

Lic.(Tech.) Marko Luoma (1/37)

S-38.192 Verkkopalvelujen tuotanto S-38.192 Network Service Provisioning

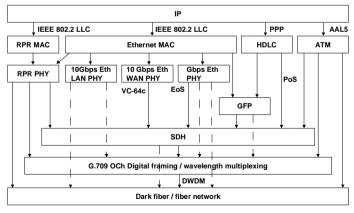
Lecture 2: Core Network Technologies

Lic.(Tech.) Marko Luoma (3/37)

Core Network Technologies

- High bandwidth requirements
- Transmission speeds are jumping up with constant rate
 - 1995: 155Mbps (SDH/ATM)
 - 2000: 2.4Gps (SDH)
 - 2004: 10 Gbps (SDH/Ethernet)
 - 2000-2004 wavelength technologies brought a new means to increase capacity
 - DWDM
 - CWDM

- Frame based multiplexing
 - Irrespective of low layer functionality
 - Fiber/Radio
 - Options today are
 - GMPLS
 - SDH
 - ATM
 - Ethernet
 - GFP

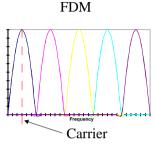

Lic.(Tech.) Marko Luoma (2/37)

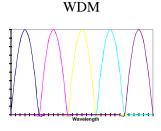
Core Network

- Connects MAN networks together
- Requires high bandwidth technologies with long range passive operation
 - Transmission speed and distance without repeaters tend to be inversely proportional
 - 1Gbps Ethernet -> 80-150km in SM-fiber with ZX-transmitter
 - 10Gbps Ethernet -> 10-40km in SM-fiber with ZX-transmitter
- · Typical medias are
 - Fiber (Single Mode)
 - Radio (Microwave, Satellite)

Lic.(Tech.) Marko Luoma (4/37)

EoS Ethernet over SDH (Proprietary)
PoS Packet over SDH


RPR Resilient Packet Rings (IEEE 802.17)
GFP Generic Framing Procedure



Lic.(Tech.) Marko Luoma (5/37)

WDM

· Optical counterpart for Frequency Division Multiplexing

Lic.(Tech.) Marko Luoma (7/37)

WDM

- Two operative versions
 - CWDM Coarse Wavelength Division Multiplexing
 - Max 8 channels between (1470 1610nm with 20nm steps)
 - DWDM Dense Wavelength Division Multiplexing
 - ITU Grid (100 Ghz resolution)
 - 50 channels between 1569.80nm to 1611.79nn
 - 50 channels between 1529.75nm to 1569.59nm
 - 50 channels between 1491.69nm to 1529.55nm

Lic.(Tech.) Marko Luoma (6/37)

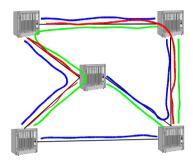
WDM

- Effectively N fold increase of transmission capacity from the same fiber infrastructure
 - Wide band components are relatively more expensive than N times narrow band components
 - Individual lambdas can be used independently
 - · Usage depends on transponder unit
 - Framing is in general from SDH (interface may be what ever)
 - » STM-16 2.4Gbps
 - » STM-64 10 Gbps = 10GbE
 - » STM-256 40 Gbps = 40GbE

Lic.(Tech.) Marko Luoma (8/37)

WDM

- DWDM
 - Narrow channel
 - Components need to be compensated for temperature effects
 - Expensive
 - More channels to choose from
 - nonlinearities of fibers can be avoided by selecting proper wavelengths


- CWDM
 - Wide channel
 - Component requirements are looser
 - Cheaper lasers and receivers
 - Less channels
 - Not suitable for long-haul networks
 - · Suitable for MANs

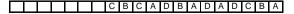
Lic.(Tech.) Marko Luoma (9/37)

WDM

- · Can be used as link or network technology
 - Link technology
 - · Multiplexers at the ends of the links
 - Network technology
 - · Optical switching components
 - Optical delay lines
 - Wavelength conversion
 - Photonic switching

Lic.(Tech.) Marko Luoma (11/37)

