Base Station Subsystem Key Performance Indicators in EGPRS

Anders Arte

Supervisor: Prof. Sven-Gustav Häggman Instructor: M.Sc. Leo Bhebhe

Content

- Introduction
- Objectives and Methodology
- EGPRS
 - EGPRS Fundamentals
 - EGPRS Architecture
- Key Performance Indicators (KPI)
 - KPIs and counters
 - Performance Reporting
 - EGPRS KPIs
- Measurement Setup
- Measurement Results
- Conclusions

Introduction

- Until these days the packet data traffic has been low in 2G networks. Hence, there has been little need for packet data traffic optimization and monitoring.
- With EGPRS, operators are able to provide high-performance demanding services in 2G networks.
- Increased performance and new services attracts more users.
 => increased total packet data traffic in mobile networks.
- Increased packet data traffic in the traditional circuit switched network sets new requirements for network optimization and planning.
- New KPIs needs to be defined since packet data traffic cannot effectively be monitored with the same methods as circuit switched traffic.

Objectives and Methodology

Main objective:

• Examine which BSS KPIs in EGPRS should be used for network planning and monitoring, and how well they reflect the network performance and the end-user experience.

Secondary objectives:

- Provide a comprehensive view of the EGPRS functionality, and of the issues and problems related to monitoring and optimizing PS data networks.
- Provide a detailed description of the measurement setup that can be used as a guide in forthcoming measurements to test KPIs and new network features.

Methodology:

- Literature study of 3GPP standards, ETSI specifications and research articles.
- Measurements conducted in a test laboratory.

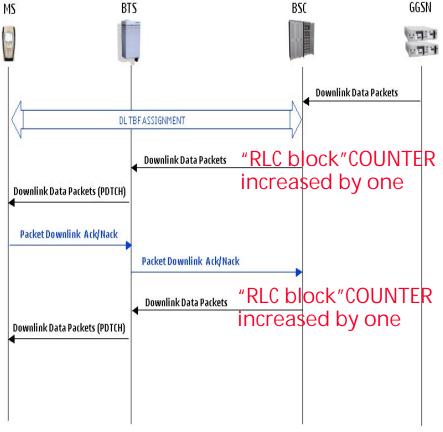
EGPRS Fundamentals

- EGPRS technology is an improved air interface to the GPRS technology.
- Enables 3 times higher data rates than GPRS due to new modulation technique.
- Max bit rate 59,2 kbit/s per Time Slot for EGPRS.
- => Theoretical maximum 59,2 kbit/s*8(time slots)= 473,6 kbit/s
- RTT ~200ms to ~700ms depending on phone model and network elements.

		modulation			user bite /	hit nata
	coding	modulation	RLC DIKS /	FEC	user bits /	bit rate
	scheme		radio block	code rate	20 ms	(bit/s)
GPRS	CS-1	GMSK	1	0.45	160	8,000
	CS-2		1	0.65	240	12,000
	CS-3		1	0.75	288	14,400
	CS-4		1	1	400	20,000
EGPRS	MCS-1		1	0.53	176	8,800
	MCS-2		1	0.66	224	11,200
	MCS-3		1	0.85	296	14,800
	MCS-4		1	1	352	17,600
	MCS-5	8-PSK	1	0.38	448	22,400
	MCS-6		1	0.49	592	29,600
	MCS-7		2	0.76	448 + 448	44,800
	MCS-8		2	0.92	544 + 544	54,400
	MCS-9		2	1	592 + 592	59,200

EGPRS Architecture

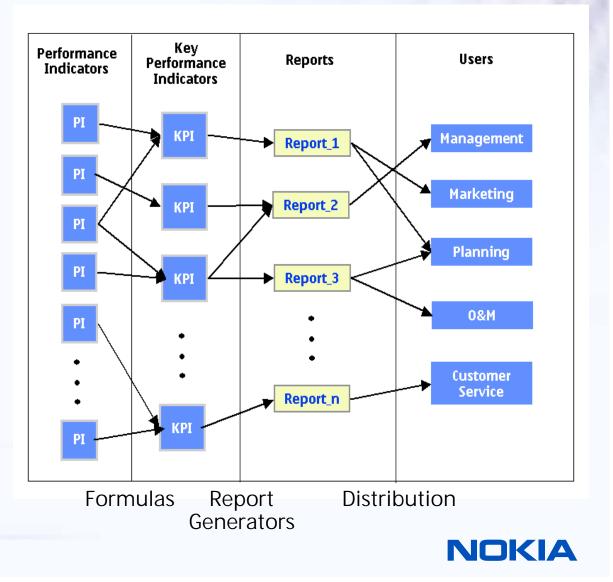
- EGPRS network is implemented into the GSM network.
- New network elements: SGSN, GGSN and BG


Counters and Key Performance Indicators (KPI)

A counter triggers an event at the network. A counter is the most detailed level of information gained at the network.

