Indoor Network Planning for IEEE 802.11 based WLANs

Yulin Qi

Communication Laboratory, HUT

Supervisor: Prof. Timo Korhornen Instructor: M.Sc. Timo Kasurinen (Nokia Network)

23/04/2002

Indoor Network Planning for IEEE 802.11 based WLANs 1

Agenda

Introduction

- Review of WLAN technologies
- Indoor Radio Propagation
- WLAN network planning process
- Case study

23/04/2002

Indoor Network Planning for IEEE 802.11 based WLANs

Introduction

- WALN benefits
- WLAN usage status
- WLAN technology problems
- WLAN implementation problems
- Study target

WALN Benefits

- Mobility: Improves working efficiency and productivity, extends the On-line period
- Fast Roll-out: Saves cabling time and convenient to SOHO users and difficult-to-wire case
- Broadband: 11Mbps for 802.11b and 54Mbps for 802.11a/g (GSM:9.6Kbps, HCSCD:~40Kbps, GPRS:~160Kbps, WCDMA:up to 2Mbps)
- Cost saving: Comes from easy maintenance, cabling cost, working efficiency and accuracy. Average Pay back time less than 1 year (WLANA Return-On-Investment survey,2001)

23/04/2002

Indoor Network Planning for IEEE 802.11 based WLANs

WLAN usage Situation

- 802.11 WLAN market grows rapidly. In 2001, 150% sales increasing over 2000 and reach \$1.47 Billion (Synergy Research Group)
- 40% of companies are using WLAN and another 31% plan to deploy in next 18 months (WECA survey to randomly selected 180 US companies with more than 500 computers, autumn, 2001)
- Wide penetration in different organizations (Education: 26%, Healthcare:14%, Government:11% Manufacturing:10%, Others:6%, CISCO Survey to more than 400 companies, Autumn, 2001)

23/04/2002

WLAN Technology Problems

- Date Speed IEEE 802.11b support up to 11MBps, lower than 100Mbps fast Ethernet currently deployed
- Interference Work in ISM band, share same frequency with microwave oven, Bluetooth, and others
- Security Current WEP algorithm is weak
- Roaming No industry standard is available and propriety solution are not interoperable
- Inter-operability Only few basic functionality are interoperable, other vendor's features can't be used in a mixed network

WLAN Implementation Problems

- Lack of wireless networking experience for most IT engineer
- No well-recognized operation process on network implementation
- Selecting AP position with 'Best Guess' method
- Unaware of interference from/to other networks
- Weak security policy
- As a result, your WLAN may have
 - Poor performance (coverage, throughput, capacity, security)
 - Unstable service
 - Customer dissatisfaction

23/04/2002

Study target

- The study focus on
 - investigating indoor radio propagation characteristic
 - understanding and planning WALN security
 - analyzing critical issues on WLAN network planning
 - presenting a work process for WLAN implementation
 - improving WLAN coverage in Dept. Of E.E. of HUT

Agenda

- Introduction
- Review of WLAN technologies
- Indoor Radio Propagation
- WLAN network planning process
- Case study

23/04/2002

Indoor Network Planning for IEEE 802.11 based WLANs

Review of WLAN technologies

- IEEE 802.11
- IEEE 802.11b
- IEEE 802.11a
- IEEE 802.11g

23/04/2002

IEEE 802.11

- First standard was released in 1997, three physical layers are defined
 - Infrared product never show up due the range limitation
 - FHSS frequency hopping spread spectrum
 - DSSS direct sequence spread spectrum
- Use similar LLC and MAC layer frame structure with existing 802.X protocol.
- Designed as a mobile extension to wired LAN

23/04/2002

Indoor Network Planning for IEEE 802.11 based WLANs

11

802.11 FHSS

- Support 1 and 2 Mbps data rate and use 2/4-GFSK modulation ($\Delta f = 160$ kHz and 216/72 kHz respectively)
- 79 channels from 2.402 to 2.480 GHz (in U.S. and most of EU countries) with 1MHz channel space
- 78 hopping sequences with minimum 6 MHz hopping space, each sequence uses every 79 frequency elements once
- Minimum hopping rate 2.5 hops/second in U.S.
- Tolerance to multi-path, narrow band interference, security
- Low speed, small range due to FCC power regulation (10mW)