Frame Multiplexing


Synchronous multiplexing

• Fixed usage of resources

D C B A D C B A D C B A D C B A D C B A

Asynchronous multiplexing

• Free usage of resources

Lic.(Tech.) Marko Luoma (10/37)

WDM

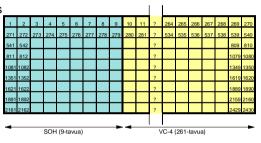
- · Pros:
 - Protocol independent
 - Virtual fiber
 - Multiplexing different traffic through different wavelengths
 - Similar failure protection than SDH networks (SDH framing)
- Cons:
 - Depending on system pay as you go may not be possible
 - The number of required channels need to be estimated for lifetime of systems
 - Not cost effective if capacity expansion is not immediately required

Lic.(Tech.) Marko Luoma (12/37)

Frame Multiplexing

- Synchronous
 - Fixed usage of resources
 - Information does not need L2 addresses
 - Wastes resources if communication is not CBR
 - Easy to integrate
 - SDH

- Asynchronous
 - Free usage of resources
 - Information requires L2 addresses
 - Does not waste resources
 - Requires additional logics to control resource usage
 - ATM, Ethernet

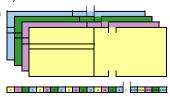


Lic.(Tech.) Marko Luoma (13/37)

SDH

- Synchronous frame based multiplexing of transmitted signals
 - Link framing is done with 2430 byte frames
 - Generation interval is 125us -> reflects the original coding of speech with 8kHz sampling rate

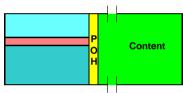
• Datarate = 155,52Mbps



Lic.(Tech.) Marko Luoma (15/37)

SDH

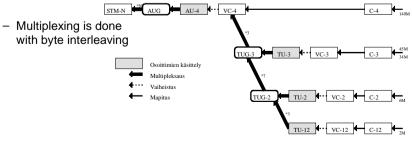
- SDH hierarchy makes possible to use multiples and fractions of basic rate
 - Multiples are generated by injecting multiple (factor of four) link frames within time-slot
 - STM-1: 155.52 Mbit/s (basic rate)
 - STM-4: 622.08 Mbit/s (first multiplex)
 - STM-16: 2488.32 Mbit/s (second multiplex)
 - STM-64: 9953.28 Mbit/s (third multiplex)
 - Operation is byte synchronous
 - Timing of individual bytes in multiplex is same than in basic rate frame



Lic.(Tech.) Marko Luoma (14/37)

SDH

- Link frames contain virtual containers which carry the actual information
 - Header information (POH)
 - · Flow and error control information between edge devices
 - Content
 - Virtual containers form point-to-point permanent connections through SDH network



Lic.(Tech.) Marko Luoma (16/37)

SDH

- Fractions are generated by multiplexing different streams of content into individual frame
 - Several virtual containers destined to same or different points in network

Lic.(Tech.) Marko Luoma (17/37)

SDH

- SDH supports also concatenation of resources
 - Old version strict mode
 - Clear channel operation (small 'c' after the virtual container type)
 - All VC:s in different frames form a single bit stream
 - Not feasible in SDH networks
 - Feasible if SDH is used as a point to point link technology
 - New version flexible mode
 - · Concatenation is used only in edge devices
 - Supports SDH networks
 - Concatenated VC:s need not be with same speeds
 - » Even over different fibers

Lic.(Tech.) Marko Luoma (19/37)

SDH

- · Add-drop multiplexer
 - Basic component in ring type SDH networks
 - Most of traffic passes through the ADM on ring interfaces
 - Some traffic is taken out of ring and/or inserted into the ring

Lic.(Tech.) Marko Luoma (18/37)

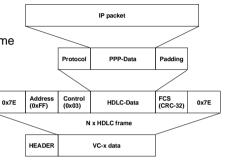
SDH

- · Terminal multiplexer
 - Responsible of taking non-SDH and lower rate SDH traffic in and interleave them in STM-N frames.
 - Vice versa on other end of the path
 - Each incoming traffic component has its own virtual container (routed separately within SDH network)

