10>

child.sub.tld DS <tag=789>

child.sub.tld SIG(DS) <signkey=sub.tld tag=10>

Note that the new parental DS RR will need to be propagated from the
parents master to the parents slave servers and besides the old DS RR
will need to have expired from the world’s caches. At this point the TTL
from the old DS RR commes in handy. Once you have seen the new DS
picked up by all the authoritative servers of the parent you will have to
wait for the value of the TTL before you throw away your old key.

These 3 steps involve interactions that are policy dependend. They can, to
a large extend, be automated.

If one is able to distinguish key signing keys from zone signing keys then
the process can be fully automated.[Kol].

7 Emergency Rollover

If your private key has been compromised or lost and your old keys are about
to expire you have to be prepared for trouble.

It is important to plan in advance what to do if a emergency key rollover
needs to take place. We advise you to create a procedure which you publish
both on and off-line. This is a non-complete list of what such a procedure
should contain.

Emergency procedures cannot be automated.

Responsible persons Document who has which responsibility in case of com-
promise also document how they can be contacted.

Parental Key exchange Your parent will need to know that you are compro-
mised and will need to stop generating signatures over your old key. The
parent will need to establish your identity in a similar way as during an
initial key exchange, the parent should avoid that a non-authoritative 3rd
parties signal the parent that a child’s key should not be used. Document
how this is done and what is needed to be able to do this.

Child Keys You will have to resign the DS records of your children. Make
sure that you have all the keysets (or DS RRs) available.

Resolver Key exchange Resolvers that have your key configured as trusted-
key need to be reconfigured. Do you have knowledge of which resolvers
need to be reconfigured? Do you need to contact them via an off-band
medium (shttp or news-paper).

DNSSEC operations HOWTO Page 24

Amsterdam-Wash. DC August-Sep, 2002
Kolkman

New key generation How will you go about generating a new key. Who is
to generate the new key.

Security assessment How did this happen? Will the new key be safe? Who
will audit?

Key publishing Will you continue to publish the compromised key while the
parental DS is pointing to it? If not you may ’go bad’ and you and your
children will drop from the earth. While the parental signature over the
DS pointing to your key is valid you are in vulnerable to attacks by owners
of your compromised key even while you do not publish it.

8 How to proceed

8.1 Information

BIND Book

The ’DNS and BIND’ book by Paul Albitz & Cricket Liu[AL01] is a good
starting point for any DNS work. As of the 4th edition there is a chapter
on DNSSEC.

BIND online documentation

The BIND documentation should be at your disposal. It is in the distri-
bution under the bind-9-?-??/doc/arm/ directory.

DISI webpages

On the RIPE NCC Disi webpages one can information related to this
course and to DNSSEC. See www.ripe.net/disi for details.

NLnet Labs DNSSEC resources

At NLnet Labs a thorough list with DNSSEC resources is maintained.
This is a good starting point if you are looking for information.
http://www.nlnetlabs.nl/dnssec/index.en.html .

The folk at NLnet Labs maintain an experimental secured zone nl.nl.

IETF working groups;

DNSSEC is developed within the IETF. Two working groups are actively
involved in these development.

• The DNS Extensions (DNSEXT) workin group which charter can
be found at http://www.ietf.org/html.charters/dnsext-charter.html .
It’s mailinglist is namedroppers@ops.ietf.org. .

• The Domain Name Server Operations (DNSOP) working group which
charter can be found at http://www.ietf.org/html.charters/dnsop-
charter.html . It’s mailinglist is dnsop@cafax.se.

DNSSEC operations HOWTO Page 25

Amsterdam-Wash. DC August-Sep, 2002
Kolkman

• DNSSEC mailinglist
The majordomo mailinglist ’dnssec@cafax.se’ has grown to be the
mailinglist where people exchange DNSSEC specific information.

RFCs;

If you want to gain thorough understanding you have to resort to the
RFCs. See chapter A4.1 of the BIND on-line documentation for the RFC
that relate to DNS and DNSSEC.

8.2 Development Tools

8.2.1 lwres

BIND 9 comes with the light weight resolver library. It ”provides resolution
services to local clients using a combination of a lightweight resolver library and
a resolver daemon process running on the local host. These communicate using
a simple UDP-based protocol, the ”lightweight resolver protocol” that is distinct
from and simpler than the full DNS protocol.”

