

Lic.(Tech.) Marko Luoma (5/28)

Agreements

- · Form the basis between inter-provider communications
 - Small ISPs are customers of larger ones
 - Larger ISPs deliver their customer traffic as their own traffic
 - Larger ISPs deliver their customer traffic as transit traffic
 - Equal size providers exchange their traffic pro bonus
 - Both save money by interconnecting directly rather than through $\mathbf{3}^{\rm rd}$ party
 - Mutual agreement for exchanging only their customer traffic

Lic.(Tech.) Marko Luoma (7/28)

Strict hierarchy

- Based on structural and regulated manner of forming customer/provider relationships
 - Valid in telco operations
 - Operators for a chain of customer/provider relationships
 - Based on regulation of operational arena
 - Local operators
 - Long distance operators
 - International operators
 - · Cash flows to the top of the hierarchy
 - Local operators collect the money from end users
 - Middle layers take their premiums

Lic.(Tech.) Marko Luoma (9/28)

Loose hierarchy

- Local providers compete the local market but share common need to exchange their customer traffic on a local level
 - It is profitable for all to have direct exchange of traffic without 3rd parties
 - Better marginal revenue
 - Requires
 - Interconnection points
 - Bilateral agreement to establish equality
 - Zero payment principle
 - » Both parties benefit from peering» No mutual transfer of money

Lic.(Tech.) Marko Luoma (10/28)

Internet

- Naturally loose in hierarchy
- · Local ISPs maximize their revenue by minimazing their transit traffic
- · Same structure on all levels of hierarchy
- Any connection through the Internet is formed with chain of customer/provider relationships with a single zero payment border
 - Cost of connection is therefore divided into two
 - From source to top of the chain
 - · From destination to top of the chain
 - Peering does not cover transit traffic
 - · Only one zero payment border

TERNELINEN KORREAKOULU Tistoverikalaboratorio

Lic.(Tech.) Marko Luoma (12/28)

Transit domain

• A transit domain allows external domains to use its own infrastructure to send packets to other domains

- Examples
 - FuNET, NorduNET, GEANT, Internet2, BT, Telia, Level3,...

Lic.(Tech.) Marko Luoma (13/28)

Stub domain

- A stub domain does not allow external domains to use its infrastructure to send packets to other domains
 - · A stub is connected to at least one transit domain
 - Single-homed stub : connected to one transit domain (S1)
 - Dual-homed stub : connected to two transit domains (S2-S4)

Lic.(Tech.) Marko Luoma (14/28)

Stub domain

- Examples:
 - Content-rich stub domain
 - Large web servers : Yahoo, Google, MSN, TF1, BBC,...
 - Access-rich stub domain
 - ISPs providing Internet access via CATV, ADSL, ...
 - Saunalahti, Kolumbus, Welho etc

Lic.(Tech.) Marko Luoma (15/28)

Internet

TERNELINEN KORKEAKOULU

Tistorwikks laboratorio

Tier-1 ISPs

- Dozen of large ISPs interconnected by shared-cost peering arrangements
- Form the core of the Internet
- Provide transit service for T2/T3 service providers

TERNELIMEN ROBREACOULU Tietoretkis laboratorio

Lic.(Tech.) Marko Luoma (16/28)

Tier-1 service providers

•

- AOL Transit Data Network
- AT&T
- BBN
- British Telecom
- Cable and Wireless
- Connect Internet Solutions
- Deutsche Telekom
- Global Crossing
- Level 3
- NTT/Verio

- Optus
 - Primus Telecom
- Qwest
- Sprint
- Telstra
- UUNET
- WilTel (Williams Communications)

- PeerX's providers are not reachable via the shared link

· PeerY sends to PeerX its internal routes and the routes learned

- PeerX will use shared link to reach PeerY and PeerY's

- PeerY's providers are not reachable via the shared link

from its own customers

customers

- Provider sends to its customers all known routes
 - Customer will be able to reach anyone on the Internet

Lic.(Tech.) Marko Luoma (21/28)

Shared-cost peering

- AS1 send routes of AS{1,3,4,7} to AS2
- AS2 sends routes of AS{2,4,7} to AS1
 - Not AS3 while those routes come from shared-cost peering
 - · Routes from shared-cost peering are not advertised to providers

Lic.(Tech.) Marko Luoma (23/28)

Internet exhange

- Commercial starting point
 - A company builds an interconnection point to
 - Gain revenue from peering traffic
 - · Gain revenue from transmission links coming to exchange
 - Gain revenue from transit traffic

Co-operative starting point

- Neutral partner runs the exchange
 - None of the partners owns the premises
 - None of the partners owns the transmission links into exchange
 - None of the partners owns the equipment in exchange

Lic.(Tech.) Marko Luoma (22/28)

Internet

- Local providers aim to minimize their expenses by interconnecting at local level
 - Local exchange points
 - ..CIX (Commercial Internet eXchange)
 - MAE.. (Metropolitan Area eXchange)
 - NAP (Network Access Point)
 - IXP (Internet eXchange Point)
 - EP (Exchange Point)
 - Bilateral interconnections

Lic.(Tech.) Marko Luoma (24/28)

Internet exhange

- Build over L2 technology
 - Ethernet, ATM, FrameRelay switch
- Each provider connects into shared media with transmission link terminated to border router of provider
 - Everybody is able to see everybody

- etc