23/04/2002

Indoor Network Planning for IEEE 802.11 based WLANs

802.11 DSSS

- Support 1/2 Mbps data transport, use BPSK and QPSK modulation
- Use 11 chips barker code as spreading code, provide 10.4 dB processing gain
- Define 14 overlapping channels, each has 22MHz channel bandwidth, from 2.401to 2.483 GHz
- Power limit (1000mW in U.S., 100mW in EU, ~200mW in JP)
- Immune to narrow-band interference, cheaper HW

23/04/2002

Indoor Network Planning for IEEE 802.11 based WLANs

802.11b

- Released in 1999
- A extension to 802.11 DSSS, same channel and bandwidth, similar PLCP frame structure
- Support 5.5 and 11 Mbps data transport
- Use <u>Complementary Code Keying</u> as modulation method
 - M-ray Orthogonal keying

 $C = \{e^{j(j_1+j_2+j_3+j_4)}, e^{j(j_1+j_3+j_4)}, e^{j(j_1+j_2+j_4)}, -e^{j(j_1+j_4)}, e^{j(j_1+j_2+j_3)}, e^{j(j_1+j_3)}, -e^{j(j_1+j_2)}, e^{j(j_1)}\}$

- -5.5M $2^2 = 4$ complex coding sequences
- -11M $2^{6} = 64$ complex coding sequences
- Symbol rate is 1.375 MHz

23/04/2002

802.11a

- Operates at U-NII band at 5 GHz (low band: 5180~5240 MHz, middle band: 5260~5320MHz, high band: 5745~5805MHz, 12 channels with 20MHz bandwidth)
- Support multi rate 6Mbps, 9Mbps,... up to 54Mbps
- Use Orthogonal Frequency Division Multiplexing (OFDM), 52 sub-carriers in one frequency channel. 48 for data transmission and 4 for channel estimation
- Use inverse discrete Fourier transform combine multicarrier signals to single time domain symbol (symbol length 4ms and occupied bandwidth 16.6 MHz)

23/04/2002

802.11a cont.

Data Rate (Mbps)	Modulation	Coding Rate	Coded bits per sub-carrier	Code bits per OFDM symbol	Data bits per OFDM symbol
6	BPSK	1 / 2	1	48	24
9	BPSK	3 / 4	1	48	36
12	QPSK	1 / 2	2	96	48
18	QPSK	3 / 4	2	96	72
24	16QAM	1 / 2	4	192	96
36	16QAM	3 / 4	4	192	144
48	64QAM	2/3	6	288	192
54	64QAM	3 / 4	6	288	216

Modulation and coding schemas of different data rates

23/04/2002

Indoor Network Planning for IEEE 802.11 based WLANs

802.11g

- Draft version was released in Nov. 2001, official standard may come in 2003
- Support up to 54Mbps data rate at 2.4 GHz, backward compatible to 802.11b
- Three proposals are competed
 - Pure OFDM (basic requirement)
 - CCK + OFDM (optional, supported by *Intersil*)
 - CCK + PBCC (Packet Binary Convolution Code) (optional, supported by *Texas Instruments*)

23/04/2002

Indoor Network Planning for IEEE 802.11 based WLANs

Agenda

- Introduction
- Review of WLAN technologies
- Indoor Radio Propagation
- WLAN security
- WLAN network planning process
- Case study

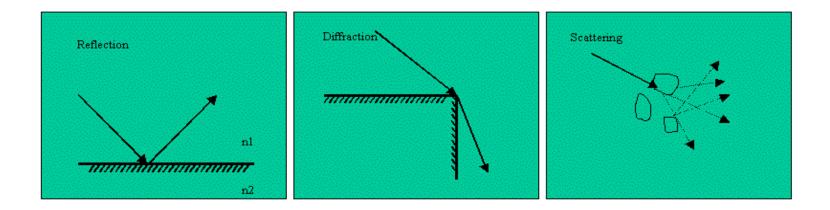
23/04/2002

Indoor Network Planning for IEEE 802.11 based WLANs

Indoor Radio Propagation

- General radio propagation
- Indoor radio propagation model
- Diversity and combining
- WLAN Antennas