For more detail see the BIND9 documentation, chapter 5.

8.2.2 Net::DNS::SEC

If you need to create your tools you might want to consider using the PERL
Net::DNS::SEC module. The module contains classes for DS, KEY, SIG, NXT,
methods for creation and verification of SIGs and DS records and some examples
to get you started. See www.ripe.net/disi/. or CPAN. for the latest version of
the module.

In figure4 we present an example of the use of Net::DNS::SEC. About 10
lines of code are needed to fetch a key from a nameserver, verify the signature
and generate a DS set.

Part II

Demo Specifics

9 The ’DEMO’ environment

Most of the examples from this text are drawn from the setup used in a work-
shop. Some of the details are presented below.

9.1 Domain name setup

The demo LAN has it’s own root server on 10.0.53.201 ; The hints file reflects
that situation (section ??).

Another machine on the LAN (10.0.53.202) acts as a Top Level Domain
(TLD) server. The name of the TLD is ’dtld’. The 3rd nameserver on
10.0.53.203 acts as server of sub.tld.

DNSSEC operations HOWTO Page 26

Amsterdam-Wash. DC August-Sep, 2002
Kolkman

###

(... cut ...)

$res = Net::DNS::Resolver->new;

$res->dnssec(1);

$res->nameservers($nameserver) if defined $nameserver;

$packet = $res->query($domain, ’KEY’, ’IN’);

die "No results for query $domain KEY" if ! defined $packet;

$keyset=Net::DNS::Keyset->new($packet) ;

if (! $keyset){

print $Net::DNS::Keyset::keyset_err;

return 0;

}

Print DS records to STD out

#

my @ds=$keyset->extract_ds;

foreach my $ds (@ds) {

$ds->print;

}

(... cut ...)

Figure 4: Example code showing the use of Net::DNS::SEC

A 4th nameserver (10.0.53.204) will acts as caching forwarder. This is a
machine that can be used to test against.

10 example files

10.1 named.conf

//

// Special setup

// tld configured on: 10.0.53.202

//

options {

directory "/divers2/DNSSEC-Demo/tld/";

pid-file "/divers2/DNSSEC-Demo/tld/named.pid";

listen-on {10.0.53.202;};

recursion no;

};

$include /var/named/dns.secret.keys

controls {

inet 10.0.53.202 port 953

allow { 127.0.0.1;} keys { "rndc-key"; };

};

DNSSEC operations HOWTO Page 27

Amsterdam-Wash. DC August-Sep, 2002
Kolkman

zone "tld" {

type master;

file "zones/tld.signed";

};

zone "." {

type hint;

file "zones/root.hints";

};

logging {

channel syslog_channel {

syslog daemon; // end to syslog’s daemon

severity debug 6;

print-severity yes;

print-category yes;

};

channel query_channel {

file "log/querylog" size 5m ;

print-time yes;

};

channel notify_channel {

file "log/notify+update.log" size 5m;

severity debug 6;

print-time yes;

};

channel everything_else {

file "log/runlog" size 5m;

print-time yes;

severity debug 6;

print-severity yes;

print-category yes;

};

channel dnssec_log { // a DNSSEC log channel

file "log/dnssec" size 20m;

print-time yes; // timestamp the entries

print-category yes; // add category name to entries

print-severity yes; // add severity level to entries

severity debug 6; // print debug message <= 3 t

};

category dnssec { dnssec_log; };

category security { dnssec_log; };

category queries { query_channel; };

category update { update_channel; syslog_channel; };

category notify { notify_channel; syslog_channel; };

category default { everything_else; };

};

Included in this file is the dns.secret.keys. This file is ’chown root /var/named/dns.secret.keys

DNSSEC operations HOWTO Page 28

Amsterdam-Wash. DC August-Sep, 2002
Kolkman

; chmod 600 /var/named/dns.secret.keys’

// Example

// /var/named/dns.secret.keys

// Contains TSIG configuration

//

key rndc-key.{

// echo ’Passhrase for TSIG’ | mmencode -b

algorithm hmac-md5;

secret UGFzc2hyYXNlIGZvciBUU0lHCg==;

};

10.2 example zone file

.

;

; Demonstration sub.tld.

; not to be published on a server connected to the internet

;

$TTL 100

$ORIGIN sub.tld.

