
S-38.180 – Quality of
Service in Internet

Introduction to the Exercises

Timo Viipuri

8.10.2003

Exercise Subjects

1) General matters in doing the exercises
 Work environment
 Making the exercises and returning the reports

2) Introduction to NS-2 Network Simulator
 Basic understanding on how to work with it

Work Environment

● Class rooms: Maari-c and Maari-d
 http://www.hut.fi/atk/luokat/maari-c.html (Linux)
 http://www.hut.fi/atk/luokat/maari-d.html (Windows)

● Linux OS
 Beginners Guide:

➢ http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/getting-started-guide
➢ http://linux.org.mt/article/terminal

 Command Reference:
➢ http://linux.nixcraft.com/linux_commands

Exercises

● Exercise schedule and material:
 http://www.netlab.hut.fi/opetus/s38180/s03/schedule.shtml

● Each exercise session (2 hrs) consists of:
 (Review of the previous exercise)
 Introduction to the new exercise
 Begin work on the simulations with course staff present

● Do all the exercises in the Computing Centre's computers
 The NS-2 software found there is not the standard

distribution -> some exercises won't work elsewhere

Exercise reports

● Hard deadline for all reports is October 29th, 4 pm
 It is advised to return reports before the next exercise
 Return format is either PDF or paper

● Two types of grading depending on the exercise:

1. Fail / Pass or

2. Fail / Satisfactory / Good / Excellent

● All exercises must be passed to complete the course
● Exercise points are summed up and scaled to 1-6

 Used in the exam grading to replace the points from the
lowest scoring answer

S-38.180 – Quality of
Service in Internet

Exercise 1: NS-2 Network Simulator

Timo Viipuri

8.10.2003

Exercise Objectives

● To familiarize yourself with the work
environment

● To learn to work with NS-2 at the level that
you can:
1.Write simple simulation scripts

2.Read and understand more complex simulation
scripts

Tasks of the Day

1. A few words about the background and structure of
NS-2
• to give you some idea of what you are working

with

2. Line-by-line study of a simple simulation scenario
• to explain the minimum requirements needed to

create a simulation

3. Begin making your own simulation
• to get a hands-on feeling on the simulator and

prepare you for the later exercises

NS-2 Forewords

● Began as a variant of the REAL network simulator
in 1989

● Open source software
 Possible to tailor the code to exactly fit the needs
 Thousands of developers => rapid increase in

functionality

● Nowadays it is argueably the most popular network
simulation tool in the world
 Used extensively by both businesses and

universities

NS-2 Software
Structure

● NS-2 uses two programming languages to combine
efficiency and ease of extentability
 C++
 OTCL (Object Tool Command Language)

● NS-2 software is written in both C++ and OTCL
 Generally doesn't need to be modified

● Simulation scripts are written in OTCL
 Used to setup and control the simulation

NS-2 Software
Structure 2

● Simulator software is
separated to 3 layers:
1. Basic functionality:

C++

2. Experimental protocols
and complex
applications: OTCL

3. Simulation control
scripts: OTCL

Our focus is here

Simulation Scripts

● Used to set-up a simulation scenario
 Network topology
 Traffic agents
 Simulation events, e.g. when to start sending data
 Gathering results: monitoring and tracing

● Written in OTCL
 No need to compile; scripts are interpreted at run-

time

NAM – Network Animator

● Animation tool for
graphically viewing
simulation results

● Useful for
examining simple
simulations

Simulation Example
● Topology

 A network of two nodes connected with a duplex link
➢ Bandwidth: 5 Mbps
➢ Packet delay: 10 ms

● Traffic agents
 1 TCP-connection
 1 UDP-connection with a CBR-traffic generator

● Simulation events
 TCP starts sending 15 kB of data at 0.5 s
 UDP starts sending at a rate of 800 kbps at 0.2 s and stops at 0.8 s

● Gathering data
 Trace all packet events

Example 2: Topology

● Create nodes n0 and n1
set n0 [$ns node]

set n1 [$ns node]

● Create a duplex-link between the nodes
$ns duplex-link $n0 $n1 5Mb 10ms DropTail

