

Lic.(Tech.) Marko Luoma (1/25)

S-38.192 Verkkopalvelujen tuotanto S-38.192 Network Service Provisioning

Lecture 10: Resiliency

Lic.(Tech.) Marko Luoma (2/25)

Survivability

- Modern telecommunication network are built survivable
 - Network maintain service continuity (SLA: availability) in the presence of faults within the network
 - Requires mechanisms for protection and/or restoration
 - Level of mechanisms depend on importance of traffic
 - » 2 nines -> restoration
 - » 5 nines -> protection (1:1)
 - » 7 nines -> protection (1+1)

Lic.(Tech.) Marko Luoma (3/25)

Protection vs Restoration

Protection

- Predetermined failure recovery
 - Protection path is precomputed and installed into the network
- Reconfiguration
 - Switching the affected traffic from faulty entity to backup entity

Restoration

- Dynamic failure recovery
 - Recovery path is computed after the occurrence of a fault
- Reconfiguration
 - Selection of a new path for the traffic
 - Rerouting the affected traffic

TERMELINEN ROBRE AKOULU Tresvetika koorando

Lic.(Tech.) Marko Luoma (4/25)

Different Modes

1+1 protection

- A separate secondary resource is dedicated for each primary resource
- Traffic is sent on both resources and receiving end of resource selects one copy to be transmitted further
- 1:1 protection
 - A separate secondary resource is dedicated for each primary resource
 - Extra traffic is carried over the secondary resource but in case of fault in primary traffic is pre-empted from the secondary

Lic.(Tech.) Marko Luoma (5/25)

Different Modes

1:N protection

- A secondary resource is set for a group of primary resources
- Extra traffic is carried over the secondary resource but in case of fault in primar(y/ies) traffic is pre-empted from the secondary
 - Only a subset of primary traffic is delivered on secondary
 - Priorization of primaries

• M:N protection (M<<N)

- M secondary resources are set for a group of primary resources
 - · Higher percentage of primary traffic is secured

TERNELINEN SCROE WOULD Terowiks beatcaio

Lic.(Tech.) Marko Luoma (6/25)

Lic.(Tech.) Marko Luoma (8/25)

