Network attendant service in 3G networks

Minna Bloigu

Supervisor: Prof. Raimo Kantola

Instructor: MSc Joni Rinne

Content

- Introduction
- Objectives and methodology
- 3G network service architecture
 - UMTS, IMS
 - CAMEL, OSA, SIP, Others
- 3G network attendant service
- Technology comparison
 - Analytical Hierarchy Process
- Results
- Conclusions

Introduction

- Trio Network Solutions Oy (former Abacus Solutions Oy)
 - subsidiary of Trio AB: 90 employees in Sweden, Finland, Norway and Denmark
 - Trio Listed in Stockholm Stock Exchange
- Trio provides enterprise reachability solutions worldwide
- Trio Network Solutions Oy provides corporate mobile solutions to mobile operators and enterprises
 - Trio Mobile Office is a telephony service from mobile operators.
 Enables companies to replace fixed telephony with a mobile switchboard function and mobile telephones.

Operator references

🕑 telenor mobil

Telenor Mobil

ProffNett

Vodafone Sweden

Vodafones trådlösa kontor

sonera

spring

one

TeliaSonera Finland

Vaihdepalvelu

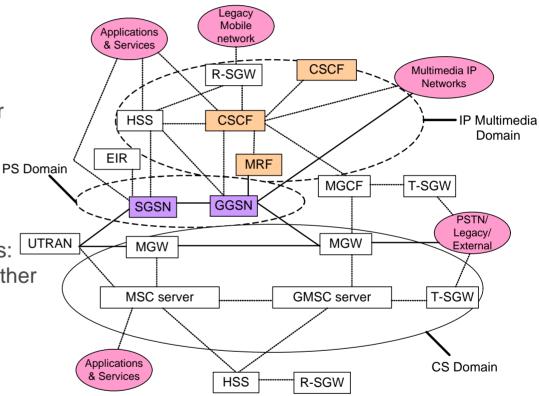
Spring Mobile

Total, Spring Mix

One Austria

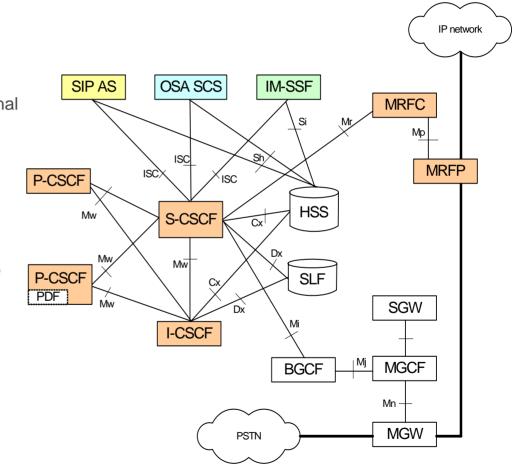
Objectives and methodology

- Study the implementation of a network attendant service in 3G networks
 - 3GPP Release 5
- Analyse the standardised service delivery platforms and alternative solutions
- Compare the available solutions and propose the most efficient choice for implementing a network attendant service in 3G networks
- Methodology
 - Literature study: 3GPP specifications, books and articles
 - Operator and equipment vendor interviews for market study
 - Current Service Node-based solution as a basis
 - Analytical Hierarchy Process to compare alternatives