23/04/2002


Indoor Network Planning for IEEE 802.11 based WLANs

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

General Radio Propagation(1)

Three basic radio propagation mechanisms

- Reflection
- Diffraction
- Scattering

23/04/2002

General Radio Propagation(2)

- Path loss
 - determines power budget, coverage, interference
 - log-distance model

 $PL(d) = PL(d_0) + 10n \log(d/d_0) + X_s$

- Delay Spread
 - describes the multipath property of radio channel
 - three power delay profiles
 - Mean excess delay

$$m_t = \frac{P(t_i) \ t_i}{P(t_i)} \qquad \mathbf{s}_t = \sqrt{\frac{(t_i \ m_t)^2 \ P(t_i)}{\frac{i}{P(t_i)}}}$$

• Maximum excess delay

23/04/2002

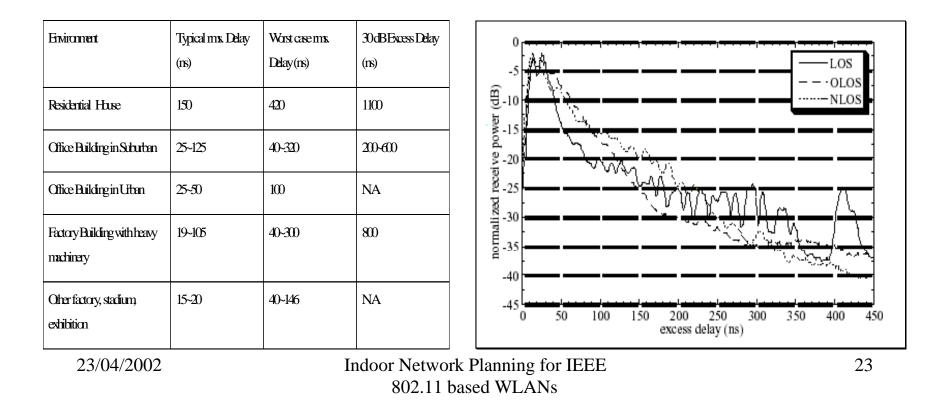
Indoor Network Planning for IEEE 802.11 based WLANs

Empirical narrow band models (COST231)

• Single slop model $L L_0 = 10n \log(d)$

Environment	Dense/1 Floor	Dense/2 Floor	Dense/Multi Floor	Open	Large	Corridor
$L_0(dB)$	33.3	21.9	44.9	42.7	37.5	39.2
n	4.0	5.2	5.4	1.9	2.0	1.4

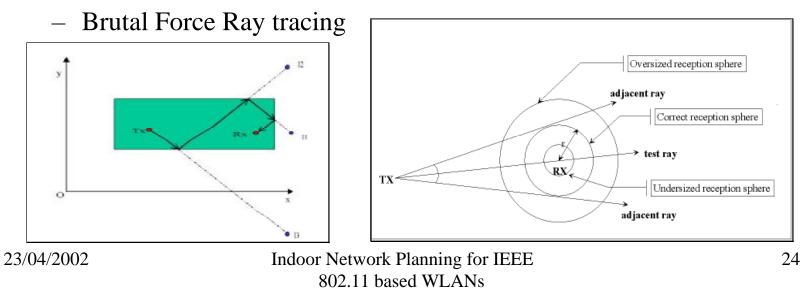
• Multi-wall model $L = L_{FS} + L_c + \prod_{i=1}^{l} K_{wi} L_{wi} + K_f \frac{K_f + 2}{K_f + 1} b L_f$


Parameter(s)	Light Wall Loss (dB)	Heavy Wall Loss (dB)	Floor Loss (dB)	Multi-floor Non- linear factor b
Value	3.4	6.9	18.3	0.46