Lic.(Tech.) Marko Luoma (20/37)

SDH

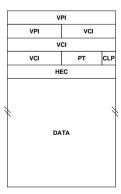
- · Digital Cross Connect
 - Switches SDH traffic
 - Between fibers
 - From individual STM frame to other
 - Basic component on mesh type networks



Lic.(Tech.) Marko Luoma (21/37)

SDH

- IP can not be used directly with SDH
 - Packet over Sonet (PoS) is method for delivering IP packets in SDH
 - · Additional framing
 - IP packet into PPP-packet
 - PPP packet into HDLC frame
 - HDLC frame into SDH virtual container



Lic.(Tech.) Marko Luoma (23/37)

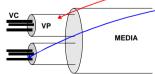
ATM

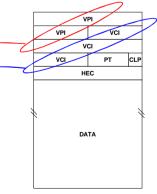
- · Asynchronous frame based multiplexing
- · Capabilities for dynamic switching
 - Not only PVP's or PVC's
- · Connection oriented
- · Fixed packet structure
 - 5 bytes of headers
 - · Addresses (VPI, VCI)
 - Packet content type (PT)
 - Priority (CLP)
 - Checksum (HEC)
 - 48 bytes of data

Lic.(Tech.) Marko Luoma (22/37)

SDH

- Pros:
 - Optimized for TDM services (large income from leased line services)
 - Fully compatible with metro ring networks (SDH ADM rings)
 - Reliable and fast failure recovery (roughly 50ms with APS)
 - Price of SDH continuously coming down
- Cons:
 - Not cost effective for burst data traffic
 - Capacity in SDH network can only be allocated on multiples of 2Mbps
 - No multiple QoSs for different service charges
 - Expensive interfaces at routers


Lic.(Tech.) Marko Luoma (24/37)


ATM

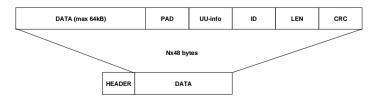
· Header fields define

- Connection

Multiplexing group

Lic.(Tech.) Marko Luoma (25/37)

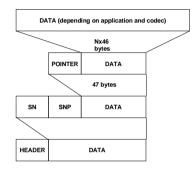
ATM


- · Can be used
 - As is over the transmission media
 - Assumes low bit error ratio from the media
 - Over any other L2 protocol
 - · Benefits from the error control of L2 media
- · Why sensitivity to BER
 - Packet has not markers
 - Delineation is accomplished through state-machine which goes through packet bit by bit and looks header checksum matches
 - Sensitive to errors if high BER

Lic.(Tech.) Marko Luoma (27/37)

ATM

- · 48 byte content field is too little for data networks
 - Fragmentation of data packets into multiple ATM cells
 - Separate protocol layer to handle the fragmentation and reassembly of protocol packets



Lic.(Tech.) Marko Luoma (26/37)

ATM

- · 48 byte content field is too big for voice communications
 - Separate protocol layers to handle
 - Sub cell delineation
 - Timing
 - Sequencing
 - Clear channel communication for video applications

Lic.(Tech.) Marko Luoma (28/37)

ATM

- Framing options for IP traffic in ATM links:
 - RFC2684: Multiprotocol Encapsulation over ATM Adaptation Layer 5 (Classical IP)
 - Uses LLC/SNAP encapsulation of traffic within ATM adaption layer

Destination SAP =AA	AA-AA-03 -> SNAP
Source SAP =AA	
Frame Type =03	
OUI =00-00-00	00-00-00 -> Ethertype
Ethertype =08-00	08-00 -> IPv4
IP packet	
PAD (0-47 octect)	
CPCS UU (1 cotcot)	AAL5 -trailer
CPI (1 octect) =0x00	TELEC CLUMO
Length (2 octect)	
CRC (4 octect)	

Lic.(Tech.) Marko Luoma (29/37)