Restoration

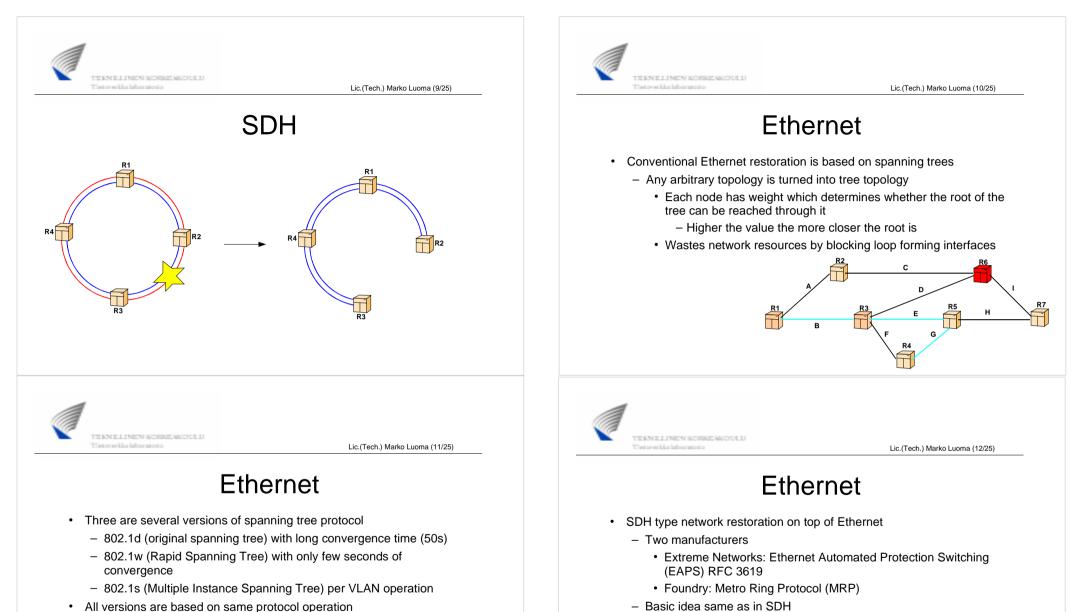
Local restoration

- Network device that detects the error uses local capabilites to circumvent the failed part of the network
 - · In case of link; possible secondary link to same destination
 - In case of node; 3rd node to circumvent failed node
- Leads to sub-optimal network state
- Path restoration
 - Source of the path recalculates new path in case of failure in primary path
 - Precalculation of disjoint paths is possible
 - · Faster switch over time

TERMELINEN ROBREAKOULU

Tistorwikks laboratorio

Lic.(Tech.) Marko Luoma (7/25)


Restoration

Global restoration

- Network node that detects fault in the network informs all other nodes in the network about existence of fault
 - This depends on routing protocol
 - Link state routing: by removing the LSA
 - » Only if happens to be originator of LSA
 - » Otherwise sits back and waits for timer to clean the LSDB (can be hours)
 - Distance vector routing: by calculating new routing vector

SDH

- SDH networks are famous of their fast restoration in case of fault
 - Typically less than 50ms for complete restoration
 - Based on general idea of non-arbitrary network topologies
 - Double rings which can be restored by reversing the traffic at the ends of faulty section
 - Single action
 - Single failure restoration within the ring
 - 50% of network capacity reserved for restoration