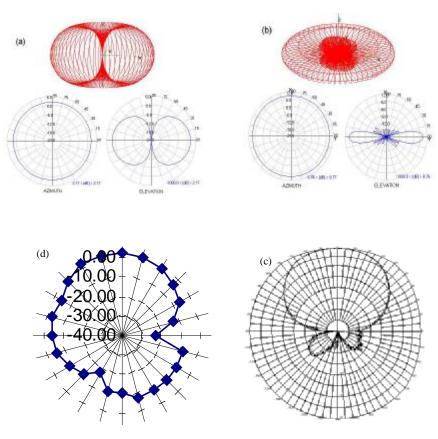
23/04/2002

Indoor Network Planning for IEEE 802.11 based WLANs

Empirical wide band models


- Delay spread in typical indoor environments
- Delay spread of LOS, OLOS, and NLOS channel

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com


Deterministic model

- Simulate propagation of radio wave physically using either uniform theory of Diffraction (UTD) or Geometric Optics (GO). GO is simpler than solving Maxwell's equation.
- Two GO methods
 - Image method

WLAN Antenna

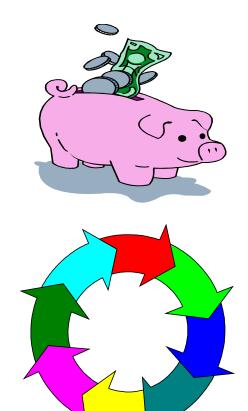
- Omni directional Antenna
 - $1/2 \lambda$ Dipole Antenna (a)
 - Multi dipole Antenna (b)
- Directional Antenna
 - Yagi Antenna
 - Patch Antenna (c)
 - Parabolic Antenna
- PCMCIA integrated Antenna
 - with space or polarity diversity
 - poor gain
 - directivity (d)

Radiation Patterns of antennas

23/04/2002

Agenda

- Introduction
- Review of WLAN technologies
- Indoor Radio Propagation
- WLAN network planning process
- Case study


23/04/2002

Indoor Network Planning for IEEE 802.11 based WLANs

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

WLAN Network Planning

- Network planning target
 - Maximize system performance with limited resource
 - Including coverage, throughput, capacity, interference, roaming, security, etc.
- Planning process
 - Requirement management
 - Site investigation
 - Computer-aided planning practice
 - Verifying planning

23/04/2002

Requirement Analysis

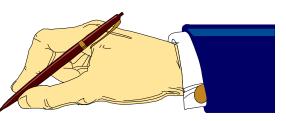

- Starting point of a project, include:
 - Business requirement
 - Functional requirement
 - Performance requirement
 - Management requirement
- Processing requirement
 - Verification & Validation
 - Prioritizing requirement
- Document requirement

23/04/2002

Site Survey

- Understand existing network infrastructure
 - Check Ethernet and electricity socket distribution
 - Check high level profile, such as IP address, VPN, Network service, Security policy
 - Make interference survey and identify interference sources
 - Study building blueprint and check the consistency with practical
- Site survey report including
 - Site information
 - Primary coverage plan (number, position of AP)
 - Primary frequency plan (Interference avoidance)

23/04/2002

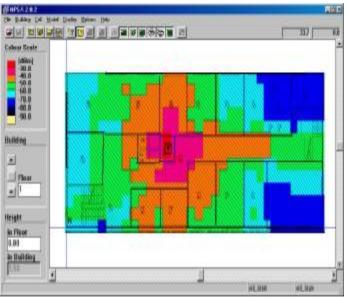

Coverage planning

- Base on primary selected locations
 - Select best AP location
 - Select suitable antenna pattern
 - Optimized by planning software
- Set coverage target
 - -70 dBm for 802.11b 11Mbps
 - $\sim 10 \text{ dB}$ fading margin to receiver sensitivity level (-84 dBm)
- Link budget
 - TX power $P_{MS_{RX}} = P_{AP_{TX}} + G_{MS_{Ant}} L_{MS} L_{path} L_{AP} + G_{AP_{Ant}}$
 - Antenna gain, cable loss
 - Path loss (most difficult part !!!)