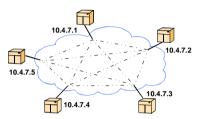
ATM

- Framing options for IP traffic in ATM links:
 - RFC2364: Point to Point Protocol over ATM
 - Uses in AAL5 frames either
 - raw PPP packets
 - PPP on LLC/NLPID packets

Destination SAP	
Source SAP	LLC-otsikko
Frame Type (UI)	
NLPID (PPP)	Network Layer Protocol ID
Protocol ID	
PPP Information	PPP
Padding	
PAD (0-47 octect)	
CPCS-UU (1 octect)	
CPI (1 octect)	AAL5 -trailer
Length (2 octect)	
CRC (4 octect)	

Lic.(Tech.) Marko Luoma (31/37)

ATM


- · Pros:
 - Easy capacity management
 - Virtual short-cuts without routing
 - MPLS ready
 - Fault tolerant if ATM-level dynamic routing is used
- · Cons:
 - Additional layer of technology
 - · Not good for framing itself
 - Expensive interfaces at routers
 - Subinterface structure in networked ATM

Lic.(Tech.) Marko Luoma (30/37)

ATM

- ATM network is from IP perspective
 - NBMA network
 - Separate virtual connection between each and every router
 - Large number of connections and adjacencies in routing
 - Usually subinterface per connection

Lic.(Tech.) Marko Luoma (32/37)

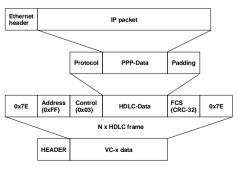
Ethernet

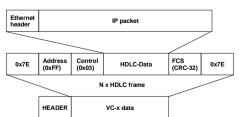
- Technology has scaled to level where conventional core network technologies are
 - STM-64 and 10GbE are the same
 - Even in optical interface level they are the same but ethernet is only 20% of the price
 - STM-256 will be the base for 40GbE
 - 1GbE is based on fiber channel but can be multiplexed in STM-16 networks by having two independent connections

Lic.(Tech.) Marko Luoma (33/37)

Ethernet

- 10GbE
 - IEEE 802.3ae
 - Full duplex
 - Adjustable MAC speed
 - 10Gb in LAN
 - 9.29Gb in WAN
 - Optical media
 - SDH WAN Phy
 - 10Gb LAN Phy


- 1GbE
 - 802.3z
 - CSMA/CD + Full Duplex
 - Optical and copper media
 - Fiber channel Phy


Lic.(Tech.) Marko Luoma (35/37)

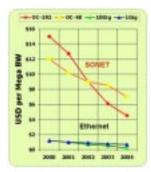
Ethernet

· PoS way of doing things

- WAN ethernet way
 - Avoids protocol conversion between ethernet and PPP

Lic.(Tech.) Marko Luoma (34/37)

Ethernet


- · Possibility to build transparent LAN services
 - Majority of LAN networks are build with ethernet
 - Some applications benefit from the fact that ethernet headers are preserved
 - Possibility to have same IP subnet on both ends
 - WAN network is transparent for ethernet network
 - No PPP protocol in between SDH and Ethernet
 - VLANs provide separation of users within the core
 - Separate forwarding tables per customer
 - If customer has own VLANs so called aggregated VLAN can be used
 - Second VLAN header in packets within the core

Lic.(Tech.) Marko Luoma (36/37)

Ethernet

- Differencies in framing and error recovery lower the price of Ethernet interfaces compared the same rate PoS interfaces
 - OC-192 <-> STM-64
 - OC-48 <-> STM-16

Source: http://www.foundrynet.com/

Lic.(Tech.) Marko Luoma (37/37)

Ethernet

- · Pros:
 - Optimized for burst data services
 - No protocol conversion for interfacing with routers and LAN switches
 - Plug-and-play ideology in operation
- Cons:
 - Expensive and complicated to support the TDM voice and leased line services
 - Poor in trouble isolation and network recovery
 - Spanning tree operation takes tens of seconds to recover the networks
 - IEEE802.17 (Resilient Packet Ring) and BFD (Bi-directional Forwarding Detection) will eventually help this