E.g. every time a RLC block is sent the "RLC block" counter is increased by one.

- KPIs are indicators that reflect some vital information concerning the network performance or the end-user experience (e.g. Throughput, total traffic, blocking).
 - The KPIs give higher level information than counters.
 - The KPIs are calculated from the counters.
- Properly defined KPIs helps to:
 - optimize the network
 - effectively locate trouble spots
 - predict future needs for investments and changes in the network.

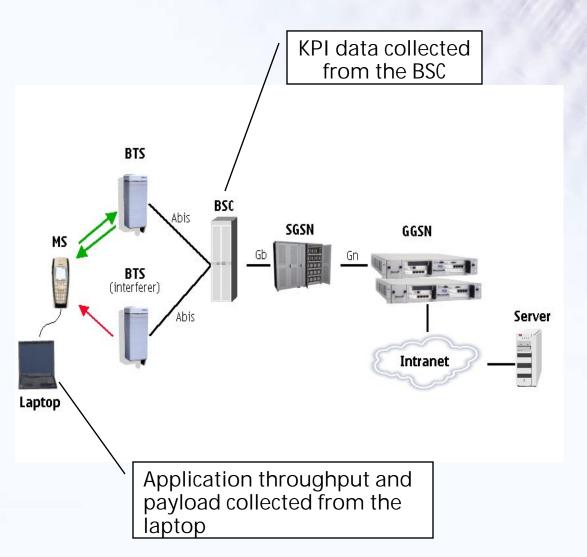


Key Performance Indicators (KPI)

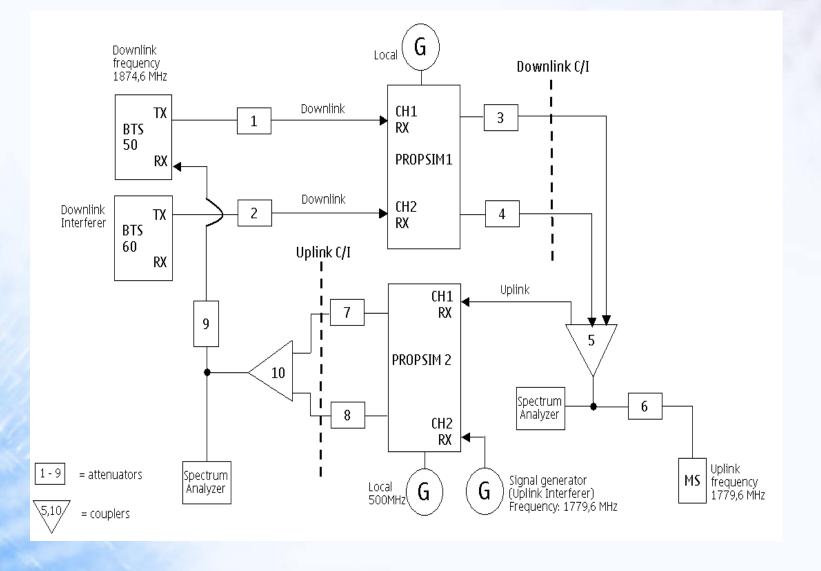
Performance Reporting

- Network performance hard to interpret from counters as such, therefore a Performance Reporting method is needed.
- No single report can cover all information since different user groups are interested in different areas.

EGPRS Key Performance Indicators (KPI)

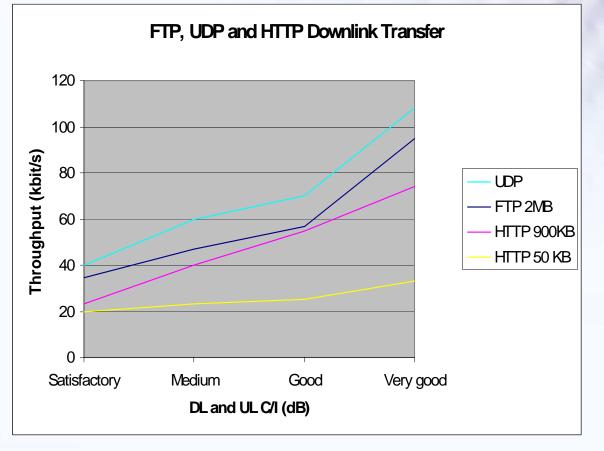

- **Traffic** KPIs reflect the network usage. I.e. how much data is transferred and how the resources are used.
- Availability KPIs show if the EGPRS network is available for PS traffic.
- Accessibility KPIs show if the service cannot be accessed due to some other problems than blocking or interference.
- **Quality** KPIs indicate the radio link quality and end-user experience.