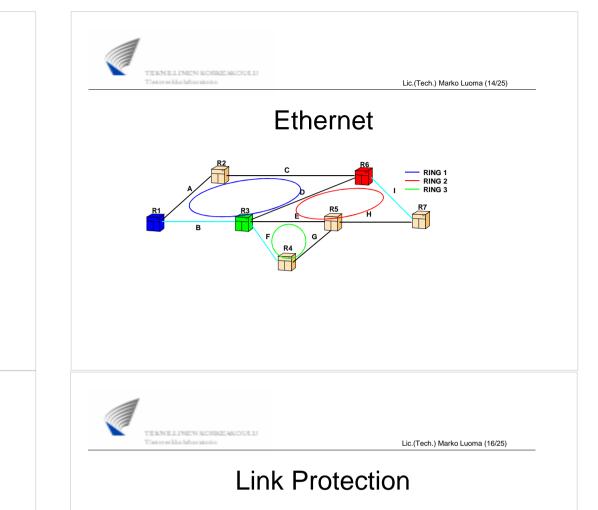
· Ring type network topology

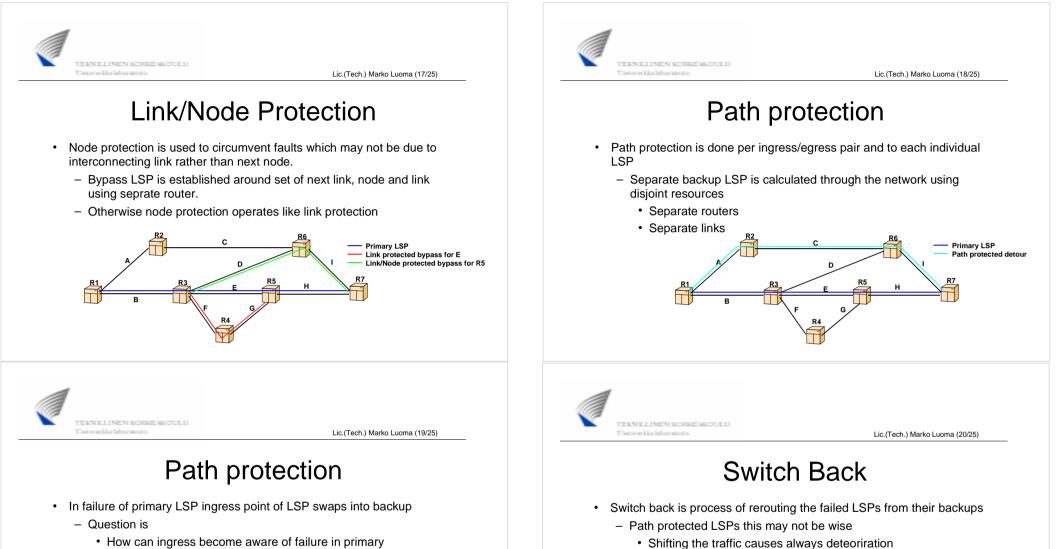
Traffic reversion in case of error

- All versions are based on same protocol operation
 - Exchange of BPDU messages to determine whether or not interface should be blocked

Lic.(Tech.) Marko Luoma (13/25)

Ethernet


- Each ring has a master which
 - blocks loop forming interface
 - In case of fault opens the loop forming interface for traffic
 - · Detection of fault can be based on
 - Probes sent by the master
 - Signalling from the device that detects the fault
 - Convergence time of network is dependent on time between fault and notification of master
 - Varies between
 - » Tens of milliseconds with device signalling
 - » Hundreds of milliseconds with probes


Lic.(Tech.) Marko Luoma (15/25)

MPLS

- LSP restoration processes are based on Constrained Shortest Path First routing algorithm for selecting bypass LSPs.
- · Different reroute options are:
 - Link protection
 - Link and node protection
 - Path protection
 - Dynamic restoration

- · Link protection offers per-link traffic protection
 - Each link on protected LSP has its own bypass for circumventing the failed link
 - Link protection can be made
 - per LSP
 - · several LSPs can be aggregated into single bypass LSP
- · Requires that
 - Separate bypass is calculted between each RSVP neighbor
 - Router tracks the interface status of egress link and reroutes the protected traffic by stacking the original label with label structure of bypass LSP

- · How can ingress become aware of failure in primary
 - Upstream notification takes time to travel
 - Additional delay in restoration of network status

- Even with make-before-brake packets usually experience sequence errors
- Facility backups require some form of switch back
 - · Into original paths ones they are up and running
 - · Into new primaries if restoration of original primary is not expected to happen

Lic.(Tech.) Marko Luoma (21/25)

Dynamic Restoration

- If there are no other protections new LSP can also be calculated on demand
 - Failure of primary triggers on-demand calculation of a new primary
 - Failure is circumvented by the fact that failed resources are no longer in TED
 - Causes few hundred milliseconds of additional delay for restoration

IP

- · IP restoration is based on convergence of routing protocols
 - Detection of fault
 - Hello timers
 - (L2 indications)
 - (BFD indication)
 - Flood of new LSAs
 - Calculation of global routing tables
 - Instantion of new forwarding table

Lic.(Tech.) Marko Luoma (23/25)

· Detection of errors

- Slow process if there is a L2 interconnection device between routers
 - · L2 may be up even though other router is dead
 - L2 indication process works only if interconnection device fails
 - Normal Hello based detection (tens of seconds)
- Can be speeded up with usage of bi-directional forwarding detection (BFD)
 - · Probes are sent between forwarding planes of routers
 - Fault is signalled to routing process

Lic.(Tech.) Marko Luoma (24/25)

IP

- · Convergence of IP routing depends heavily on detection time of fault
 - Hello process -> tens of seconds
 - BFD -> some hundreds of milliseconds
 - L2 indication -> few milliseconds
- Flooding process and SPF calculations take only some tens or hundreds of milliseconds
- Of the shelf running networks can have large deadlocks due to default timer values:
 - Hello timer of 10s -> router dead 40s
 - LS refresh time 1800s -> LSA max age 3600s

Lic.(Tech.) Marko Luoma (25/25)

Inter-layer Communication

- Modern telecommunications networks are layered with their structure
 - Fault in lower layer affects all higher layers
 - Convergence process should proceed from bottom to up
 - Unneccesary oscilation can be avoided if each layer is allowed to convergence before next layer attempts to restore the situation
 - Fast restoration in lower layer may be ignored in higher layers all together if communication partner with higher layer entity stays the same