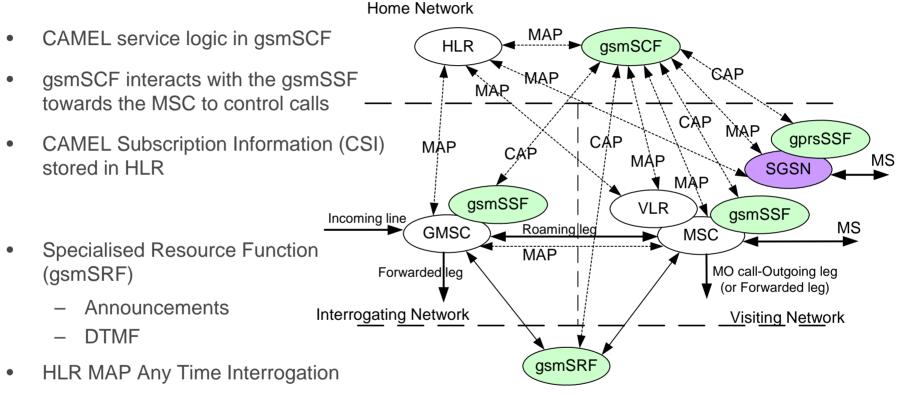
3G network service architecture

UMTS Release 5


- Circuit-switched domain
 - Voice and multimedia over circuits
 - IN, CAMEL, SN
- Packet-switched domain
 - IP connectivity to terminals: access to the Internet or other external IP networks
- IP Multimedia domain
 - IM services: multimedia conferencing, voice communications, messaging
 - SIP for signalling

IP Multimedia Subsystem

- Application servers
 - SIP AS, OMA SCS, IM-SSF
- Proxy-CSCF
 - Fist contact point btw an IMS terminal and IMS network
- Interrogating-CSCF
 - Contact to the subscriber's home network
- Serving-CSCF
 - Central node of the signalling plane
- Media Resource Function (MRF)
 - Handles media resources
 - MRFC interprets SIP to H.248
 - MFRP handles the media streams
- Media Gateway (MGW)
 - Media conversions btw CS and PS networks: PCM and RTP

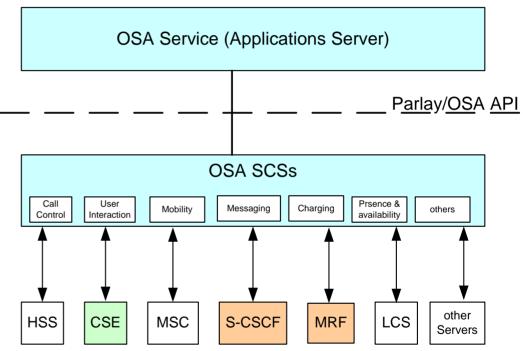


CAMEL

- Customised Applications for Mobile network Enhanced Logic
- GSM specialised Intelligent Network feature
- Support for Operator Specific Services for roaming subscribers
- Standardised in phases by ETSI
 - CAMEL1(R96), CAMEL2(R97), CAMEL3(R99), CAMEL4(R5)
- Basic Call State Model concept for call handling
- Protocols: CAMEL Application Part (CAP), Mobile Application Part (MAP)
- Services for circuit-switched, packet-switched and IP multimedia domain

CAMEL phase 4 architecture

Subscriber status, location


Open Service Access

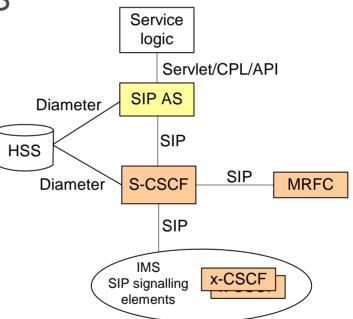
- Standardised by 3GPP
- Application Programming Interfaces APIs
- Applications developed by operators or third parties can make use of network functionalities through a set of Service Capability Features (SCF)
- OSA APIs are independent of where or which network capabilities are implemented in the network
- Framework for authentication and authorisation, Discovery
- Only standardised secure method to access network capabilities in IP Multimedia Subsystem (IMS)

Open Service Access

- OSA applications developed in Application Servers using the OSA APIs to interact with OSA services
- Service Capability Servers (SCS) act as gateways between network entities and applications
- Mapping to network protocols vendor specific
 - MAP, CAP, INAP, Megaco, SIP, SMS

Session Initiaton Protocol

• IETF has defined SIP originally for multimedia call control for the fixed Internet