23/04/2002

Indoor Network Planning for IEEE 802.11 based WLANs

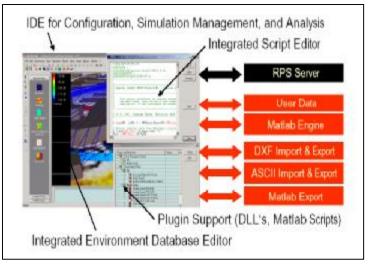
PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com


30

Planning tools (1)

NPS/indoor (Nokia Network, Finland)

- Indoor radio planning designed for GSM/DCS
- Support three models
 - One slop model
 - Multi-wall model
 - Enhanced Multi-wall model
- System parameters can be adjusted and optimized by field measurement
- Graphical planning interface and coverage view


23/04/2002

Planning tools (2)

Radio Propagation Simulation (RadioPlan GmbH, Germany)

- 3D Ray tracing tool
- Construction material database
- Graphic interface for
 - Building modeling
 - TX and RX placement
 - Signal level and coverage present
- Support classical propagation models
- Data import and export

23/04/2002

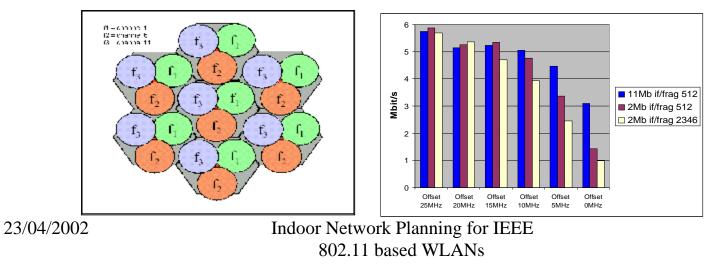
Field Measurement

- Basic tools
 - Laptop or PDA
 - Utility come with radio card HW (i.e. Lucent client manager)
 - Support channel scan, station search
 - Indicate signal level, SNR, transport rate
- Advanced tools
 - Special designed for field measurement
 - Support PHY and MAC protocol analysis
 - Integrated with network planning tools
 - Examples
 - ProcycleTM from Softbit, Oulu, Finland
 - SitePlaner[™] from WirelessValley, U.S.

23/04/2002

Capacity Planning

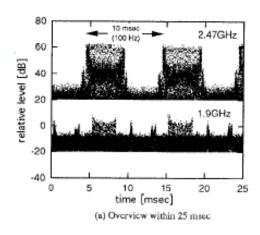
- 802.11b can have 6.5 Mbps rate throughput due to
 - CSMA/CA MAC protocol
 - PHY and MAC management overhead
- More user connected, less capacity offered


• Supported users in different application cases

Environment	Traffic content	Traffic Load	Number of	Number of simultaneous users		
			11M bps	5.5 M b p s	2 M b p s	
Corporation W ireless LAN	W eb, Email, File transfer	150 kbits/user	40	20	9	
Branch Office Network	All application via W L A N	300 kbits/user	20	10	4	
Public Access	W eb, Email, V P N tunneling	100 kbits/user	60	30	12	

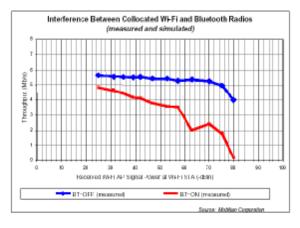
23/04/2002

Frequency Planning(1)


- Interference from other WLAN systems or cells
 - IEEE 802.11 operates at uncontrolled ISM band
 - 14 channels of 802.11 are overlapping, only 3 channels are disjointed. For example Ch1, 6, 11
 - Throughput decreases with less channel spacing
- A example of flat allocation in multi-cell network

Frequency Planning(2)

- Interference from microwave oven
 - Microwave oven magnetrons have central frequency at 2450~2458 MHz
 - Burst structure of radiated radio signal, one burst will affect several 802.11 symbols
 - 18 dBm level measured from 3 meter away from oven, hide all WLAN signal
- Solutions
 - Use unaffected channels
 - Keep certain distance between them
 - Use RF absorber near microwave oven



23/04/2002

Frequency Planning(3)

