

Lic.(Tech.) Marko Luoma (1/23)

S-38.180: Quality of Service in Internet

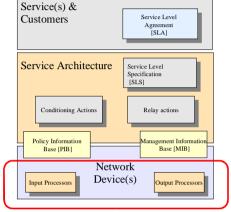
Lecture II: Ingress Traffic Processing

18.9.2003

Lic.(Tech.) Marko Luoma (3/23)

Terminology

- Connection: is dynamically formed reservation of network resources for a period of time.
 - Connection requires a state to be formed inside the network
 - State is a filter defining packets which belong into particular connection and required reservation attributes
- Flow: is formed from arbitrary packets which fall within predefined filter and temporal behavior.
 - Packets from one source to same destination arrive to investigation point with interarrival time less than t seconds.



Lic.(Tech.) Marko Luoma (2/23)

Today's Topic

 This lecture is about functional mechanisms which can be found from the input processors of network devices

Lic.(Tech.) Marko Luoma (4/23)

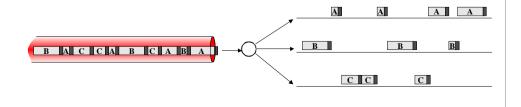
Terminology

- Aggregate: is a group of flows which have same forwarding characteristics and share link resources.
- Class: is a group of connections which share same forwarding characteristics.

Lic.(Tech.) Marko Luoma (5/23)

Input processor

- Input processor of Internet router consists several mechanisms
 - Filtering
 - Classification
 - Metering
 - Policing
 - Marking
 - Shaping



Lic.(Tech.) Marko Luoma (7/23)

Classification

- Classification is process where packets in the packets stream are separated into n logically separate packet streams.
- These streams are then treated as separate entities for which different actions are performed
- Separation is based on filters which match packet content to the filtering rules.

Lic.(Tech.) Marko Luoma (6/23)

Classification

- Individual connections can be recognized by looking sufficient number of protocol fields.
- This is used in **Integrated Services** architecture.
- IntServ uses reservation protocol for informing the network about fields which should be examined.
- If per connection accuracy is not needed or can not be feasibly implemented is aggregate based operation the answer.
- This is used in **Differentiated Services** architecture.
- Aggregate is based on static filters covering broad range of different connections i.e. aggregating connections to one logical unit

Lic.(Tech.) Marko Luoma (8/23)

Filtering

- Commonly filters are based on IP packet / transport header information
 - IP addresses
 - Protocol information
 - DSCP-field
 - Port information
 - Length information

ــــــــــــــــــــــــــــــــــــــ		<u> </u>	ببا		<u> </u>
Version	IHL	ToS/DSCP	Length		
Identification			Flags	Offset	
TTL		Protocol	Checksum		
Source Address					
Destination Address					
Options					Padding
Source Port			Destination Port		

- Generally any fixed block of bits can be used as a filter
- Commonly used notion for filter ->Five tuple = (SourceIP, DestinationIP, Protocol, SourcePort, DestinationPort)

Lic.(Tech.) Marko Luoma (9/23)

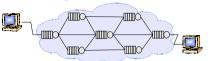
Service Level Management

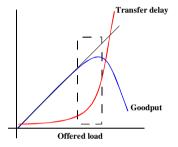
- QoS based networks need careful management
 - How to provision the network so that there will not be unnecessary queuing or packet loss
 - How to control the amount of traffic that gets into the network
- · Network level
- Customer level / connection level
- · Packet level

Lic.(Tech.) Marko Luoma (11/23)

Rate Control

- Task is to decide which user packets should be delivered into the network and on what priority (mark)
 - They do not violate QoS management principles within the network by overloading the network
- Rate control operates in three levels
 - Measures the traffic
 - Compares the measured information to information in user / network policy
 - Executes policy based on comparison results
 - Marking
 - Dropping
 - Shaping

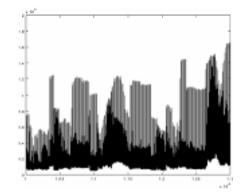




Lic.(Tech.) Marko Luoma (10/23)

Service Level Management

- Overall objective is to offer QoS and/or maximize network throughput
- This requires
 - Limiting user traffic to the level that individual links operate on optimal fashion
 - Individual links can not be fully utilized
 - · Unequal capacities
 - · Uncertainty of paths
 - · Uncertainty of demands



Lic.(Tech.) Marko Luoma (12/23)

Rate Control

- User traffic process is largely dependent on application which is used.
 - Some applications produce constant traffic stream
 - Fixed size packets
 - · Constant interarrival times
 - Other may produce bursts of packets
 - Variable size packets
 - · Variable interarrival times

Lic.(Tech.) Marko Luoma (13/23)

Rate Control

- Objectives:
 - Simple
 - · Easy algorithm
 - · Few parameters
 - Accurate
 - · Actions are correct
 - Actions are transparent
 - · Actions are immediate
 - Predictable
 - · Action are consistent from time to time

- Requires:
 - Parametrization of user traffic
 - Either flow level
 - · Or Aggregate level
 - This is bound to SLA made with the ISP

Lic.(Tech.) Marko Luoma (15/23)