Text-based application layer signalling protocol

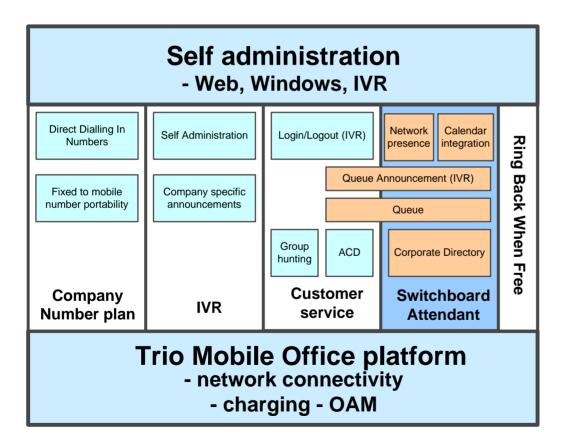
- Chosen as the main IP Multimedia Subsystem protocol for call control because of the interconnectivity requirement between 3GPP networks and fixed IP networks
 - SIP used for session control
 - Session Description Protocol (SDP)

SIP AS service architecture

- Services created in SIP AS
 - Call Processing Language (CPL)
 - Service Creation Markup Language (SCML)
 - SIP Common Gateway Interface (SIP CGI)
 - SIP Servlets
 - JAIN SIP
 - Parlay APIs
 - VoiceXML for user interaction

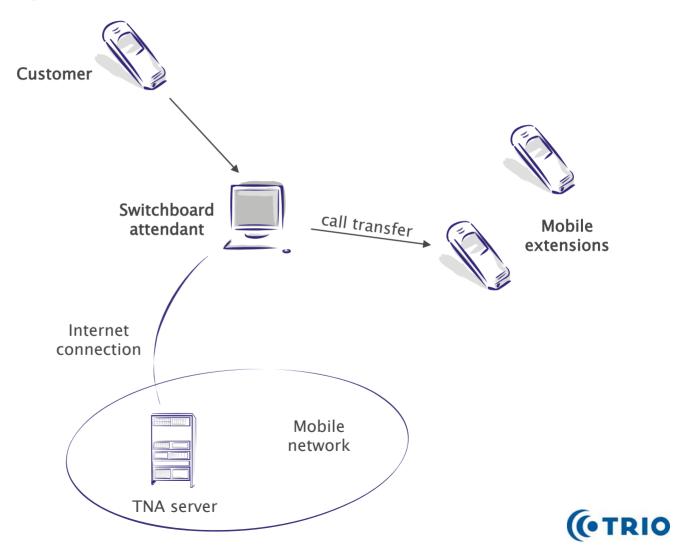
Other technologies

- Java APIs for Integrated Networks (JAIN)
- Parlay X
- Open Mobile Alliance
- Intelligent Networks
- Service Node
- Mobile Execution Environment
- UMTS SIM Application Toolkit