- Interference form Bluetooth
 - The received signal level from two systems are comparable at mobile side
 - In co-existing environment, the probability of frequency collision for one 802.11 frame vary from 48% ~62%
 - Deterioration level is relevant to many factors
 - relative signal levels
 - 802.11 frame length
 - activity of Bluetooth channel
- Solution
 - Co-existing protocol IEEE 802.15 (not ready)
 - Limit the usage of BT in 802.11 network

Agenda

- Introduction
- Review of WLAN technologies
- Indoor Radio Propagation
- WLAN network planning process
- Case study

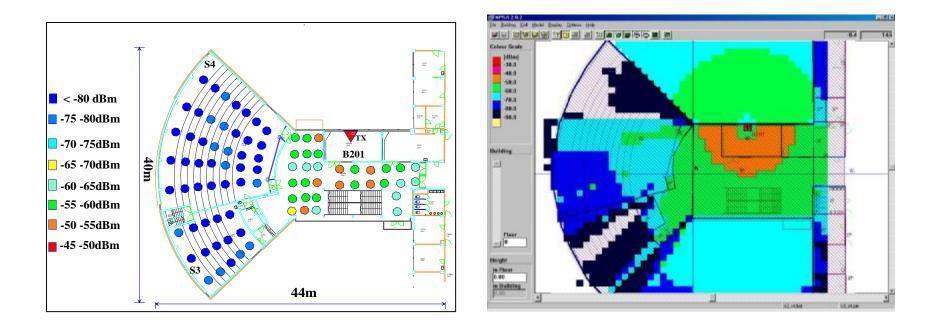
23/04/2002

Indoor Network Planning for IEEE 802.11 based WLANs

Case study

- Background
 - 802.11b Wireless MediaPoli network in Otaniemi
 - Ad Hoc mode (0B89), free access, support DHCP or Mobile IP
 - 9 APs allocated in Otakaari 5 and Otakaari 8
- Filed measurement setup
 - Compaq Pocket PC with Lucent 802.11b PC card
 - IBM ThinkPad 600E laptop with Lucent Gold and Nokia C111 PC card
 - Utility software provided by radio card vendors
- Targets
 - Improve WLAN coverage performance in selected areas
 - Follow planning process and use planning software

23/04/2002


Method

- Understand coverage target and priority
- Check current coverage performance
- Model case by planning tools
- Optimize location of AP and antenna pattern
- Verify result of system optimization

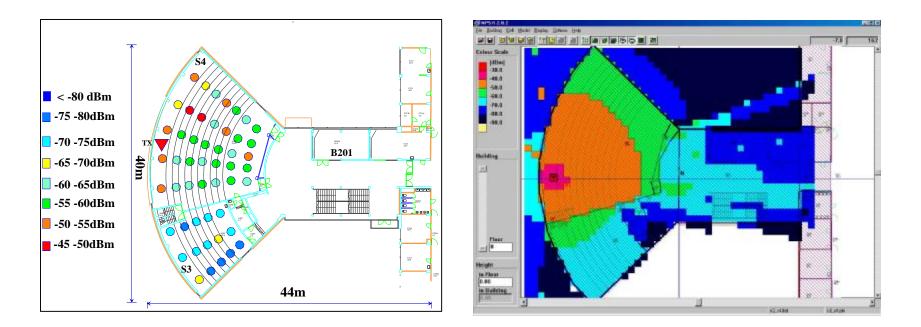
Case 1 Lecture Hall S3/S4(1)

• Old coverage status (measured)

• Old coverage status (NPS simulated)

23/04/2002

Indoor Network Planning for IEEE 802.11 based WLANs

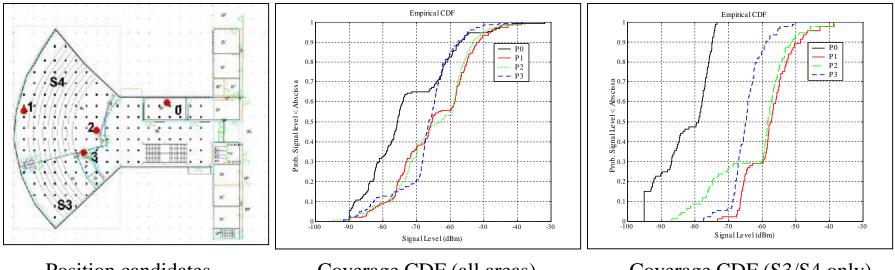

41

Case 1 Lecture Hall S3/S4(2)

