Problems marked * are meant for private studies

Figure 1 below illustrates a discrete-time model of a digital communication system where the channel noise n_k is modeled as an additive white Gaussian noise (AWGN).

Figure 1: Block diagram of the communication system.

Exercise 3-1

Since the channel is not ideal it causes ISI. Thus the channel can be modeled with the discrete-time transfer function $C(z) = 1 + \alpha z^{-1}$. The random input sequence is iid and assumes the values $x_k \in \pm 1$.

- a) Assume that α is a positive constant smaller than unity (i.e., $0 < \alpha < 1$). Draw the pole-zero diagram of C(z). Find the optimal linear zero-forcing (LE-ZF) equalizer K(z) for this channel and draw the filter structure.
- b) Assume that $|\alpha| > 1$. Draw the pole-zero diagram of C(z). Find the optimal LE-ZF equalizer K(z) (which is minimum-phase to guarantee stability) and draw the filter structure.
- c) Show that the magnitude of the frequency responses of the two equalizers are the same (regardless of the value of α).
- d) Compute the equalizer output noise power spectrum for case (a) (assuming that the noise at the equalizer input is white with the variance σ_n²) and determine the noise power (variance).
 Hint: Use Parseval's relation and / or the superformula.

*Exercise 3-2

Given an AWN transmission channel with the transfer function $H(z) = 1/(1-cz^{-1})$:

- (a) When |c| < 1, find the precursor and postcursor equalizers and the resulting MSE.
- (b) Repeat (a) for |c| > 1.
- (c) Interpret the results of (a) and (b).

Exercise 3-3

Determine the optimum coefficients of the linear equalizer (predictor) depicted in Fig. Ex 3.3. Here x(n) is the input to the equalizer/predictor filter, and e(n) is the prediction error signal that should be minimized to obtain the optimum predictor coefficients.

(a) Find the optimum predictor coefficients a_k .

(b) Sketch the simplified predictor structure which results from (a).

(c) What is the optimal MSE?

Homework 3 (Return time: October 28, 1998)

A communications channel that introduces ISI has the z transform $C(z) = \frac{1}{1 + \beta z^{-1}}$

- a) Assume that β is a positive constant smaller than unity (i.e., $0 < \beta < 1$). Draw the pole-zero diagram. Find the optimal linear zero-forcing (LE-ZF) equalizer *K*(*z*) and draw the filter structure.
- b) Now assume that $\beta > 1$. Draw the pole-zero diagram. Find the optimal LE-ZF equalizer K(z) (which is minimum-phase) and draw the filter structure. Is it a problem here to have a maximum-phase equalizer? Why?
- c) Show that the magnitude of the frequency responses of the two equalizers are the same (regardless of the value of β).
- d) Compute the output noise power spectrum (assuming that the noise of the equalizer input is white) and determine the noise power (variance).
- e) Find the resulting MSEs (mean square errors) in (a) and (b), i.e., compute $\varepsilon_{\mu_{r,T}}^2$.

NOTE: The random input sequence is iid and assumes the values $x_k \in \pm 1$.

Homework: Block diagram of the communication system.