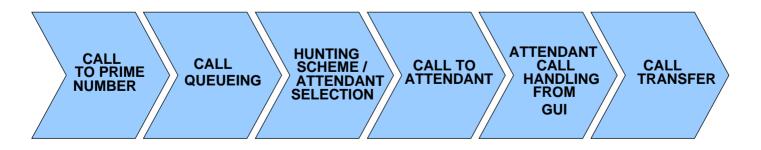


3G network attendant service

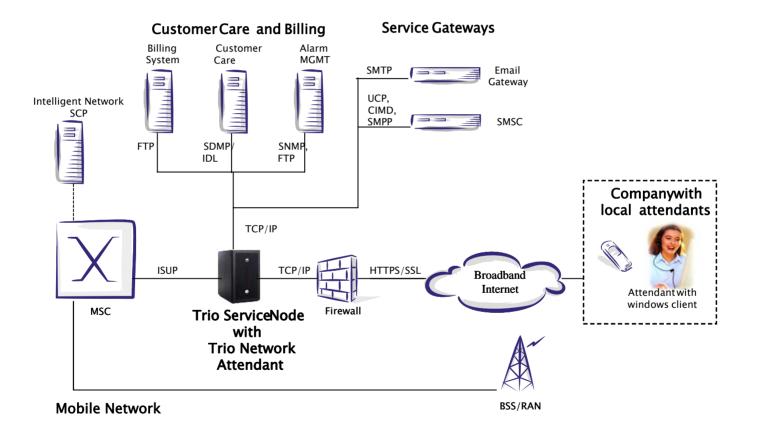
Network attendant service


• Call handling application for switchboard attendants

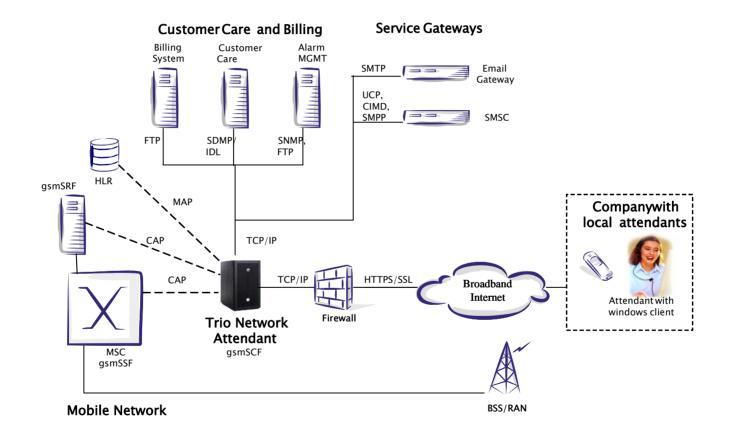
- Mobile or fixed phones
- Call handling
- Corporate directory
- Messaging
- Presence information
- Call queuing
- Automatic call distribution (ACD)



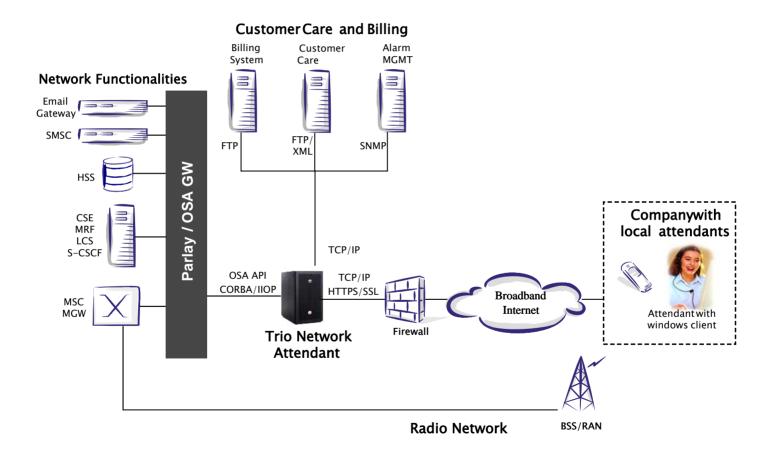
TNA conceptual model

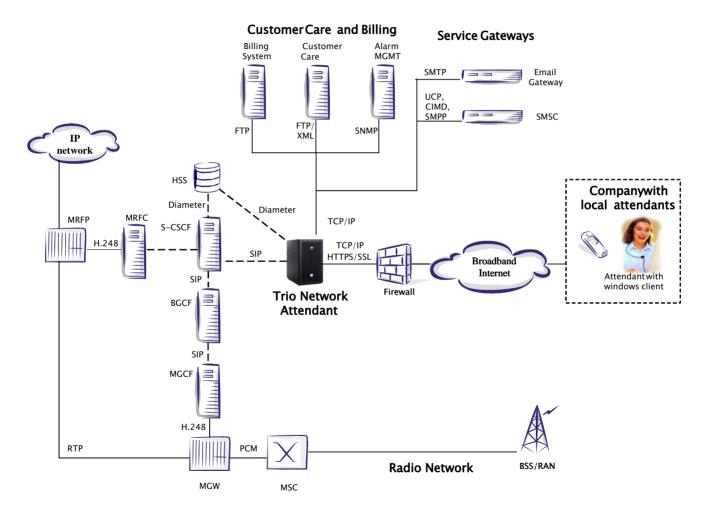

Network attendat service contd.