• New coverage status (measured)

• New coverage status (NPS simulated)

42



23/04/2002

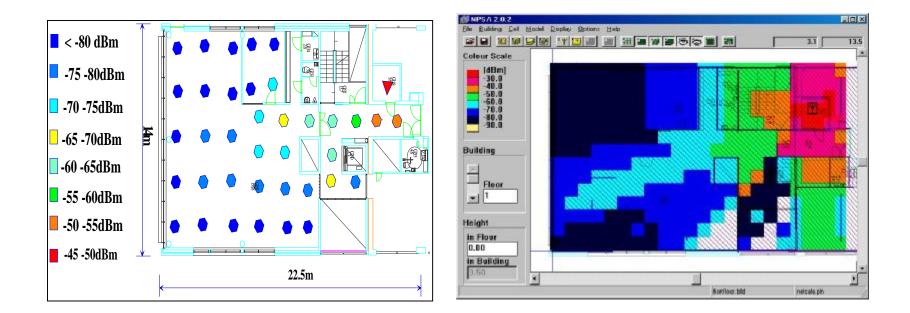
Indoor Network Planning for IEEE 802.11 based WLANs

Case 1 Lecture Hall S3/S4(3)

- AP location optimization (RPS simulation)
- Conclusion: Position 1 is the best place lacksquare

Position candidates

Coverage CDF (all areas)


Coverage CDF (S3/S4 only)

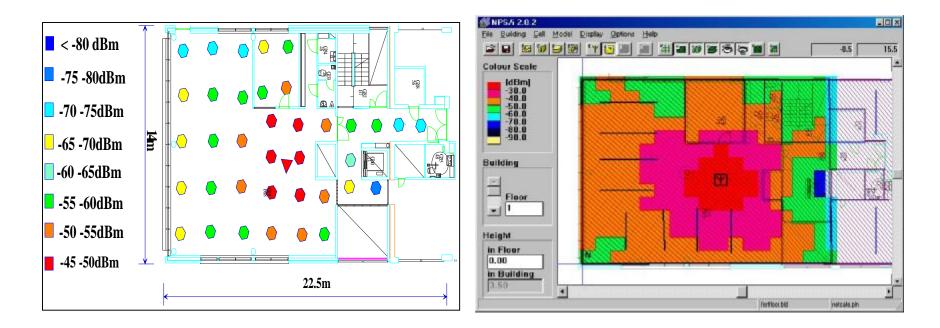
23/04/2002

Case 2 Dept. Library (Reading area) (1)

• Old coverage status (measured)

• Old coverage status (NPS simulated)

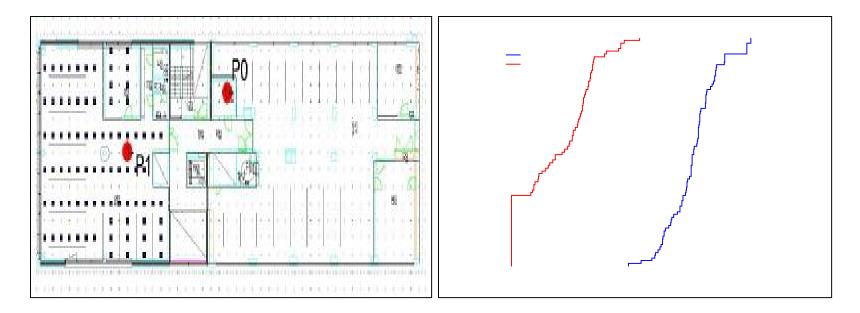
23/04/2002


Indoor Network Planning for IEEE 802.11 based WLANs

44

Case 2 Dept. Library (Reading area) (2)

• New coverage status (measured)


• New coverage status (NPS simulated)

23/04/2002

Case 2 Dept. Library (Reading area) (3)

- RPS simulation result
- Position 1 has much better coverage

23/04/2002

Indoor Network Planning for IEEE 802.11 based WLANs

46

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com