Design of Push to Talk Client for Performance Measurements

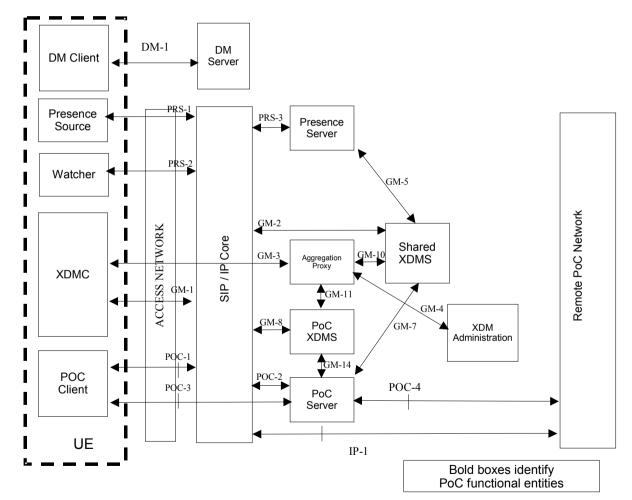
Tuukka Karvonen S-38.310 Thesis Seminar on Networking Technology Helsinki University of Technology 3.2.2005

Basic Information

- Thesis written at Celtius Oy
 - Celtius is a privately owned company
 - Specialized in communication software
 - Customers all over Europe and North America
- Supervisor: Professor (Pro tem) Jouni Karvo
- Instructor: M.Sc. Juhani Malka

Contents

- Push to Talk
 - OMA PoC
 - PoC session setup
 - Requirements for performance
- Packet-switched cellular networks
- Objectives of the thesis
- Design and implementation of the client
- Tests
 - Setup
 - Results
- Conclusions


Push to Talk (PTT)

- A half duplex speech service
- Many existing solutions
 - Conventional Land Mobile Radios (e.g. PMR, VHF)
 - Trunked Radio Systems (e.g. TETRA)
- Push to Talk over Cellular (PoC)
 - Let's do it over a public cellular network
 - Open Mobile Alliance (OMA) is working for an open standard
 - Started in August 2003 from specifications made by an industry consortium formed by Nokia, Siemens, Ericsson and Motorola
 - Candidate Enabler release was supposed to be ready in end of 2004, but it's likely to be released only in February 2005.
 - Some pre-standard / proprietary solutions already available (e.g. Nokia 5140)

OMA PoC

OMA PoC uses

- SIP and SDP for signalling (e.g. session setup)
- RTP/RTCP for media transfer and talk burst arbitration
- XML Configuration Access Protocol (XCAP) for group management

Source: OMA PoC architecure document draft version 18.1.2005

PoC session setup

OMA PoC performance requirements

- Right-to-speak < 2,0 seconds
 - The duration between the times a user initiates a PoC session and when he receives a "right-to-speak" indication
- Start-to-speak < 1,6 seconds
 - The time it takes a user to receive "Start-to-speak" indication after a floor request in established PoC session.
- End-to-end channel delay ≤ 1,6 seconds
- Voice quality $MOS \ge 3$ at $BER \le 2\%$
- Turnaround-time ≤ 4 seconds
 - The duration between the times a user quits talking and when he hears a response from another user

Packet-switched cellular networks

- GPRS networks were originally not designed for real-time traffic such as speech
- Low throughput and long delays. No guarantees for the performance
- Cell re-selection may cause outage of 4,5-7,0 seconds
- Improvements coming up with EGPRS and UMTS

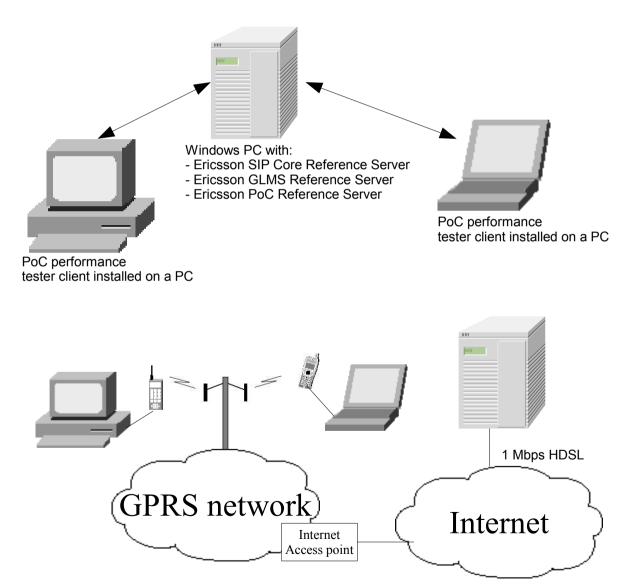
Examples of network performance

Network	Throughput	RTT
GPRS	40 kbps	700 ms
EGPRS	150 kbps	400 ms
UMTS	240 kbps	200 ms

Objectives of the thesis

- The objectives of the master thesis were:
 - Design a PoC client that can be used in automated performance measurements
 - The client should be able to measure the performance parameters stated in the OMA PoC requirement document
 - Test PoC performance with the client

Design and Implementation


- Separate Push to Talk API was designed and the client was implemented on top of it
- Implementation done in C++ according to the industry consortium PoC specifications
- In future the PoC API may be also implemented according to OMA specifications

Tester client				
PoC API				
RTP and media API	SIP API	XCAP API		
JRTPLIB	Resiprocate	HTTP API		

- Resiprocate SIP and JRTPLIB open-source libraries were used
- SIP signalling compression (SigComp) and group management not implemented

Test setup

- Ericsson PoC reference test suite servers were used
- The tests were performed over a public GPRS network
- The server was connected to Internet
- The clients were stationary

Test results

- Outages of several seconds occurred even though the clients were stationary
- Results are just indicative:
 - Use of SigComp would lower Right-to-Speak
 - Real servers would be in operator's network
 - Many variables that can be optimized

		Measured values	
Parameter	Requirement	Average	Worst case
Right-to-speak	2,0 s	2,09 s	2,49 s
Start-to-speak	1,6 s	0,63 s	1,45 s
End-to-end delay	1,6 s	1,30 s	4,44 s
Turnaround time	4,0 s	4,10 s	6,47 s
Voice quiality	MOS 3		MOS 2,02
		(PESQ-MOS)	

Conclusions

- The client that was designed and implemented can be used for PoC performance measurements
- PoC can work in GPRS network
- The performance of PoC cannot be guaranteed in current cellular networks
 - Long cell-reselection times
 - Network congestion lowers throughput
- Future cellular networks will improve the usability of PoC

Questions or comments?

Thank you!