- An attendant establishes an open line between her phone and the Trio Network Attendant System
- Attendant use a graphical user interface, attendant client, to handle calls.
- Call and queue information displayed in the client
- Corporate directory, SMS and email messaging
- Logical call flow:



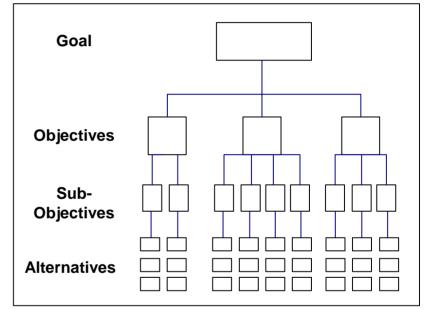
2G TNA Architecture





OSA - TNA

SIP - TNA



Technology comparison

Analytical Hierarchy Process AHP

- Developed by T. Saaty 1980
- A systematic method for comparing a list of objectives and alternatives
- Pie chart model
 - Goal of the decision-making is the whole chart
 - Each wedge represents an objective contributing to the goal
 - AHP helps determine the relative importance of each wedge
- Pairwise comparisons
 - Each pair of factors is compared to establish a ratio of relative importance between the factors

AHP contd.

• Verbal scale comparison to numerical values

Numerical value	Verbal scale	Explanation
1.0	Equal importance of both elements	Two elements contribute equally
3.0	Moderate importance of one element over another	Experience and judgement favour one element
5.0	Strong importance of on element over another	An element is strongly favoured
7.0	Very strong importance of one element over another	An element is very strongly dominant
9.0	Extreme importance of one element over another	An element is favoured by at least an order of magnitude
2.0, 4.0, 6.0, 8.0	Intermediate values	Used to compromise btw two judgments

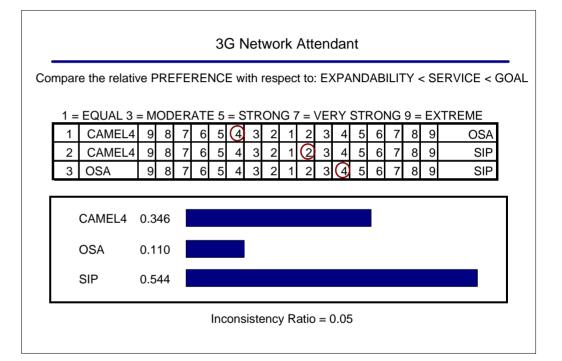
AHP contd.

- Form a pairwise comparison matrix A
 - The number in the ith row and jth column gives the relative importance of objective Oi as compared with objective Oj

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} = \begin{bmatrix} \frac{O_1}{O_1} & \frac{O_1}{O_2} & \frac{O_1}{O_3} & \frac{O_1}{O_4} \\ \frac{O_2}{O_1} & \frac{O_2}{O_2} & \frac{O_2}{O_2} & \frac{O_2}{O_4} \\ \frac{O_3}{O_1} & \frac{O_3}{O_2} & \frac{O_3}{O_3} & \frac{O_3}{O_4} \\ \frac{O_4}{O_1} & \frac{O_4}{O_2} & \frac{O_4}{O_3} & \frac{O_4}{O_4} \end{bmatrix}$$

- Vector of weights \mathcal{W}
- Eigenvalue problem: $Aw = \lambda_{\max} w$
- Consistency measure calculated using the eigenvalues of the normalised comparison matrix