KPI group	KPI		
TRAFFIC	RLC Payload		
	Packet Erlangs		
	CCCH Blocking		
AVAILABILITY	PDTCH Blocking		
	PCU Congestion		
	Abis Congestion		
ACCESSIBILITY	GPRS/IMSI Attach Success Ratio		
ACCESSIBILITY	PDP Context Success Ratio		
	TBF Properties		
	RLC Retransmission Ratio		
QUALITY	MCS Selection		
	RLC Throughput		
	TBF Abnormal Releases		


Measurement Setup

- Tests done in laboratory to have maximum control of the network.
- Air interface connections with cables to reduce unwanted interference.
- FTP, HTTP and UDP tests in different radio conditions (changing interference and fading simulation both in UL and DL).
- Results collected from the laptop compared against counter/KPI results collected from the network to verify the KPI behavior.
- 5 weeks of tests performed in total. Only a few results presented here.

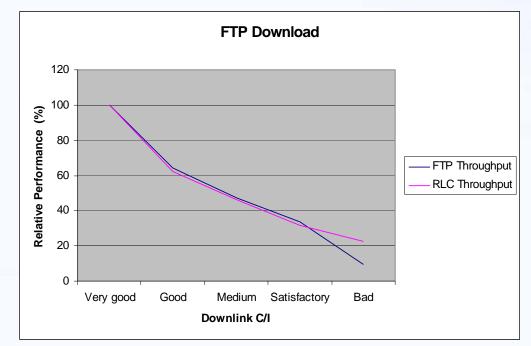
Air interface setup in measurements



NOKIA

Measurement Results

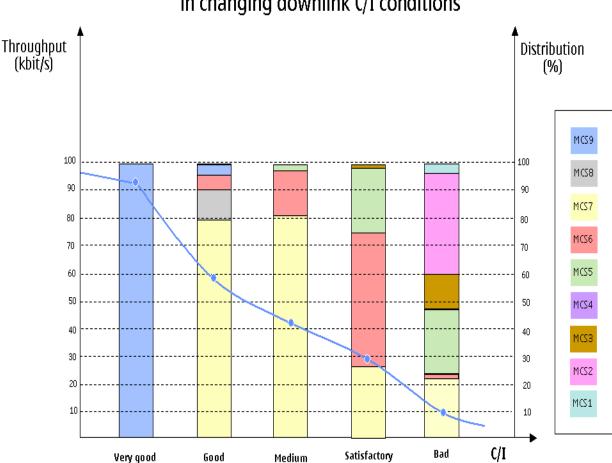
- The main idea was to find BSS KPIs that would describe the network performance and the application throughput shown in the figure as accurately as possible
- All network counter/KPI values were compared against these user application throughput values.


Measurement Results

- RLC throughput calculated from the network counters according to the formula.
- FTP throughput measured at the laptop.

C	/I	FTP	RLC Throughput	
Downlink	Uplink	Throughput	2 Time Slots	
Very good	Very good	95 kbit/s	117 kbit/s	
Good	Very good	61 kbit/s	72 kbit/s	
Medium	Very good	45 kbit/s	54 kbit/s	
Satisfactory	Very good	32 kbit/s	37 kbit/s	
Bad	Very good	8.9 kbit/s	26 kbit/s	

 $RLC_throughput(kbit/s) = \frac{\sum_{MCS=1}^{MCS=9} RLC_data(kbit)}{total_transmitted_RLC_blocks*20ms}$


Relative Performance (calculated from the values in the table)

Measurement Results

- Based on the MCS distribution we may indicate the radio conditions and end-user experience.
- There are also other factors than radio conditions that can affect the MCS in use.
 - E.g. network congestion
 - EGPRS and GPRS users sharing a time slot.
- Therefore, multiple KPIs should be used while analyzing the radio link quality.

FTP DL throughput and MCS usage in changing downlink C/I conditions

Conclusions

- As long as the EGPRS network functions as a best-effort network it is challenging to monitor the individual end-user experience from the BSS.
 - E.g. retainability of a service is next to impossible to measure at the BSS.
- Service differentiation is needed to utilize the capacity of the EGPRS network to its full extent.
 - I.e. services should gain different amount of resources. Services with low requirements less resources than services with high requirements.
- The behavior of the BSS KPIs was described quite accurately via the measurements and the KPIs in this table can be used to effectively monitor and optimize the network.
- Assumptions about the quality should not solely be made on one quality KPI.

KPI group	KPI		
TRAFFIC	RLC Payload		
INALITO	Packet Erlangs		
	CCCH Blocking		
AVAILABILITY	PDTCH Blocking		
	PCU Congestion		
	Abis Congestion		
ACCESSIBILITY	GPRS/IMSI Attach Success Ratio		
ACCESSIBILITI	PDP Context Success Ratio		
	TBF Properties		
	RLC Retransmission Ratio		
QUALITY	MCS Selection		
	RLC Throughput		
	TBF Abnormal Releases		

Questions?