@ 100 IN SOA ns.registry.TLD. (

olaf.ripe.net.

2002050501

100

200

604800

100

)

$include Ksub.tld.+001+23495.key

$include Ksub.tld.+003+19854.key

$include Ksub.tld.+005+28124.key

NS ns.sub.tld.

ns.sub.tld. A 10.0.53.203

; Query for a.b.c.d.e.sub.tld. to see which NXT records are generated

; for the denial of existence of wildcards.

e A 10.0.3.1

d.e A 10.0.3.2

c.d.e A 10.0.3.3

b.c.d.e A 10.0.3.4

b1 A 10.0.2.1

b2 A 10.0.2.2

b3 A 10.0.2.3

b4 A 10.0.2.4

DNSSEC operations HOWTO Page 29

Amsterdam-Wash. DC August-Sep, 2002
Kolkman

;

; The data of ’corrupt’ will be modified

corrupt A 10.0.4.1

11 References, Acknowledgments and Copyright

References

[AL01] Paul Albitz and Cricket Liu. DNS and BIND, 4th Edition. O’Reilly, 4 edition, April
2001.

[Bel95] Steven M. Bellovin. Using the Domain Name System for System Break-ins. In
Proceedings of the fifth USENIX UNIX Security Symposium: June 5–7, 1995, Salt
Lake City, Utah, USA, editor: USENIX Association, pages 199–208. USENIX, June
1995.

[Gud] Olafur Gudmundsson. Delegation Signer record in parent. <draft-ietf-dnsext-
delegation-signer-08.txt>, June 2002. ftp://ftp.ietf.org/internet-drafts/

draft-ietf-dnsop-resolver-rollover-08.txt, DNSOP WG Internet draft,
drafts are subject to change and have a limited lifetime.

[Kol] Olaf Kolkman. KEY RR Key Signing (KS) Flag<draft-ietf-dnsext-keyrr-key-
signing-flag-00.txt>, September 2002. ftp://ftp.ietf.org/internet-drafts/

draft-ietf-dnsext-keyrr-key-signing-flag-00.txt, DNSOP WG Internet
draft, drafts are subject to change and have a limited lifetime.

[Nem00] Evi Nemeth. Securing the DNS. ;login:, pages 21–31, November 2000.

[rfc1034] P. V. Mockapetris. RFC 1034: Domain names — concepts and facilities. IETF,
November 1987. ftp://ftp.ietf.org/rfc/rfc1034.txt.

[rfc1035] P. V. Mockapetris. RFC 1035: Domain names — implementation and specification.
IETF, November 1987. ftp://ftp.ietf.org/rfc/rfc1035.txt.

[rfc2535] D. Eastlake. RFC 2535: Domain Name System Security Extentions. IETF, March
1999. ftp://ftp.ietf.org/rfc/rfc2535.txt.

[rfc2845] P. Vixie, O. Gudmundsson, D. Eastlake, and B. Wellington. RFC 2845: Secret Key
Transaction Authentication for DNS (TSIG). IETF, May 2000. ftp://ftp.ietf.

org/rfc/rfc2841.txt.

[rfc3090] Edward Lewis. RFC 3090: DNS Security Extensions Clarification on Zone Status.
IETF, March 2001. ftp://ftp.ietf.org/rfc/rfc3090.txt.

[Sch00] Bruce Schneier. Secrets & Lies. John Wiley& Sons, Inc, 2000. isbn 0471253111.

[Vix95] Paul A. Vixie. DNS and BIND Security Issues. In Proceedings of the fifth USENIX
UNIX Security Symposium: June 5–7, 1995, Salt Lake City, Utah, USA, editor:
USENIX Association, pages 209–216. USENIX, June 1995.

[Wbstr] Merriam-Webster Collegiate Dictionary, Tenth Edition. Merriam-Webster Inc. Web-
pages, 2001. http://www.m-w.com/.

[WG] Brian Wellington and Olafur Gudmundsson. Redefinition of DNS AD bit <draft-ietf-
dnsext-ad-is-secure-03.txt>, July 2001. ftp://ftp.ietf.org/internet-drafts/,
DNSOP WG Internet draft, drafts are subject to change and have a limited lifetime.

Note: URLs may be subject to change.