AHP hierarchy for the network attendant service


- Goal: Select best techhnology solution for the network attendant service in 3G networks
- Alternatives
 - CAMEL4
 - OSA
 - SIP
- Objectives
 - Service creation and technology benefits
 - System usability and maintenance
 - Cost

Comparison of alternatives and objectives

- Compare alternatives first pairwise for each-sub-objective
- Compare subobjectives pairwise for to get overall importance within main objective
- Compare objectives pairwise for the goal

Judgements and priorities with respect to service expandability

Comparison of alternatives and objectives

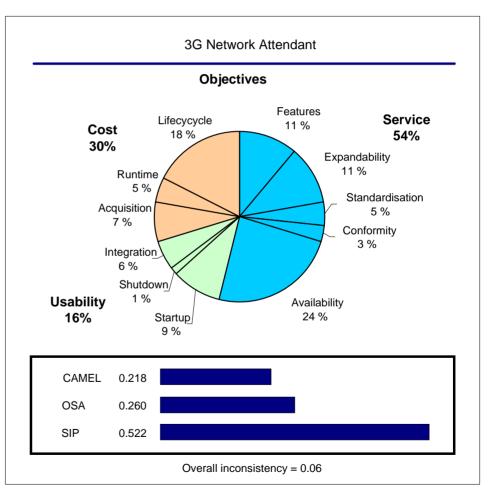
 Compare subobjectives pairwise for to get overall importance within main objective

3G Network Attendant																			
Compare the relative IMPORTANCE with respect to: SERVICE < GOAL																			
1 = EQUAL 3 = MODERATE 5 = STRONG 7 = VERY STRONG 9 = EXTREME 1 FEATURES 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 EXPANDABILITY																			
2	FEATURES	9	8	.7	6	5	(4)	3	2	1	2	3	4	5	6	7	-	-	
3	FEATURES	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	CONFORMITY
4	FEATURES	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	AVAILABILITY
5	EXPANDABILITY	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	STANDARDISATION
6	EXPANDABILITY	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	CONFORMITY
7	EXPANDABILITY	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	AVAILABILITY
8	STANDARDISATION	9	8	7	6	5	4	3	0	1	2	3	4	5	6	7	8	9	CONFORMITY
9	STANDARDISATION	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	AVAILABILITY
10 CONFORMITY		9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	AVAILABILITY
FEATURES 0.207 EXPANDABILITY 0.205																			
STANDARDISATION 0.084 CONFORMITY 0.057 AVAILABILITY 0.448																			
Inconsistency Ratio = 0.08																			

Comparison of alternatives and objectives

• Compare objectives pairwise for the goal

3G Network Attendant																			
Compare the relative IMPORTANCE with respect to: GOAL																			
	1 = EQUAL	3 = N	101	DE	RAT	Έ 5	; = ;	STF	ROP	١G	7 =	VE	RY	ST	RO	NG	9 =	EX	TREME
1	SERVICE	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	USABILITY
2	SERVICE	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	COST
3	USABILITY	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	COST
	SERVICE USABILITY COST	0.53 0.16 0.29	64																
					Ir	וססר	nsi	ster	псу	Rat	io =	0.0	01						



Results and Conclusions

Results

- Overall
 - SIP 52%
 - OSA 26%
 - CAMEL 22%
- Objectives
 - Service 54%
 - SIP 52%
 - CAMEL 29%
 - OSA 19%
 - Cost 30%
 - SIP 56%
 - OSA 31%
 - CAMEL 13%
 - Usability 16%
 - SIP 44%
 - OSA 42%
 - CAMEL 14%

Conclusions

- Overall preference for a network attendant service in 3G networks would be to implement the service in the IP Multimedia Subsystem using a Session Initiation Protocol Application Server
- SIP-based solution was evaluated to offer better service creation and technology benefits than the other compared alternatives and at a lower cost. In addition, it was favoured from the usability and maintenance perspective as well.
- In the overall results, a SIP-based solution favourably satisfied all three main objectives. Hence, it was proposed as the best choice for a next generation attendant service.
- However, if the operators are not going to deploy IMS, there is neither going to be adequate network support nor a market for a SIP-based attendant service.
 - Technology availability in operator networks the most important individual category.
 - Estimated result, more profound market study needed to support the decision-making.