Assign a variable n0

Create a node and assign it to variable n0

Call procedure 'duplex-link'
of object $ns

Set link between nodes n1 and n2

Bandwidth 5Mbps,
delay 10ms

Buffer management
method: DropTail

Example 3: UDP-agents

● Create UDP- and null-agents
set udp0 [new Agent/UDP]

set null0 [new Agent/Null]

● Attach them to nodes n0 and n1
$ns attach-agent $n0 $udp0

$ns attach-agent $n1 $null0

● Connect the agents
$ns connect $udp0 $null0

Parameters: $node $agent

A null-agent acts as an UDP-sink

Parameters: $agent $agent

● Create a CBR traffic source
set cbr0 [new Application/Traffic/CBR]

● Set traffic parameters
$cbr0 set packetSize_ 500

$cbr0 set interval_ 0.005

● Attach the traffic generator to an agent
$cbr0 attach-agent $udp0

Example 4: CBR-traffic

Application type

Time interval
between packets

⇒SendRate=8 * 500 b
0.005 s

=800kbps

● Create a TCP-connection pair
set clnt0 [new Agent/TCP/FullTcp]

set srvr0 [new Agent/TCP/FullTcp]

● Attach agents to nodes
$ns attach-agent $n0 $srvr0

$ns attach-agent $n1 $clnt0

● Connect the agents
$ns connect $srvr0 $clnt0

● Assign the client-agent to listening mode
$clnt0 listen

Example 5: TCP-agents

FullTcp includes a three-way
handshake and tear-down

Example 6: Events

● Schedule events
$ns at 0.2 "$cbr0 start"

$ns at 0.5 "$srvr0 sendmsg 15000 \"MSG_EOF\""

$ns at 0.8 "$cbr0 stop"

● Call the finish procedure after 1.0 s of simulation time
$ns at 1.0 "finish"

● Start the simulation in the end of the script
$ns run

Launch the quoted command at 0.2 s

Start sending CBR-data

Send 15 kB of TCP-data

Stop sending CBR-data at 0.8 s

Example 7: Tracing

● Open files for writing
set nsf [open example.ns w]

set namf [open example.nam w]

● Set trace types
$ns trace-all $nsf

$ns namtrace-all $namf

File handle in the simulation Name of the file

Open the file for writing

Trace all links

Output file handle

Trace all links for NAM (Network Animator)

Example 8: Results

● Sample of the packet trace file:
+ 0.535 0 1 udp 500 ------- 1 0.0 1.0 7 7

- 0.535 0 1 udp 500 ------- 1 0.0 1.0 7 7

r 0.5458 0 1 udp 500 ------- 1 0.0 1.0 7 7

Trace event

Time (s)

Link source and
destination IDs

Packet type

Packet size (B)

Flags
Flow ID

Source and destination
nodes

Packet sequence
number and unique
packet ID

Simulation: Link Delay

● Topology
 1 FTP client

➢ Node 0

 3 FTP servers
➢ Nodes 2-4

● Study the effect of
link delay to the throughput
of a TCP-connection

4

2

13 05 Mbps
20 ms

10 Mbps
? ms

10 Mbps
? ms

10 Mbps
? ms

Random Numbers

● NS-2 produces only pseudo-random numbers
 they aren't random but only appear to be

● A seed value is needed for the generation of pseudo-
random numbers
 If the seed value is the same the number sequence will be the

same

● In NS-2 the seed value is modified with:
''$defaultRNG seed 1'',
 using seed 0 will cause a random seed to be generated on each

new simulation

● e.g. RED uses random numbers to calculate the drop probability

NS-2 Material

● Development pages:
 http://www.isi.edu/nsnam/ns
 Especially useful topics:

➢ "Ns manual"
➢ "Mark Greis's tutorial"

 Visit them!

● TCL tutorials
 http://users.belgacom.net/bruno.champagne/tcl.html

 http://hegel.ittc.ukans.edu/topics/tcltk/tutorial-noplugin

● OTCL tutorial
 http://nestroy.wi-inf.uni-essen.de/Lv/gui/otcl