Token Bucket

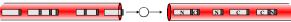
- Produces information whether arrival rate is more or less than the threshold
- · Algorithm is based on
 - Number of tokens in token bucket (in bytes)
 - Arrival time (T_{Now}, T_{Last Arrival})
- Two limiting parameters
 - Bucket size (S)
 - Token rate (R) * token size

Initial condition:

Number of Tokens = S

Upon each arrival:

 $Increment = TokenSize \cdot R \cdot (T_{Now} - T_{Last\ Arrival})$


Decrement = PacketLength

Conformance = Number of Tokens + Increment - Decrementif $Conformance \ge 0$

then Number of Tokens = min(S, Conformance)

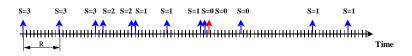
 $else\ Number\ of\ Tokens = min(S,\ Number\ of\ Tokens + Increment)$

Lic.(Tech.) Marko Luoma (14/23)

Metering

- Packet stream is measured to find out some of the following parameters:
 - *Peak rate* maximum rate on which user is sending
 - Sustained rate average rate on which user is sending
 - Burst size maximum burst size which user sending on either with peak or average rate

- · Actual measurement of information may be based on
 - Continuous time measurement
 - Discrete event analysis
 - Window based analysis



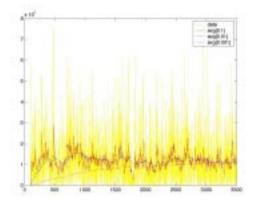
Lic.(Tech.) Marko Luoma (16/23)

Token Bucket

- · In ideal situation
 - Packets arrive with intervals of token generation rate (R)
 - Packets are size of token
 - Variation of arrivals is compensated with bucket size (S)
 - · Allows bursting

- Example:
 - R=10
 - S = 3

Lic.(Tech.) Marko Luoma (17/23)


Packet per packet EWMA meter

- Measures packet stream by using exponentially weighted moving average filter.
 - Tunable by parameter
 - Memory (ϵ)

Initial condition:

avg(0) = 0After every packet arrival

$$avg(n+1) = (1-\epsilon) \cdot avg(n) + \epsilon \cdot \frac{PacketLength}{t - t}$$

Lic.(Tech.) Marko Luoma (19/23)

Time Sliding Window Meter

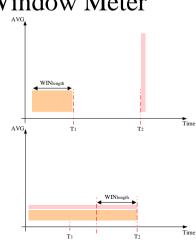
- TSW is memory based, windowed average rate estimator
- · Tunable by parameter
 - Window length

Initial condition:

$$avg(0) = 0$$

$$Win_{length} = C$$

$$T_{front} = 0$$


After every packet arrival:

Bytes
$$_{TSW} = avg(n) \cdot Win_{length}$$

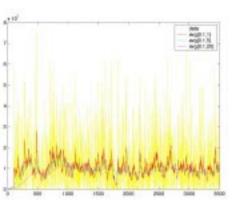
$$New_{bytes} = Bytes_{TSW} + PacketLength$$

$$vg(n+1) = \frac{NeW_{bytes}}{T - T + Win}$$

$$T_{front} = T_{now}$$

Lic.(Tech.) Marko Luoma (18/23)

Windowed EWMA meter


- Measures packet stream by using exponentially weighted moving average filter with sampling window.
 - Tunable by parameters
 - Memory (ϵ)
 - Sampling interval (ΔT)

Initial condition:

avg(0) = 0

After every ΔT time units

 $avg(t_{n+1}) = (1 - \epsilon) \cdot avg(t_n) + \epsilon \cdot bytes during[t_{n+1}, t_n]$

Lic.(Tech.) Marko Luoma (20/23)

Metering

- Based on the measured information a conformance statement is declared
- Conformance is the observation whether the measured variable is within predefined boundaries.
 - Customer has contracted rate of X bps with variation of x bps
 - Customer has contract of average rate X bps and peak of Y bps. He is allowed to send bursts of Z kB in peak rate.

Lic.(Tech.) Marko Luoma (21/23)

Conformance algorithms

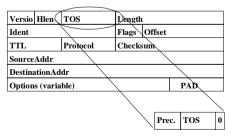
• Strict conformance

 Packets exceeding contracted rate are marked immediately as nonconforming

• TSW conformance

 Packets exceeding 1.33 times contracted rate are marked as nonconforming

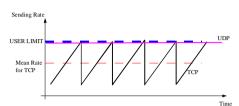
· Probability conformance


 Packets exceeding contracted rate are marked as non-conforming with increasing probability

Lic.(Tech.) Marko Luoma (23/23)

Marking

- Marker is used to attach conformance / class information to every packet.
- Marker uses IPv4 TOS/DSCP field to convey information for other processing elements in the network.
 - TOS
 - Prec: 3 bit priority
 - TOS: user preference for routing
 - DSCP
 - · Class and precedence



Lic.(Tech.) Marko Luoma (22/23)

Rate Control Problems

- Two parallel transport protocols with contradicting control:
 - UDP with no control
 - TCP with additive increase exponential decrease rate control
- Problem: Metering system cannot easily offer fair service to both TCP and UDP clients in the same system.