Thank You!

Minna.Bloigu@trio.com

http//:www.trio.com

Abbreviations

3G	Third Generation	HSS	Hom
3GPP	3rd Generation Partnership Project	I-CSCF	Inter
ACD	Automatic Call Distribution	IDL	Inter
API	Application Programming Interface	IETF	Inter
CAMEL Enhanced	Customised Applications for Mobile network	IMS	IP M
САР	CAMEL Application Part	IN	Intell
CDR	Call Detail Record	IP	Inter
CN	Core Network	ISDN	Integ
CORBA	Common Object Request Broker Architecture	ISUP	ISDN
CSCF	Call Session Control Function	JAIN	Java
CSE	CAMEL Service Environment	LCS	Loca
		MAP	Mob
DTMF	Dual-Tone Multi-Frequency	Megaco	Med
ETSI Institute	European Telecommunications Standards	MExE	Mob
FTP	File Transfer Protocol	MGCF	Med
GGSN	Gateway GPRS Support Node	MGCP	Med
GMSC	Gateway Mobile service Switching Centre	MGW	Med
GPRS	General Packet Radio Service	MRF	Med
GSM	Global System for Mobile Communications	MRFC	Med
HPLMN	Home Public Land Mobile Network	MRFP	Med

HSS	Home Subscriber Server
I-CSCF	Interrogating-CSCF
IDL	Interface Definition Language
IETF	Internet Engineering Task Force
IMS	IP Multimedia core network Subsystem
IN	Intelligent Network
IP	Internet Protocol
ISDN	Integrated Services Digital Network
ISUP	ISDN User Part
JAIN	Java APIs for Integrated Networks
LCS	Location Services
MAP	Mobile Application Part
Megaco	Media gateway control protocol
MExE	Mobile Execution Environment
MGCF	Media Gateway Control Function
MGCP	Media Gateway Control Protocol
MGW	Media Gateway
MRF	Media Resource Function
MRFC	Media Resource Function Controller
MRFP	Media Resource Function Processor

Abbreviations

MSC	Mobile service Switching Centre
MSISDN	Mobile Subscriber ISDN Number
OMA	Open Mobile Alliance
OSA	Open Service Access
OSS	Operator Specific Service
Parlay A	PIs Parlay Application Programming Interfaces
PBX	Private Branch Exchange
P-CSCF	Proxy Call Session Control Function
PLMN	Public Land Mobile Network
PSE	Personal Service Environment
QoS	Quality of Service
RTP	Real-time Transport Protocol
SCE	Service Creation Environment
SCS	Service Capability Server
S-CSCF	Serving-CSCF
SGSN	Serving GPRS Support Node
SIP	Session Initiation Protocol
SLF	Subscriber Location Function
SMPP	Short Message Peer to Peer

SMS	Short Messaging Service
SMSC	SMS Centre
SN	Service Node
SOAP	Simple Object Access Protocol
SRF	Specialised Resource Function
SS7	Signalling System No. 7
TS	Technical Specification
UCP	Universal Computer Protocol
UML	Unified Modelling Language
UMTS	Universal Mobile Telecommunications System
USAT	USIM Application Toolkit
USIM	Universal Subscriber Identity Module
UTRAN	UMTS Terrestrial Radio Access Network
VHE	Virtual Home Environment
VMSC	Visiting Mobile service Switching Centre
VPLMN	Visiting Public Land Mobile Network
VPN	Virtual Private Network
WLAN	Wireless Local Area Network
WSDL	Web Service Definition Language
XML	Extensible Markup Language

