About MPLS

- "It is expected that MPLS will be a crucial strategic element in addressing the ever-present scaling issues faced by the Internet as it continues to grow."
- this is from a MPLS conference advertisement
- "Until MPLS is fully supported it brings nothing new to our customers," said [Mika] Uusitalo [Sonera]. "We will not implement it until it really brings us value,"he said, confirming a growing Scandinavian trend against MPLS
- http://www.totaltele.com/view.asp?ArticleID=32975\&Pub=CWI\&Categor yID=705

(MPLs for) Load balancing

- Ability to forward IP packets over arbitrary non-shortest paths
- makes it possible to apply load balancing
- Still, there is the question, Why?
- for improved utility
- through better throughput
- for reduced cost
- through smaller capacity requirement - but is this valid statement?

Load balancing - a case study

OSPF
vs.
Load balancing

Evaluated issue:
should, e.g., part of the
traffic from 1 to 3 transferred via 5 and 4

Assumptions

- Average traffic per each node pair = 10
- Variations of these traffic components, $\rho / \mathrm{A}=0.2 \ldots 2$
- log-normal distribution + random number generator used to select a number of cases
- after the case has been determined, the average traffic is fixed
- in addition, it is assumed that the real traffic varies according to (another) log-normal distribution ($\rho / \mathrm{A}=0.25$)
- Dimensioning criteria
- (approximately) the probability that a packet encounters a link that is overloaded $=P_{\text {loss }}$

Evaluation method

- Comparision of required capacity
- find the capacity for OSPF and Load Balancing in a way that $\mathrm{P}_{\text {loss }}$ is the same for both
- gain of LB $=\left(\mathrm{C}_{\text {OSPF }}-\mathrm{C}_{\mathrm{LB}}\right) / \mathrm{C}_{\text {OSPF }}$
- Tool used for optimizíng
- Excels Solver
- 10 variables (limited between 0 and 1)
- seem to work
- result not guaranteed - but anyway that is realistic situation
- Main issue to be evaluated
- gain as a function of unevenness of traffic distribution (ρ / A)

Unevenness examples

$$
\begin{aligned}
& \rho / A \approx 0.5 \\
& \cdot 19 * 10+1 * 35.2 \\
& \cdot 2+3+4+\ldots 20+21 \\
& \cdot 1.09{ }^{i}, i=1 \ldots 20 \\
& \rho / A \approx 1.0 \\
& \cdot 19 * 10+1 * 67.6 \\
& \cdot 7^{*} 0+2+4+6 \ldots 24+26 \\
& \cdot 1.21^{i}, i=1 \ldots 20 \\
& \rho / A \approx 2.0 \\
& \cdot 19 * 10+1 * 171.8 \\
& \cdot 15^{*} 0+10+20+30+40+50 \\
& \cdot 1.63^{i}, i=1 \ldots 20
\end{aligned}
$$

Results

less capacity needed with load balancing (\%)

Conclusions

- Gain measured in capacity saving 10 ... 20\%
- depending on evenness of traffic distribution
- maybe even 30% with very uneven load distribution
- But
- traffic is not as static as supposed here
- it is not always possible to divide traffic infinitesimally
- implementation and management cost can be significant
- if one link is permanently overloaded, its capacity should be updated rather than use permanently another route
- Real question
- is, e.g., 10% capacity saving more valuable than the extra cost related to the introduction of a new technology

About DiffServ

- diffserv architecture and phb definitions made router vendors aware that they need to implement various classification/policing/marking/queuing/dropping mechanisms in their boxes and that is all there is to it. when i shop for a router, i never ask anything about ef, af, or even diffserv. i only ask about the mechanisms to make sure that they allow me to implement the services that i have in my network.
- -- juha [Heinänen, Telia]

About AF

- The question is what is the use of AF? What problem we can solve or what service we can implement by
- by classifying packets into 4 classes
- by reserving a share of capacity for each class
- by marking each packet into one of three drop precedences (within the class)
- From the viewpoint of
- utility
- individual user
- group of users
- isolation (but is this a relevant viewpoint)
- something else

AF implementation

Discarding thresholds