DNSSEC operations HOWTO Page 30

Amsterdam-Wash. DC August-Sep, 2002
Kolkman

Acknowledgments

There are numerous people who helped compiling these notes, either by helping
me to understand DNSSEC, by giving feedback on earlier courses. Special
thanks go to Jakob Shlyter, Daniel Karrenberg and Daniel Diaz for the feedback
they provided on this on the drafts. Miek Gieben and his colleagues of NLnet
Labs and Roy Arends have been of great help with developing the tutorial. The
workshop organized bu USC/ISI on operational testing of DS in Washington
DC has provided a substantial amount of material for this HOWTO.

A ’login;’ article by Evi Nemith[Nem00], the text in the BIND book[AL01]
and the various presentations by Edward Lewis have been very helpful to gain
understanding and to compare these notes against.

Document History

Version 1.1 of this document was compiled for a DNSSEC tutorial in Prague,
October 8, 2000. The document were a set of notes to be used in a workshop
setup.

Version 1.2 was not published.
Version 1.3 is the first modification of the document. First experiences with

DS have been incooperated and the document has been rewritten to be useful
as a more generic HOWTO and introduction to DNSSECoperations.

(c) 2001, 2002 RIPE NCC.

This document and the information contained herein is provided on an ”as is” basis and
The RIPE NCC disclaims all warranties, express or implied, including but not
limited to any warranty that the use of the information herein will not in-
fringe any rights or any implied warranties of merchantability or fitness for a
particular purpose.

This document and translations of it may be copied and furnished to others, and deriva-
tive works that comment on or otherwise explain it or assist in its implementation may be
prepared, copied, published and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are included on all such
copies and derivative works.

The original ’tex’ source for this document is available on request.

Part III

Appendix

A The RIPE NCC and DNSSEC

A.1 The RIPE NCC DISI project

As the Internet permeates more an more aspects of daily life, the need for
security14 has increased dramatically. Technologies providing security features

14[Wbstr] describes ’security’ as the condition or quality of being secure and describes ’se-
cure’ as To make safe; to relieve from apprehensions of, or exposure to, danger; to guard; to

DNSSEC operations HOWTO Page 31

Amsterdam-Wash. DC August-Sep, 2002
Kolkman

are being standardized and implemented. Many of these are end-to-end, being
deployed as part of end-systems and applications. Some things, however, need
to be deployed or supported in the Internet infrastructure itself. These need
actions or at least awareness among ISPs and the RIPE community at-large.

The RIPE NCC is working to raise awareness and support deployment of
security technologies in the Internet Infrastructure. This new effort is called
”Deployment of Internet Security in the Infrastructure”: DISI.

DISI strives to continue the successful deployment and awareness efforts of
the RIPE NCC such as our support for the Implementation of CIDR. DISI
will provide information about relevant technologies by means of white papers,
seminars and workshops. We will also deploy the technologies in our own envi-
ronment, collect deployment experiences by others and provide easy access to
this knowledge in order to make deployment easier for everyone. As far as pos-
sible we will also keep track of the level of deployment in the RIPE community
and report on that regularly.

DISI is definitely not an incident response coordination effort, nor is it tar-
geted at general computer systems security, nor at the deployment of the end-to-
end technologies mentioned above. Its scope is limited to security technologies
that need to be deployed or supported by the Internet infrastructure.

The first activities of the DISI eefforts will be “Deployment of Domain Name
Security on the reverse tree” and supporting a RIPE “Security WG”.

A.2 DNSSEC

At the time the Domain Name System (DNS) — the distributed database that
is used to translate domain names in IP addresses and vice verse [rfc1034] —
was designed little thought was given to the authentication of the Resource
Records (RR). This opens up the possibility for man in the middle attacks
[Bel95, Vix95].

The DNS Security Extension (DNSSEC) was proposed by the IETF [rfc2535]
to cope with these kind of vulnerabilities. It uses public key technology to sign
RRs and ensure the integrity and authenticity of DNS data.

At the RIPE NCC we focus on securing the DNS infrastructure in the RIPE
area. We approach this by organizing workshops like this and by deploying
DNSSEC over a part of the in-addr tree — the DNS tree that maps IP-addresses
into names.

protect In the context of this document we use the term ’being secure’ when it is impossible
to use resources or get to information without proper authorization.
A good general text on security in a networked environment is ’Secrets and Lies’ [Sch00]).

DNSSEC operations HOWTO Page 32

